theory of acceleration of particles

Krzysztof Nalewajko CAMK PAN

NATIONAL SCIENCE CENTRE

astrophysical motivation

 10^{5} בייזואן דירטאל ברואל איני אינטאל אירטאל באראלא אינטאל אירטאל באראלא אינטאל אירטאל אירטאל אירטאל אירטאל אירטאל ד cosmic rays, solar flares, planetary cosmic radiation background magnetospheres, supernova remnants, microwaves Cooray (2016) 10³ pulsars, X-ray binaries, gamma-ray bursts intensity (nW m⁻² sr⁻¹) (GRB), active galaxies (AGN), inter-stellar/ optical galactic medium, etc 10 Energies and rates of the cosmic-ray particles UV X-rav infrared Grigorov 10^{-1} Akeno 10⁰ protons only MSU γ-ray KASCADE Tibet radio 10-3 **KASCADE-Grande** IceTop73 all-particle HiRes1&2 10⁻² TA2013 (GeV cm⁻²sr⁻¹s⁻¹ electrons Auger2013 Model H4a $10^{-18} 10^{-16} 10^{-14} 10^{-12} 10^{-10} 10^{-8} 10^{-6} 10^{-4} 10^{-2}$ CREAM all particle 10^{2} positrons wavelength (m) 10⁻⁴ log₁₀(E/eV) -5 5 10 MHD -----10³⁷ Const. B-field E²dN/dE 10^{-8} 10⁻⁶ antiprotons 10³⁶ cosmic rays 10⁻⁹ f_v [ergs/s/cm²] [s/s6la] ^1 10³⁵ Blasi (2013) 10⁻⁸ 10⁻¹⁰ Fixed target HERA **TEVATRON** Crab nebula RHIC 10³⁴ LHC 10^{-11} Meyer et al. (2010) 10⁻¹⁰ 10¹² 10^{2} 10⁸ 10¹⁰ 10⁰ 10^{4} 10⁶ 10³³ 15 25 10 20 (GeV / particle) Е log₁₀(v/Hz)

non-thermal particle acceleration: general remarks

- power-law energy distributions -> severe departure from thermal equilibrium -> very long mean free paths -> collisionless gas (Coulomb collisions negligible)
- charged particles gain energy from electric fields -> (completely) ionized gas
- large-scale electric fields very rare (pulsars) -> convergent magnetized flows; departure from ideal MHD
- electron-ion gas in most cases; electron-positron pairs expected in most extreme environments (pulsars, AGN)
- particle-in-cell (PIC) algorithm for kinetic numerical simulations

particle acceleration in (relativistic) collisionless plasmas

1. shock waves

- 2. magnetic reconnection
- 3. turbulence

Crumley, Caprioli, Markoff & Spitkovsky (2019)

particle acceleration in (relativistic) shock waves

- mechanisms:
 - diffusive shock acceleration (DSA;
 - 1st order Fermi)
 - pre-acceleration of electrons:
 - shock drift acceleration (SDA)
 - shock surfing acceleration (SSA)
 - magnetic reconnection
 - whistler waves
- plasma instabilities triggered by particles reflected from the shock front:
 - counter-streaming instabilities (Weibel/filamentation, Buneman)
 - current-driven instabilities (Bell)

PIC simulations of relativistic shocks

- Spitkovsky (2008) unmagnetized pair plasma efficient DSA (p = 2.4) acceleration mediated by Weibel instability
- Sironi & Spitkovsky (2009) magnetized pair plasma efficient DSA or SDA acceleration (p = 2.3 - 2.8) for subluminal shocks
- Sironi & Spitkovsky (2011) magnetized electron-ion plasma efficient acceleration of ions (p = 2.1) for subluminal shocks, inefficient acceleration of electrons (p = 3.5)
- Sironi, Spitkovsky & Arons (2013) weakly magnetized perpendicular shocks in electron-ion plasma - limits for maximum particle energy

PIC simulations of weakly magnetized relativistic perpendicular shocks

PIC simulations of mildly relativistic shocks

- increasing transverse size and simulation length enable more physical details
- here, evolution of Weibelmediated shock into Bellmediated shock

Crumley, Caprioli, Markoff & Spitkovsky (2019)

non-relativistic weakly magnetized electron-ion shocks

- electron injection problem in quasi-perpendicular shocks with high Alfven Mach number (M_A ~ 30)
- co-existence of Weibel (ion-scale) and Buneman (electron-scale) modes in 3D
- pre-acceleration of electrons by both shock surfing (SSA) and shock drift (SDA)
- in 2D, SSA is more efficient for out-of-plane fields (Bohdan et al. 2017, 2019), SDA is more efficient for in-plane fields

magnetic reconnection in Weibel filaments

- ion-Weibel filaments form current layers separating regions of reversed magnetic field lines
- plasmoid instability triggers localized magnetic reconnection that energizes electrons and ions

particle acceleration in collisionless plasmas

1. shock waves

2. magnetic reconnection

3. turbulence

particle acceleration in relativistic magnetic reconnection

- power-law spectra:
 - hardening with increasing magnetization $\boldsymbol{\sigma}$
 - p = 1; γ_{max} limited by σ (Guo+14; Werner+16)
 - p = 2; γ_{max} unlimited (Petropoulou+Sironi18)
- acceleration sites:
 - magnetic X-points (Zenitani+Hoshino01)
 - plasmoids (Drake+06)
 - plasmoid mergers (KN+15)
- nature of electric fields:
 - non-ideal
 - ideal (Guo+19)
- configuration:
 - Harris layer
 - collapsing X-point / "ABC" fields (KN+16,18; Lyutikov+17)
 - merging flux tubes

particle acceleration in pair-plasma reconnection

- reconnection produces power-law distributions that are hardening with increasing sigma N(γ) ~ γ^{-p}, p -> 1 for σ >> 1
- high-energy cut-off is exponential with $\gamma_{max} \sim \sigma$

Werner, Uzdensky, Cerutti, KN & Begelman (ApJL 2016)

see also Sironi & Spitkovsky (2014) Guo et al. (2014, 2015)

relativistic r

reconnection spectra saturating at p=2

Petropoulou & Sironi (2018)

reconnection in electron-proton plasma

Guo et al. (2016)

see also Melzani et al. (2014)

$\sigma_i = B_0^2/4\pi n_{bi}m_ic^2$ reconnection in electron-proton plasma

Figure 20. Time evolution of the (a) electron and (b) ion energy distributions, $f(\varepsilon)$ (compensated by ε) for $\sigma_i = 0.1$.

 10^{-1}

 10^{0}

 10^{\perp}

 10^{2}

 10^{3}

10⁴

Werner, Uzdensky, Begelman, Cerutti, KN (MNRAS 2018)

see also Melzani et al. (2014) Guo et al. (2016)

acceleration dominated by ideal electric fields

magnetic dissipation in "ABC fields"

particle acceleration in collisionless plasmas

1. shock waves

2. magnetic reconnection

3. turbulence

particle acceleration in relativistic turbulence

- power-law spectra:
 - hardening with increasing magnetization $\boldsymbol{\sigma}$
 - p = 2.9 (Comisso+Sironi18)
- acceleration sites:
 - current layers
- configuration:
 - freely decaying
 - driven

PIC simulations of driven rel

PIC simulations of decaying relativistic turbulence

summary

- Numerous models for non-thermal particle acceleration (NTPA) in collisionless (relativistic) plasmas
- Shock waves efficient in weakly magnetized plasmas
- Reconnection and turbulence efficient in highly magnetized plasmas
- Stochastic Fermi-type acceleration with power-law slopes p ~ 2 demonstrated in all cases