TZK results and prospects

Joanna Zalipska

National Centre for Nuclear Research, Warsaw, Poland

Particle Astrophysics in Poland, 2019

Neutrino physics

 $\mathbf{U_{PNMS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{-\delta_{CP}} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- Neutrino flavor eigenstates are not identical to mass eigenstates, consequence v oscillations and non zero v masses
- Is CP conserved or violated?
- What is the v mass ordering?
- Are there only 3 v types?

 $\theta_{23} = 50.6 + -1.7^{\circ}$ $\theta_{12} = 33.6 + -0.80^{\circ}$ $\theta_{13} = 8.37 + -0.15^{\circ}$ $\Delta m_{21}^{2} = 7.53 + -0.18 \times 10 - 15 \text{eV}^{2}$ $|\Delta m_{32}^{2}| = 2.51 + -0.05 \times 10 - 3 \text{eV}^{2}$ $\delta_{CP} = ?$

T2K experiment

- 2.5° off-axis beam of v_{μ} or \overline{v}_{μ} produced by J-PARC accelerator
- Near Detector located 280 m from v source:
 - Constrains systematic errors for $\boldsymbol{\nu}$ flux
 - Measures v cross-sections
- Super-Kamiokande far detector located 295 km from J-PARC:
 - 50 kt water Cerenkov detector filled with ultra-pure water
 - Can distinguish ν_{μ} and ν_{e} interactions

Principles of the T2K v oscillations

4

Oscillation probabilities

- Long-baseline $\nu_{\mu} \rightarrow \nu_{e}$ appearance probability depends most strongly on $\sin^{2} 2\theta_{13}$ and δ_{CP}
 - (But also depends on θ_{23} and other parameters)

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}\left(1 + \frac{2a}{\Delta m_{31}^{2}}(1 - 2S_{13}^{2})\right) \to \text{Leading, matter effect} \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \to \text{CP conserving} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \to \text{CP violating} \\ &+ 4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\sin^{2}\Phi_{21} \to \text{CP violating} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1 - 2S_{13}^{2})\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31} \to \text{Matter effect} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1 - 2S_{13}^{2})\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31} \end{split}$$

- Long-baseline $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance probability depends most strongly on $\sin^2 2\theta_{23}$ and Δm_{32}^2
 - (But degeneracy is broken by $\sin^2 2\theta_{13}$)

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - (\cos^{4} \theta_{13} \sin^{2} 2\theta_{23} + \sin^{2} 2\theta_{13} \sin^{2} \theta_{23}) \sin^{2} \frac{\Delta m_{31}^{2} L}{4E}$ Leading Term Next-to-Leading

What's new

• More \overline{v} data of ~30%

$$..12 \times 10^{21} \rightarrow 1.63 \times 10^{21} \text{ POT}$$

- Update reactor constraints to recent PDG2018 values:
 - Old PDG2016:

$$\sin^2\theta_{13} = 0.0219 + -0.0012$$

($\sin^22\theta_{13} = 0.086$)

- New PDG2018:

 $\sin^2\theta_{13} = 0.0212 + 0.008$ ($\sin^22\theta_{13} = 0.083$)

Near Detector Measurement

Fit to Near Detector data:

- v data samples CC-0π, CC-1π, CC-Other
- v data sample CC 1Track, CC-Ntrack etc.
- Constrain flux and crosssection errors

PRELIMINARY

Errors on SK event rate

Sample	w/o ND280	W/ ND280	
v 1R μ -like	14.6%	5.1%	
v 1Re-like	16.9%	8.8%	
$\overline{\nu}$ 1R μ -like	12.5%	4.5%	
\overline{v} 1Re-like	14.4%	7.1%	

Super-K detection of v_{μ} and v_{μ}

Super-Kamiokande far detector uses Cherenkov light to detect charged particles. It allows to reconstruct particle energy and direction and determine whether its v_{μ} or v_{μ} interacting.

е

T2K data sample

Prediction with: $\sin^2\theta_{13}$ =0.0212, $\sin^2\theta_{23}$ =0.528, Δm^2_{32} =2.51x10⁻³eV², NH

Sample	δ _{CP} =-π/2	δ _{CP} =0	δ _{CP} =π/2	δ=π	Observed
v 1Rµ-like	272.4	272.0	272.4	272.8	243
\overline{v} 1R μ -like	139.5	139.2	139.5	139.9	140
v 1Re-like	74.4	62.2	50.6	62.7	75
\overline{v} 1Re-like	17.1	19.4	21.7	19.3	15
v 1Re decay e	7.0	6.1	4.9	5.9	15

10

T2K data sample $1.49 \times 10^{21} v + 1.63 \times 10^{21} v$ POT

1-ring CCQE μ-like 1-ring CCQE e-like 1-ring CC-1 π e-like T2K Run1-9 Preliminary **F2K Run1-9 Preliminary** T2K Run1-9 Preliminary Number of Events Number of Events Number of Events 14 30F $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ NC NC 3 ve/ve intrinsic ve/ve intrinsic v_{e}/\overline{v}_{e} intrinsic 12 25 intrinsic intrinsic intrinsic intrinsic intrinsic intrinsic 2.5 10 -20 15 1.5 10 5 0.5 0^{\perp}_{0} $0^{\mathsf{L}}_{\mathsf{O}}$ 0 0.5 2.5 1.5 2 0.2 0.4 0.6 0.8 1.2 0.2 0.40.6 0.8 1.2 v Reconstructed Energy (GeV) v Reconstructed Energy (GeV) v Reconstructed Energy (GeV) T2K Run1-9 Preliminary T2K Run1-9 Preliminary Number of Events 24E Number of Events $v_{\mu} \rightarrow v_{\mu}$ Assuming: $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ 22⊨ ŃC NC 20E v /v intrinsic v./v. intrinsic intrinsic intrinsic δCP=-π/2 18E intrinsic intrinsic 16E 14 Normal Hierarchy 12 10 8 6 $\sin^2\theta_{23} = 0.528$ $\sin^2\theta_{13} = 0.0212$ 0.5

 0^{L}_{0}

0.2

0.4

0.6

0.8

v Reconstructed Energy (GeV)

1.2

0.5

1.5

2.5

2

v Reconstructed Energy (GeV)

New T2K \overline{v}_{e} appearance results

$$\mathsf{P}(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = \beta \times \mathsf{P}_{\mathsf{PNMS}}(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$$

Analysis	P-value $β=0$ (σ excluded)	P-value $β=1$ (σ excluded)
Rate only	0.246 (1.82σ)	0.0686 (1.16σ)
Rate+Shape	0.261 (2.25σ)	0.0224 (1.12σ)

- For Rate+Shape no oscillation hypothesis is excluded at 2σ
- More data are needed

The v $_{\mu}$ disappearance results

- The best fit point: $\sin^2 \theta_{23} = 0.532$ $\Delta m_{32}^2 = 2.452 \times 10^{-3} \text{eV}^2$
- T2K data are compatible with maximal mixing

The T2K CP Violation Results

w/o reactor const.

w/ reactor const.

- Preferred value of $\delta_{CP} = -\pi/2$ with the best fit point of $\delta_{CP} = -1.885$
- $\delta_{CP} 2\sigma$ intervals:
 - Normal Hierarchy [-2.966, -0.628] radians
 - Inverted Hierarchy [-1.799, -0979] radians
- CP conserving values (δ_{CP} =0 or π) disfavored at 2σ level
- Need more data to reach 3σ result

Probability of v_e appearance versus v_e appearance

T2K future prospects

- T2K-II plans to collect 20 x 10²¹ POT by 2027~2028
- May reach 3σ sensitivity to δ_{CP} =0 by ~2026
- Beam line upgrade expected beam power 1.3 MW
 - -reduce repetition rate 2.48 s \rightarrow 1.16 s
 - more protons per pulse $2.4 \rightarrow 3.2 \times 10^{14}$
 - 320 kA horn current
- Super-K Gadolinium upgradeNear Detector upgrade

Super-K Gd upgrade

- Super-Kamiokande plans to load Gadolinium to the water tank, 0.02% Gd₂(SO₄)₃ by 2019/2020 0.2% later
- Gd can capture thermal neutrons providing delayed gamma signal, so it can tag \overline{v}_{e}
- May help v/v discrimination for T2K analysis
- SK tank was drained and opened in summer 2018
- Repairs were done: cleaning, water sealing, tank piping, replacement of dead PMTs
- Tank filling begun in Oct 2018 now tank is almost full.

Near Detector upgrade

- New part composed of scintillator target SuperFGD, 2 horizontal TPC and TOF detector
- Designed to reduce Near Detector systematic <4%
- Will provide:

 4π coverage for μ tracks, better short track recon. and good timing

- Beam test were performed at CERN during summer 2018
- Planned to be installed in 2021

Hyper-Kamiokande future project

	Kamiokande 1983-1995	Super-K 1996-	Hyper-K ~2027
Mass (fiducial)	4.5 (0.86) kton	50 (22.5) kton	258 (187) kton
PMT, coverage	948 (20%)	11 129 (40%)	40 000 (40%) High QE PMTs

Construction of Hyper-Kamiokande will start in April 2020

Hyper-K physics programe

Hyper-K v beam

High intensity 1.3MW beam directed 2.5° off-axis to Tochibora mine After 10 years v:v = 1:3

 v_{a} and v_{a} appearance mode

Hyper-K sensitivity to δ_{c}

After 10 years $v:\overline{v} = 1:3$

- Exclusion of sin δ_{CP} =0:
 → 76% of coverage of parameter space for CP discovery at 3σ
 → 58% for 5σ
- δ_{CP} precision measurement: \rightarrow precision of 22° for δ_{CP} =+-90° \rightarrow precision of 7° for δ_{CP} = 0° or 180°

Hyper-K atmospheric v

Contribution of matter effects to $v_{\mu} \rightarrow v_{\rho}$ oscillation

• Mass hierarchy creates resonance in ν_e or $\overline{\nu}_e$ multi-GeV events

- θ_{23} octant sets magnitude of the resonance
- δ_{CP} sets scale/direction of ~ 1 GeV interference

Hyper-K other measurements

- Combining beam and atmospheric measurements will provide more precise determination of mass hierarchy and determination of θ_{23} octant.
- Detemination of day-night assymetry with 8σ sensitivity after 10 years of operation.
- Detection of neutrinos from Supernovea burst
- Supernovea relic neutrinos
- Current limits for proton decay livetime are at the order of 10³⁴ years. Hyper-K will extend those limits to 3σ discovery sensitivity after 20 years:

3 x 10³⁴ yr

Summary

- T2k has provided many interesting results
- The CP conserving values of $\delta_{CP} = 0$ and π lie outside of 2σ interval
- Need more data for precise measurements
- It has been proposed to extend T2K run
- Upgrades of various parts of the experiment are undergoing
- Future Hyper-Kamiokande experiment will provide precise measurements in neutrino physics