Semiconductor superlattices -- artificial periodic structures consisting of ultrathin layers where by variation of their width, doping level and profile one can tailor their optical and electronic properties in a desirable way – can be found as an attractive environment to investigate various high-frequency phenomena [1,2].
In the given communication, we present the first experimental...
Future wireless technologies will require very high data rates and low latency to satisfy the nearly exponential growth of worldwide data traffic [1]. Terahertz (THz) technologies with its broad unallocated frequency band (0.1‑10 THz) can be a promising potential solution. Along with extreme densification of the infrastructure and highly directional beams, it is the key enabling technology of...
High electron mobility and temperature stability of III-nitride heterostructures serve as a base for the development of tunable frequency THz emitters. Some THz emission results of the 2D plasmons in nitride high electron mobility transistor (HEMT) structures have been previously reported, but they are still far from commercially viable devices. It is worth noting that the graphene-based...