Searching for continuous gravitational wave signals from rotating neutron stars

Michał Bejger, Paweł Ciecieląg, Marek Cieślar, Orest Dorosh, Brynmor Haskell, Andrzej Królak, Filip Morawski, Magdalena Sieniawska

Motivation, Model & Method

★ E ► ★ E ► E E • 9 Q @

< 🗇 🕨

O1/O2: 10 BH-BH mergers, 1 NS-NS merger

(catalog: https://www.gw-openscience.org)

O3: <u>public alerts!</u> (Gravitational Wave Candidate Event Database: <u>https://gracedb.ligo.org</u>)

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ● ● ●

Signal-to-noise ratio (SNR)

Regimbau et al. (2017)

Signal-to-noise ratio

$${\it SNR} \propto rac{h_0}{\sqrt{S_n}} \sqrt{T}$$

 S_n - strain noise (aLIGO: $\sqrt{S_n} \sim 10^{-23} \text{Hz}^{-1/2})$

T - observational time

Network of the detectors

 $SNR \propto \sqrt{N}$

N - number of detectors with comparable sensitivity

프 🖌 🖉 🕨

▶ GW150914: $h_0 \sim 10^{-21}$, $T \sim 0.2s \rightarrow SNR \sim 24$ ▶ CGW: $h_0 \lesssim 10^{-25}$, $T \sim$ days, months, years...

Continuous gravitational waves radiation model

Neutron stars as a sources of CGW radiation

Non-axisymmetric rotating NS (described as a triaxial ellipsoid) radiating purely quadrupolar CGW.

Strain amplitude

$$h_0 = 4 \times 10^{-25} \left(\frac{\epsilon}{10^{-6}}\right) \left(\frac{l_3}{10^{45} \,\mathrm{g \, cm^2}}\right) \left(\frac{f}{100 \,\mathrm{Hz}}\right)^2 \left(\frac{100 \,\mathrm{pc}}{d}\right)$$

 $\begin{aligned} \epsilon &= (I_1 - I_2)/I_3\\ f &= \Omega/2\pi\\ \text{d-distance} \end{aligned}$

< 🗇 🕨

(신문) 신문) 문법

Theoretical model

$\mathcal F\text{-statistics}$ and optimal grid

 \mathcal{F} -statistics (Jaranowski, Królak & Schutz 1998) on the 4-dimensional (f, f, α, δ) optimal grid of parameters (Pisarski & Jaranowski 2015):

$$\mathcal{F} = \frac{2}{\sigma^2} \left(\frac{|F_a|^2}{\langle a^2 \rangle} + \frac{|F_b|^2}{\langle b^2 \rangle} \right)$$

$$F_{a} = \sum_{t=1}^{N} x(t)a(t)exp[-i\phi(t)]$$

$$F_{b} = \sum_{t=1}^{N} x(t)b(t)exp[-i\phi(t)]$$

a(t), b(t) - amplitude modulation $\phi(t)$ - phase modulation

Model of the rotating, triaxial ellipsoid.

Computational cost

Blind searches computational cost

f

For Search code computing power scales as $\sim T^5 log(T)$ \rightarrow one needs to divide data into shorter chunks (e.g. 6 days)

$$T_0 \qquad T_0$$

$$(i,j) \qquad (i,j+1) \qquad \downarrow B = \frac{1}{2\delta t}$$

In Follow-up code one can go back to the longer time series.

Main goal

To find \mathcal{F} -statistic maximum and $f, \dot{f}, \alpha, \delta$ associated with it.

 $SNR = \sqrt{2(\mathcal{F} - 2)}$

Code: https://github.com/mbejger/polgraw-allsky Documentation page:

http://mbejger.github.io/polgraw-allsky/

Magdalena Sieniawska (CAMK, Warsaw)

Searching for continuous gravitational wave signals 8/15

Results

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = 𝒴 𝔅 𝔅

O1→O2 data improvement

Abbott et al., 2019, arxiv:1903.01901

FIG. 1. Amplitude spectral density (ASD) $\sqrt{S_n}$ plots for the L1 (left panel) and H1 (right panel) detectors during O1 (blue trace) and O2 (orange trace). The ASD is obtained by averaging over FFTs of 1800 s obtained for the entire run.

improvement of the amplitude spectral density
 number of narrow lines and combs greatly reduced

\mathcal{F} -statistic pipeline in O2 all-sky search

FIG. 3. Upper limits on the strain amplitude $h_0^{95\%}$ for the three pipelines.

Hardware injections recovery:

Label	FA	Frequency [Hz]	Spin-down [nHz/s]	$\alpha [deg]$	δ [deg
ip0	$< 10^{-8}$	265.5746 (0.0007)	-0.0466(-0.0425)	69.42 (2.12)	-57.21(0.99)
ip3	$< 10^{-8}$	108.8573(-0.0001)	-0.1386(0.1386)	174.96(3.42)	-34.81(-1.37)
ip5	2.9×10^{-4}	52.8085 (0.0002)	-0.1865(0.1865)	236.90 (65.72)	-74.18(9.66)
ip6	$< 10^{-8}$	145.8721 (0.0048)	-6.0512(0.6788)	358.75 (58.00)	-68.01 (2.58)
ip8	$< 10^{-8}$	190.6428(0.0002)	-8.5306(0.1193)	331.41 (19.98)	-35.87(2.45)
ip10	2.2×10^{-4}	26.3380(0.0001)	-0.0683 (0.0167)	223.10(1.54)	37.23(5.64)
ip11	4.0×10^{-4}	31.42475(0.00001)	-0.0056(0.0051)	286.25(1.10)	-58.39(0.11)
ip12	5.7×10^{-2}	38.2005 (0.0001)	-6.1165(0.1335)	326.26(5.60)	-33.71(16.73)

FIG. 2. Regions in frequency and first frequency derivative covered by each pipeline. $\hfill \label{eq:FIG}$

O2 all-sky search upper limits

Spin-down limit (assumption: NS looses energy only due to the CGW)

$$h_{sd} = 2.5 \times 10^{-25} \left(\frac{1 \text{kpc}}{d}\right) \sqrt{\left(\frac{1 \text{kHz}}{f_{GW}}\right) \left(\frac{-\dot{f}_{GW}}{10^{-10} \text{Hz/s}}\right) \left(\frac{I_3}{10^{38} \text{kg} \cdot \text{m}^2}\right)}$$

Corresponding spin-down limit on the equatorial fiducial ellipticity

$$\epsilon_{sd} = 0.237 \times \left(\frac{h_3}{10^{38} \mathrm{kg} \cdot \mathrm{m}^2}\right)^{-1} \left(\frac{\mathrm{Hz}}{\nu}\right)^2 \left(\frac{h_{sd}}{10^{-24}}\right) \left(\frac{d}{1 \mathrm{kpc}}\right)$$

Targeted searches in 2015-2017 LIGO Data

- \blacktriangleright 222 pulsars with rotation frequencies \gtrsim 10 Hz
- young pulsars, Crab & Vela, recycled millisecond pulsar
- O1+O2 data
- two harmonics: 1f and 2f

Figure 2. Upper limits on h_0 for 222 pulsars. The stars show the observed 95% credible upper limits on observed amplitude for each palaar. The solid line shows an estimate of the expected sensitivity of the search. Triangles show the limits on gravitational-wave amplitude derived from each pulsar's observed spin-down.

Figure 4. Upper limits or mass quadruphe Q_{21} and fichical ellipticity ε (ε 222 pulsars. The filled crite's show the limits and edired from the observed upper limits to the gravitational-wave multitude h₁ somating the cancella constant of instrinand distances given in Table 1 and 2. Thingles show the limits based derived from each pulsar's observed spin-down. The disponsible show constant ε equal characteristic ary a somaling fielding sub-trained pulsar's observed spin-down. The distributions of these limits are also show in histograms from to the right of the figure, with the filled and unfilled histograms showing our observed multist and the spin-down limits, respectively.

Magdalena Sieniawska (CAMK, Warsaw)

Searching for continuous gravitational wave signals 13/15

So far, no CGW signal was found, but interesting upper limits were set

e.g. the newest limits for Crab pulsar (J0534+2200) are: $h_{sd} = (1.4 \pm 0.4) \cdot 10^{-24}$ $\epsilon_{sd} = 7.56 \cdot 10^{-4}$

> Abbott et al., 2017, Phys. Rev. D 96, 122006 Abbott et al., 2019, arXiv:1902.08442

O3 Plans

- Targeted searches searches for around 30 high value pulsars at 1f and 2f frequencies. Search for dipole radiation predicted by Brans-Dicke theory.
- <u>Directed searches</u> search for r-mode driven GW signal from pulsar J0537-6910.
- All sky searches search of the band [20 – 750] Hz with 6-24 day coherence time. Implementation of the coherent follow-up procedure.

Backup slides

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = 𝒴 𝔅 𝔅

	Known Waveform	Unknown Waveform
Long-lived (continuous)	Rotating neutron stars $h_0 \sim 10^{-25}$	Stochastic background $h_0 \sim 10^{-28}$
Short-lived (transients, bursts, T~0.1s)	Compact binaries coalescences $h_0 \sim 10^{-21}$	Supernovae $h_0 \sim 10^{-21}$

<□> < □> < □> < □> < □| = のへへ

CGW - emission mechanisms models in NS

- Mountains (elastic, magnetic, viscosity stresses)
 f_{GW} = 2f_{rot}
- Oscillations (r-modes) $f_{GW} = 4/3 f_{rot}$
- Free precession $f_{GW} \propto f_{rot} + f_{prec}$
- Accretion (thermal gradients)
 f_{GW} ≈ f_{rot}

Reviews

Bejger (2018) Lasky (2015) Andersson et al. (2011)

Courtesy: B. J.Owen

Courtesy: McGill U.

・ロト < 同ト < 回ト < 回ト < 回ト

Magdalena Sieniawska (CAMK, Warsaw)

Searching for continuous gravitational wave signals -12/-5

Signal-to-noise ratio (SNR)

Regimbau et al. (2017)

Signal-to-noise ratio

$${\it SNR} \propto rac{h_0}{\sqrt{S_n}} \sqrt{T}$$

 S_n - strain noise (aLIGO: $\sqrt{S_n} \sim 10^{-23} \text{Hz}^{-1/2})$

T - observational time

Network of the detectors

 $SNR \propto \sqrt{N}$

N - number of detectors with comparable sensitivity

프 🖌 🛪 프 🕨

▶ GW150914: $h_0 \sim 10^{-21}$, $T \sim 0.2s \rightarrow SNR \sim 24$ ▶ CGW: $h_0 \lesssim 10^{-25}$, $T \sim$ days, months, years...

NS is loosing energy and spinning-down, due to the CGW emission, magnetic braking, neutrino emission, accretion (e.g. Greenstein & Cameron 1969, Illarionov & Kompaneets 1990, Dvornikov & Dib 2009, Staff et al. 2012).

We can measure it e.g. from radio-observations.

(四) (종) (종) (종)

Spin-down limit (assumption: NS looses energy only due to the CGW)

$$h_{spindown} = 2.5 imes 10^{-25} \left(rac{1 \mathrm{kpc}}{d}
ight) \sqrt{\left(rac{1 \mathrm{kHz}}{f_{GW}}
ight) \left(rac{-\dot{f}_{GW}}{10^{-10} \mathrm{Hz/s}}
ight) \left(rac{I_z}{10^{38} \mathrm{kg \cdot m^2}}
ight)}$$

Targeted searches in 2015-2017 LIGO Data

Figure 1. Upper limits on C_{21} and C_{22} for 222 pulsars. The stars show the observed 95% credible upper limits on observed amplitudes for each pulsar. The solid lines show an estimate of the expected sensitivity of the searches.

イロト イポト イヨト イヨト 油

Time-domain F-statistic pipeline

Code:

https://github.com/mbejger/polgraw-allsky

Documentation page:

http://mbejger.github.io/polgraw-allsky/

Hierarchical pipeline:

- All-sky search for every time-domain data segment, using relatively loose optimal grid.
- Coincidences between candidates to confirm the existence of signals with the same parameters along the whole observing period.
- New: Follow-up of promising candidates to estimate signal parameters precisely.

Sieniawska, Bejger, Królak (2019) submitted to CQG

◆□▶ ◆□▶ ◆三▶ ◆三▶ ショニ のへの

Follow-up procedure

Sieniawska, Bejger, Królak (2019) - submitted to CQG

- Construct precise, optimal grid around the candidate from coincidences
- Find point with the highest *F*-statistic value (invMADS)
- Repeat for the next data segment
- Find means of the extremum parameters from both segments
- ► Concatenate 2 (or more) data segments and search for *F*-statistic maximum

Blind (all-sky) searches

Lines and signals in \mathcal{F} -statistics method

Main goal: find \mathcal{F} -statistic maximum and $f, \dot{f}, \alpha, \delta$ associated with it.

$$SNR = \sqrt{2(\mathcal{F}-2)}$$

Magdalena Sieniawska (CAMK, Warsaw)

Searching for continuous gravitational wave signals -6/-5

DetChar and CGW synergy

Lines hunt - spectral density

Detector characterisation (DetChar) team provides list of known, stationary lines \rightarrow vetoing.

Plot courtesy of A. Królak

CW team during data analysis finds new lines, distinguishes lines and astrophysical signals and gives feedback to DetChar.

▶ ∢ ≣