BAYESIAN RECONSTRUCTION OF THE MILKY WAY DARK MATTER DISTRIBUTION

EKATERINA KARUKES

In collaboration with: María Beníto, Fabío Iocco, Roberto Trotta and Alex Geringer-Sameth

Maria Denito, Fabio locco, Koberto Trotta and Alex Geringer-Sameth

ARXIV:1901.02463

Motivations

Placing MW in LCDM paradigm

Direct and indirect dark matter searches

E. KARUKES

MW overview

Compilation of MW RC

Compilation of MW RC

30 combinations of different stellar disk and bulge morphologies

Methodology

standard approach

SEE E.G. SOFUE & RUBIN'01, CATENA & ULLIO'09...

total gravitational potential:

$$\phi_{total} = \phi_{bar} + \phi_{dm}$$

DM potential assuming spherical symmetry:

 $\phi_{dm} = -\frac{GM_{dm}(r)}{r} \quad ---- \quad M_{dm}(r) = 4\pi \int_0^R \rho_{dm}(r) r^2 dr$

gNFW DM density profile:

$$\rho(R) = \frac{\rho_s}{(R/r_s)^{\gamma} (1 + R/r_s)^{3-\gamma}} \longrightarrow \rho_s = \rho_0 \left(\frac{R_0}{r_s}\right)^{\gamma} \left(1 + \frac{R_0}{r_s}\right)^{3-\gamma}$$

 R_0 - Sun's position ρ_0 - density at Sun's location

MCMC-based reconstruction

Note that the angular velocity $~\omega_c$ is used instead of the actual circular velocity $V_c\equiv r\omega_c$

IN THE WAKE OF STANDARD APPROACH

and does not depend on the assumed baryonic morphology

víríal Mílky Way mass

$$M_{vir} = \frac{4\pi}{3} 200 \rho_{crit} R_{vir}^3$$

We need to rewrite gNFW profile in terms of $\gamma,\,c$ and M_{vir}

$$\rho(R) = \frac{\rho_s}{(R/r_s)^{\gamma} (1 + R/r_s)^{3-\gamma}} \quad \longleftarrow \quad r_s(c, M_{vir}) \text{ and } \rho_s(\gamma, c, \rho_{crit})$$

Summary

Bayesian reconstruction of the Milky Way dark matter distribution:

- precise reconstruction of the dark matter density distribution;
- high accuracy on the local dark matter density;
- determination of the local dark matter density is independent of the assumed baryonic morphology;
- weak accuracy on the inner dark matter density slope γ and scale radius r_s .

Preliminary

- accurate and precise estimation of the Milky Way virial mass;
- determination of the virial mass weakly depends on the assumed baryonic morphology.

BACKUP SLIDES

Compilation of MW RC

Bayesian model averaging

$$p(\theta|d) = p(M_j|d) \sum_{i} B_{ij} p(\theta|d, M_i)$$
posterior within each model
$$B_{ij} = \frac{p(d|M_i)}{p(d|M_j)}$$

Model's evidence ratio wrt the reference model (assuming equal priors for all models)

MCMC-based reconstruction and mock RCs

The idea is to test the MCMC-based reconstruction by creating mock rotation curves based on "underlying known" DM profiles (+ visible) and with the same statistical properties of the observed RC

We use the following way to create the mock data:

$$\begin{split} \omega_c^{\mathrm{mock}(i)} = \omega_c^{\mathrm{fid}(i)} + \delta_i \\ \text{with} \end{split}$$

$$\omega_c^{\text{fid(i)}} = (\omega_{\text{gNFW}}^2(r_s, \gamma, \rho_0, r^{(i)}) + \omega_{\text{baryons}}^2(\Sigma_*, \langle \tau \rangle, r^{(i)}))^{1/2}$$

- i is the index number of a bin
- $r_s, \gamma, \rho_0, \Sigma_*, \langle \tau \rangle$ are the fiducial parameters
- δ_i is a random sample from a normal distribution with mean O and variance equal to the observational error

MCMC-based reconstruction and mock RCs

$$\omega_c^{\mathrm{mock}(i)} = \omega_c^{\mathrm{fid}(i)} + \delta_i$$

MCMC-based reconstruction and mock RCs

$r_s \; [\mathrm{kpc}]$	5	8.5	12.5	16.5	20
γ	0.1	0.4	0.8	1.2	1.5
$\rho_0, [{\rm GeV/cm^3}]$	0.4				
$\Sigma_*, [M_{\odot}/kpc^2]$	$38 imes 10^6$				
$\langle \tau \rangle$	2.17×10^{-6}				

$$\omega_c^{\mathrm{mock}(i)} = \omega_c^{\mathrm{fid}(i)} + \delta_i$$

100 mock realisations 25 points in the parameter space

100 mock realisations 25 points in the parameter space

