Large inverted band-gap in strained three-layer InAs/GaInSb quantum wells

6 Jul 2022, 15:50
2h
Róża (Novotel Warszawa Centrum)

Róża

Novotel Warszawa Centrum

Marszałkowska 94/98 00-510 Warsaw POLAND Phone: +48 22 5960000 Fax: +48 22 5960647 E-Mail: H3383@accor.com WWW: https://all.accor.com/hotel/3383/index.en.shtml

Speaker

Benoit Jouault (cnrs)

Description

Quantum spin Hall insulators (QSHIs) based on HgTe and three-layer InAs/GaSb quantum wells (QWs) have comparable bulk band-gaps of about 10-18 meV. The former however features a band-gap vanishing with temperature, while the gap in InAs/GaSb QSHIs is rather temperature-independent. We report on the realization of large inverted band-gap in strained three-layer InAs/GaInSb QWs. By temperature-dependent magnetotransport measurements of gated Hall bar devices, we extract a gap as high as 45 meV. Combining local and non-local measurements, we attribute the edge conductivity observed at temperatures up to 40 K to the edge channels, of possible topological origin, with equilibration lengths of a few micrometers. Our findings pave the way toward manipulating edge transport at high temperatures in QW heterostructures.

Primary author

Co-authors

Presentation Materials

There are no materials yet.
Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×