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Cosmology with scalar �eld

Scalar �eld approach:

I Uses the scalar �eld φ in order to describe dark energy.

I Provides description of the acceleration of the Universe with

the energy density of quantum vacuum dependent on

time.

I In order to maintain covariance of the action, requires

implementation of the potential U(φ), a�ecting the scalar

�eld φ.
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Non-minimal coupling model

I The action

S = Sg + Sφ,

where

Sg =
1

2κ2

∫
d
4x
√
−gR (Einstein-Hilbert action),

Sφ = −1

2

∫
d
4x
√
−g

ε∇αφ∇αφ︸ ︷︷ ︸
kinetic energy

+2U(φ)︸ ︷︷ ︸
potential energy

+εξRφ2︸ ︷︷ ︸
R�φ coupling

 ,
with

I ε = ±1�canonical or phantom scalar �eld, respectively,
I ξ�coupling parameter, ξ 6= 0�non-minimal coupling,
I κ2 = 8πG , c = 1 and the signature is (−+++).

Franciszek Humieja Bifurcations in cosmological models with scalar �eld



Non-minimal coupling model

I The action

S = Sg + Sφ,

where

Sg =
1

2κ2

∫
d
4x
√
−gR (Einstein-Hilbert action),

Sφ = −1

2

∫
d
4x
√
−g

ε∇αφ∇αφ︸ ︷︷ ︸
kinetic energy

+2U(φ)︸ ︷︷ ︸
potential energy

+εξRφ2︸ ︷︷ ︸
R�φ coupling

 ,
with

I ε = ±1�canonical or phantom scalar �eld, respectively,
I ξ�coupling parameter, ξ 6= 0�non-minimal coupling,
I κ2 = 8πG , c = 1 and the signature is (−+++).

Franciszek Humieja Bifurcations in cosmological models with scalar �eld



Non-minimal coupling model

I The action

S = Sg + Sφ,

where

Sg =
1

2κ2

∫
d
4x
√
−gR (Einstein-Hilbert action),

Sφ = −1

2

∫
d
4x
√
−g

ε∇αφ∇αφ︸ ︷︷ ︸
kinetic energy

+2U(φ)︸ ︷︷ ︸
potential energy

+εξRφ2︸ ︷︷ ︸
R�φ coupling

 ,
with
I ε = ±1�canonical or phantom scalar �eld, respectively,

I ξ�coupling parameter, ξ 6= 0�non-minimal coupling,
I κ2 = 8πG , c = 1 and the signature is (−+++).

Franciszek Humieja Bifurcations in cosmological models with scalar �eld



Non-minimal coupling model

I The action

S = Sg + Sφ,

where

Sg =
1

2κ2

∫
d
4x
√
−gR (Einstein-Hilbert action),

Sφ = −1

2

∫
d
4x
√
−g

ε∇αφ∇αφ︸ ︷︷ ︸
kinetic energy

+2U(φ)︸ ︷︷ ︸
potential energy

+εξRφ2︸ ︷︷ ︸
R�φ coupling

 ,
with
I ε = ±1�canonical or phantom scalar �eld, respectively,
I ξ�coupling parameter, ξ 6= 0�non-minimal coupling,

I κ2 = 8πG , c = 1 and the signature is (−+++).

Franciszek Humieja Bifurcations in cosmological models with scalar �eld



Non-minimal coupling model

I The action

S = Sg + Sφ,

where

Sg =
1

2κ2

∫
d
4x
√
−gR (Einstein-Hilbert action),

Sφ = −1

2

∫
d
4x
√
−g

ε∇αφ∇αφ︸ ︷︷ ︸
kinetic energy

+2U(φ)︸ ︷︷ ︸
potential energy

+εξRφ2︸ ︷︷ ︸
R�φ coupling

 ,
with
I ε = ±1�canonical or phantom scalar �eld, respectively,
I ξ�coupling parameter, ξ 6= 0�non-minimal coupling,
I κ2 = 8πG , c = 1 and the signature is (−+++).

Franciszek Humieja Bifurcations in cosmological models with scalar �eld



Assumptions

I Spatialy �at (k = 0) universe with
Friedmann-Lemaître-Robertson-Walker (FLRW) symmetry

ds
2 = −dt2 + a

2(t)
(
dx

2 + dy
2 + dz

2
)
,

I Linear barotropic equation of state between energy density ρφ
and pressure pφ

pφ = wφρφ.

I We use the Ratra-Peebles potential

U(φ) =
Mn+4

φn
,

where n is a dimensionless parameter and M > 0 is a dimensional

constant.
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Dynamical equations

I Let us introduce dimensionless phase space variables

u =
φ̇

Hφ
, v =

√
6

κ

1

φ
.

I In new variables, after variation of action w.r.t. gµν and φ, we
obtain the dynamical system

u′ =

[
−
1

2
u2(2+ n)−

3

2
u(1+ 4ξn) +

1

2
εnv2 − 3ξ(1+ n)

] [
1

3
εv2 − 2ξ(1− 6ξ)

]2
+

+ (6ξ + u)

[
1

3
εv2 − 2ξ(1− 6ξ)

]
·

·
(
u2 [1− ξ(2− n)] + 4ξu(2+ 3ξn)−

1

2
εv2(1+ 2ξn) + 3ξ [1+ 2ξ(1+ n)]

)
,

v ′ =− uv

[
1

3
εv2 − 2ξ(1− 6ξ)

]2
,

where f ′ = df

d ln a
= H−1 ḟ .

Franciszek Humieja Bifurcations in cosmological models with scalar �eld



Dynamical equations

I Let us introduce dimensionless phase space variables

u =
φ̇

Hφ
, v =

√
6

κ

1

φ
.

I In new variables, after variation of action w.r.t. gµν and φ, we
obtain the dynamical system

u′ =

[
−
1

2
u2(2+ n)−

3

2
u(1+ 4ξn) +

1

2
εnv2 − 3ξ(1+ n)

] [
1

3
εv2 − 2ξ(1− 6ξ)

]2
+

+ (6ξ + u)

[
1

3
εv2 − 2ξ(1− 6ξ)

]
·

·
(
u2 [1− ξ(2− n)] + 4ξu(2+ 3ξn)−

1

2
εv2(1+ 2ξn) + 3ξ [1+ 2ξ(1+ n)]

)
,

v ′ =− uv

[
1

3
εv2 − 2ξ(1− 6ξ)

]2
,

where f ′ = df

d ln a
= H−1 ḟ .
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Investigation of the dynamics of the system

I We start with �nding equilibria, i.e. points, in which u′ = 0

and v ′ = 0 (no evolution).

I There are six equilibria (A�F ) in �nite space.

I Coordinates and stability features of these points depend on

model parameters ε, ξ and n.
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Bifurcation theory

I As said before: Stability features of equlibria depend on

parameters of the model...

I ...this leads to the methods of bifurcation theory.

I De�nition: The appearance of topologically nonequivalent

phase portrait under variation of parameters is called a

bifurcation.
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Cases of de Sitter�de Sitter evolution of the universe

I We are interested in �nding de Sitter states

(wdS = pdS/ρdS = −1), which describe dynamics of

cosmic in�ation.

I Looking at bifurcations diagrams, we could extract ranges of

parameters for which evolution of the universe starts in

de-Sitter state and �nishes in another de Sitter state.
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ξ
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ξ
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6
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Cases of de Sitter�de Sitter evolution of the universe

Table: Sets of parameters for which the universe undergoes the evolution
starting from the de Sitter state and �nishing in the de Sitter state.

no. ξ n ε starting point �nal point
1. Generic de Sitter�de Sitter evolution

(a) 3
16

(0,+∞) +1 unstable node A stable focus E

(b) 3
16

(−2, 0) −1 unstable node A stable focus E

(c)
(

3
16
, 1
4

)
−2 −1 unstable node C stable focus E

2. Non-generic de Sitter�de Sitter evolution
(d) (−∞, 0] −2 +1 saddle E stable node C
(e) 3

16

(
−3 5

9
,−2

)
−1 saddle A stable focus E

(f) 3
16

[
−4,−3 5

9

)
−1 saddle A saddle E

(g)
[
0, 3

16

)
−2 −1 saddle C stable node/focus E

(h)
(
1
3
,+∞

)
−2 −1 saddle E stable node C
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`Collisions' of equilibria for generic dS�dS scenarios

I Again, bifurcation diagrams (showing `collisions' of equilibria)

indicated that one phase portrait is fully representative for

each of scenarios (a)�(c).
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Phase portrait for scenario (a)
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Phase portrait for scenarios (b) and (c)
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Evolution of physical quantities for case (a)
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Evolution of physical quantities for cases (b) and (c)
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Conclusions

I We considered cosmology with scalar �eld coupled to the

gravity; this approach enabled us to include both the

in�ation and the late-time acceleration in a single model.

I The application of bifurcation theory allowed us to distinguish

sets of parameters for which the universe undergoes a

generic evolution without presence of the initial

singularity.

I There occured two types of non-singular initial states: the

de Sitter state and the static universe.

I From the bifurcation analysis, we obtained pairs of the critical

values of the parameters (ξ, n) which corresponded to

bifurcation values.

I THANK YOU FOR YOUR ATTENTION!
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