A signature of sterile neutrino dark matter in the Local Universe

Wojtek Hellwing a MSC research fellow Center for Theoretical Physics PAS, Warsaw

21 May, orbit no #2019 Warsaw

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie <u>Skłodowska-Curie</u> grant agreement No. 748525.

Non-baryonic (particle) dark matter candidates

Both CDM & WDM are compatible with CMB & LSS

Claims that both types of DM have been discovered:

- CDM: γ-ray excess from Galactic Centre

- WDM (sterile v): 3.5 keV X-ray line in galaxies and clusters

The WDM: sterile neutrino model fact sheet

saka+05/Laine+08/BRS+09

Competitive new dark matter models,(sterile neutrinos, models self interacting

- Warm dark matter model
- Part of vMSM extension to standard model, facilitates neutrino oscillations, baryogenesis
- Two parameters, mass (M_s) & lepton asymmetry $(L_6) ==>$ matter power **spectrum** & lifetime τ
- 7keV sterile neutrino decay into X-ray + neutrino; an explanation for the 3.5keV line in clusters, M31, GC

M_s=7keV: L₆=[8-11] (3.5keV line compatible)

 $M_s = 7 \text{keV}$: $L_6 = [120]$ (warmest model available for 7keV)

Sterile neutrino: potential channels for detection

THE WAY FORWARD Detect sterile neutrino and detect m

- **1. Direct detection** If sterile neutrino mix with active neutrinos: Tritium β -decay - KATRIN
- 2. Indirect detection Detect of keV particles produces an X-ray line!

Future X-ray missions: XARM - 2021 (replacement of Hitomi with soft X-ray spectrometer 0.3-12 keV) Athena - 2028 2031 (0.5-12 keV High-res or large-area)

SOTA galaxy formation simulations: Warm APOSTLE

THE EAGLE P SN feedback

Gas hydrodynamics

- **Electron** cooling
- **Chemical enrichment**

Star formation

- **SMBH** formation
- AGN feedback
- Reionisation
- shock heating

ASPOSTOLE full hydro simulations

Local Group

ASPOSTOLE full hydro simulations

Local Group

Far fewer satellite galaxies than CDM halos

The window for indirect detection

X-rays!

The window for indirect detection

CDM and WDM X-ray decay fluxes

If there are N dark matter simulation particles in the FoV, the flux, F, is:

$$F = 1.18 \times 10^{20} \sum_{i=0}^{N} \frac{m_{\text{DM},i}}{M_{\text{DM}}\tau} \frac{1}{4\pi d_i^2} \text{ counts s}^{-1} \text{cm}^{-2} \qquad (1)$$

where d_i is the distance between the *i*-th particle and the observer in kpc, $M_{\rm DM}$ is the mass of the dark matter candidate particle in keV, τ is the particle lifetime in seconds and $m_{{\rm DM},i}$ is the mass of the *i*-th simulation dark matter particle in M_{\odot}:

3 instruments specifications: XMM-Newton: 28' x 28' FoV XRISM: 3' FoV ATHENA: *Widel Field Imager* (WFI) 40' x40' and *X-ray Integral Field Unit* (X-IFU) 5.3'

CDM and WDM X-ray decay fluxes

CDM and WDM X-ray decay fluxes

Local Universe decay fluxes:

XMM-Newton FoV

Lovell,...,WH et al., MNRAS'18

Lovell,...,WH et al., ApJ'19

Perseus cluster offset flux ratio

TAKE HOME MESSAGES

- The hunt for DM is on
- The indirect (astrophysical) window for detection

might be the most promising in the coming decade

- 7.1 keV Sterile neutrino is a viable contendent
- X-ray emission lines from its decay can be observed by future space missions
- Local Universe counts predicted to be ~10⁻⁵ 10⁻⁷ cnts/s/cm²(normalization)
- 3.5 keV line is Gaussian and Perseus cluster on/off center measurement can provide ~>3σ detection

