Some fitting and extraction experiences and status of the GeParD code

Krešimir Kumerički

University of Zagreb, Croatia

Prospects for extraction of GPDs from global fits of current and future data

22-25 January, 2019, Heavy Ion Laboratory (Cyklotron), Warsaw

Outline

Neural net fits

Summary O

() Introduction and status of fits to DVCS data

Ø GeParD

Overal net fits

4 Summary

Neural net fits

Summary O

Access to GPDs via DVCS

- Deeply virtual Compton scattering (DVCS) "gold plated" process of exclusive physics
- DVCS is measured via leptoproduction of a photon

• Interference with Bethe-Heitler process gives unique access to both real and imaginary part of DVCS amplitude.

k

GeParD

Neural net fits

Summary O

/ 45

DVCS cross section

[Belitsky & Müller]

$$d\sigma \propto |\mathcal{T}|^2 = |\mathcal{T}_{\rm BH}|^2 + |\mathcal{T}_{\rm DVCS}|^2 + \mathcal{I} \; .$$

• where *e. g.* interference term is

$$\mathcal{I} \propto \frac{-e_{\ell}}{\mathcal{P}_{1}(\phi)\mathcal{P}_{2}(\phi)}\left\{c_{0}^{\mathcal{I}}+\sum_{n=1}^{3}\left[c_{n}^{\mathcal{I}}\cos(n\phi)+s_{n}^{\mathcal{I}}\sin(n\phi)\right]\right\},\$$

• where $e. \ g. \ c_1^{\mathcal{I}}$ harmonic for unpolarized target is

$$c_{1, ext{unpol.}}^\mathcal{I} \propto \left[F_1 \, \mathfrak{Re} \, \mathcal{H} - rac{t}{4 M_p^2} F_2 \, \mathfrak{Re} \, \mathcal{E} + rac{x_ ext{B}}{2 - x_ ext{B}} (F_1 + F_2) \, \mathfrak{Re} \, \widetilde{\mathcal{H}}
ight]$$

• and at leading order everything depends on four complex

Compton form factors (CFFs)

$$\mathcal{H}(\xi, t, Q^2), \quad \mathcal{E}(\xi, t, Q^2), \quad \widetilde{\mathcal{H}}(\xi, t, Q^2), \quad \widetilde{\mathcal{E}}(\xi, t, Q^2)$$

Neural net fits

Summary O

Factorization of DVCS \longrightarrow GPDs

• CFFs are convolution:

$${}^{a}\mathcal{H}(\xi,t,Q^{2}) = \int \mathrm{d}x \; C^{a}(x,\xi,\frac{Q^{2}}{Q_{0}^{2}}) \; H^{a}(x,\xi,t,Q_{0}^{2})$$

• $H^a(x, \eta, t, Q_0^2)$ — Generalized parton distribution (GPD)

Neural net fits

Summary O

Modelling GPDs in moment space

- Instead of considering momentum fraction dependence H(x,...)
- ... it is convenient to make a transform into complementary space of conformal moments *j*:

$$H_{j}^{q}(\eta,...) \equiv \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^{1} \mathrm{d}x \ \eta^{j} \ C_{j}^{3/2}(x/\eta) \ H^{q}(x,\eta,...)$$

- They are analogous to Mellin moments in DIS: $x^j \rightarrow C_i^{3/2}(x)$
- $C_j^{3/2}(x)$ Gegenbauer polynomials

Neural net fits

Summary O

CFFs as Mellin-Barnes integral

$$\mathcal{H}(\xi, t, Q^2) = \frac{1}{2i} \int_{c-i\infty}^{c+i\infty} dj \ \xi^{-j-1} \left[i + \tan\left(\frac{\pi j}{2}\right) \right] \\ \times \ \frac{C_j(Q^2/\mu^2, \alpha_s(\mu))}{2} H_j(\xi, t, \mu^2).$$
(1)

• Evolution of GPDs:

$$H_{j}(\eta, t, \mu) = \sum_{k} E_{jk}(\mu, \mu_{0}; \eta) H_{k}(\eta, t, \mu_{0}), \qquad (2)$$

- C_j and E_{jk} known to (N)NLO
- TODO: It would be nice to have inversion formula giving $H(x, \eta, t)$ from $H_j(\eta, t)$. Special cases H(x, 0, t) and H(x, x, t) are known.

Neural net fits

Summary O

Example of fit result — HERA collider data

Krešimir Kumerički

Some experiences ...

Neural net fits

Summary

Resulting small-x H(x, x, t)

• P=0: LO; P=1: NLO; P=2: NNLO

• The whole procedure is extended to meson production [Müller, Lautenschlager, Passek-Kumerički, Schäfer '13] (vectors), [Duplančić, Müller, Passek-Kumerički '18] (pseudoscalars)

Neural net fits

Summary O

Global fit χ^2 values: KM and PARTONS

[K.K., Müller '09-'15]

Collshoration	Observable	Paf		KMM	12	KMI	15
Conadoration	Observable	Kel.	npts	$\chi^2/n_{\rm pts}$	pull	$\chi^2/n_{\rm pts}$	pull
ZEUS	σ _{DVCS}	19 20	11	0.49	-1.76	0.51	-1.74
ZEUS,H1	$d\sigma_{\rm DVCS}/dt$	19 21 22	24	0.97	0.85	1.04	1.37
HERMES	$A_C^{\cos 0\phi}$	23	6	1.31	0.49	1.24	0.29
HERMES	$A_{C}^{\cos \phi}$	23	6	0.24	-0.56	0.07	-0.20
HERMES	$A_{LUJ}^{\sin\phi}$	23	6	2.08	-2.52	1.34	-1.28
CLAS	$A_{LU}^{\sin \phi}$	24	4	1.28	2.09		
CLAS	$A_{LU}^{\sin\phi}$	4 25	13			1.24	0.63
CLAS	$\Delta \sigma^{\sin \phi, w}$	7	48			0.41	-1.66
CLAS	$d\sigma^{\cos 0\phi,w}$	7	48			0.16	-0.21
CLAS	$d\sigma^{\cos\phi,w}$	7	48			1.16	6.36
Hall A	$\Delta \sigma^{\sin \phi, w}$	5	12	1.06	-2.55		
Hall A	$d\sigma^{\cos 0\phi,w}$	5	4	1.21	2.14		
Hall A	$d\sigma^{\cos\phi,w}$	5	4	3.49	-0.26		
Hall A	$\Delta \sigma^{\sin \phi, w}$	6	15			0.81	-2.84
Hall A	$d\sigma^{\cos 0\phi,w}$	6	10			0.40	0.92
Hall A	$d\sigma^{\cos\phi,w}$	6	10			2.52	-2.42
HERMES,CLAS	$A_{UL}^{\sin \phi}$	18 26	10	1.90	-1.89	1.10	-1.94
HERMES	$A_{LL}^{\cos 0\phi}$	26	4	3.44	2.17	3.19	1.99
HERMES	$A_{UT,I}^{\sin(\phi-\phi_S)\cos\phi}$	27	4	0.90	0.61	0.90	0.71
CLAS	$A_{\rm UL}^{\sin\phi}$	4	10			0.76	0.38
CLAS	$A_{LL}^{\cos 0\phi}$	4	10			0.50	-0.22
CLAS	$A_{LL}^{\cos \phi}$	4	10			1.54	2.40

[Moutarde, Sznajder, Wagner, '18]

No.	Collab.	Year	Ref.	χ^2	n	χ^2/n
1	HERMES	2001	13	9.8	10	0.98
2		2006	114	2.9	4	0.72
3		2008	115	24.2	18	1.35
4		2009	116	40.1	35	1.15
5		2010	117	40.3	18	2.24
6		2011	118	14.5	24	0.60
7		2012	119	25.4	35	0.73
8	CLAS	2001	14	_	0	
9		2006	120	0.9	2	0.47
10		2008	121	371.1	283	1.31
11		2009	122	36.4	22	1.66
12		2015	123	351.4	311	1.13
13		2015	124	937.9	1333	0.70
14	Hall A	2015	112	220.2	228	0.97
15		2017	113	258.8	276	0.94
16	COMPASS	2018	55	10.7	1	10.67

Neural net fits

Summary O

Example fixed target: Hall A (2015)

• KM15 global fit is fine. $\chi^2/n_{\rm d.o.f.}=240./275$ 🗸

Neural net fits

Summary

Including Hall A 2017 data in global world fit: fail X

Global world DVCS data fit

Intro and status of fits	GeParD 000000000000000000000000000000000000	Neural net fits	Summary O
DVCS at EIC			

- This framework was used to estimate impact of EIC [Aschenauer, Fazio, K.K., Müller '13], [EIC white paper]
- Fit to simulated DVCS data (dσ^{DVCS}/dt and A_{UT}) at 20 GeV × 250 GeV taking E_{sea}(x, η, t) = κ_{sea}H_{sea}(x, η, t)

- Improved knowledge of low-t quark and gluon GPDs $H (\implies$ 3D parton imaging)
- Improved knowledge of sea quark GPD E
- TODO: Do the same for DVMP

Neural net fits

Summary O

NLO DIS+DVCS+DVMP small-x global fit

First global fits to DIS+DVCS+DVMP HERA collider data [Lautenschlager, Müller, Schäfer '13] show promise and prefer NLO:

(Here one needs relaxed model with different Regge trajectories for each SO(3) partial wave of conformal space GPD.)

Krešimir Kumerički

 Neural net fits

Summary O

GeParD software

Krešimir Kumerički

Some experiences ...

Warsaw: Prospects ...

15 / 45

 Neural net fits

GeParD^{*} software — history, # of lines of code

Jul 2, 2006 - Jan 18, 2019

Contributions: Commits -

Contributions to master, excluding merge commits

"Not to be confused with biology software (GEnome PAir Rapid Dotter)

GeParD

Neural net fits

Summary O

Fortran 77 part

- What is implemented:
 - conformal space evolution of GPDs: up to NLO ($\overline{\rm MS}$ scheme) and partialy to NNLO (conformal scheme)
 - unpol. DIS hard-scattering coefficient functions to NNLO
 - unpol. DVCS hard-scattering coefficient functions to NNLO
 - unpol. DVMP hard-scattering coefficient functions to NLO (not thoroughly tested)
 - Compton Form Factors ${\cal H}$ and ${\cal E}$
 - DVMP transition form factor $(\mathcal{H}^{\rho^0 p})$
 - small-x $\sigma^{\rm DVCS}$ and $\sigma^{DV
 ho P}$
- Features:
 - fast and accurate
 - code thoroughly documented
 - Mathematica and Python interfaces

 Neural net fits

Summary O

F77 part, study 1: evolution check

• Comparison to QCD-Pegasus PDF evolution software [A. Vogt '04]

 Neural net fits

Summary O

F77 part, study 2: (N)NLO corrections

Thick lines: "hard" gluon $N_G = 0.4$ $\alpha_G(0) = \alpha_{\Sigma}(0)$ + 0.05

Thin lines: "soft" gluon $N_G = 0.3$ $\alpha_G(0) = \alpha_{\Sigma}(0)$ - 0.02

Intro	and	status	of	fits
0000	0000	00000	0	

 Neural net fits

Summary O

GeParD — interactive example 1/12

• Python part of GeParD implements complete [Belitsky, Müller et al.] DVCS formulas, all measured DVCS observables, and enables interactive work. An illustration follows:

In	[12]:	<pre>m = Model. th = Appro th.name =</pre>	ComptonGe ach.BMK(m 'NLO prel	pard <u>(</u> p=1) iminary'	, q(02=2. <u>)</u>	# # #	initialize use BMK fo name to be	NLO KM mode rmulas for D used on plo	l for VCS ts	CFFs
In	[13]:	th.m.param	eters['AL	0S'] = 1	2		#	change som	e model para	meter	
In	[14]:	utils.desc	ribe_data	(DISpoir	nts)		#	DISpoints :	= data set		
		npt x obs	collab	FTn	id	ref.					
		8 x F2	H1	N/A	201	Nucl.Phys	.B47	70(96)3			
		8 X F2 9 X F2	H1 H1	N/A N/A	202	Nucl.Phys. Nucl.Phys.	. B47 . B47	70(96)3 70(96)3			
		9 x F2	H1	N/A	204	Nucl.Phys	.B47	70(96)3			

Intro	and	status	of	fits
0000	0000	00000	0	

GeParD

Neural net fits

Summary O

GeParD — interactive example 2/12

	5 x F2	H1	N/A	209	Nucl.Phys.B470(96)3
	4 x F2	H1	N/A	210	Nucl.Phys.B470(96)3
	4 x F2	H1	N/A	211	Nucl.Phys.B470(96)3
	2 x F2	H1	N/A	212	Nucl.Phys.B470(96)3
	TOTAL = 85				
Out[14]:	85				
In [15]:	pt = DISpoi	nts[0]	# first	poir	nt from the set
	prive, prive	2, pt.yi	name, p	C. y I(mit, pervae, pereri
Out[15]:	(0.013, 12.0	9, 'F2',	1, 0.53	31, 0	0.051865209919559764)

 Neural net fits

Summary O

GeParD — interactive example 3/12

Intro and status of fits	GeParD	Neural net fits	Summary
00000000000	000000000000000000000000000000000000000	0000000	0

GeParD — interactive example 4/12

 Neural net fits

Summary O

GeParD — interactive example 5/12

In [19]:	%%t th f = f.f	%time th.model.release_parameters('NS', 'ALOS', 'ALOG') f = Fitter.FitterMinuit(DISpoints, th) f.fit()										
	FCN = 72.85271021975446 TOTAL NCALL = 115 NCALLS = 115									5		
	EDM = 1.082463486221191e-06 GOAL EDM = 1e-05 UP = 1.0						0					
		Valid	Vali	d Param	Accur	ate Covar	PosDef	Ma	ade PosDef			
		True		True		True	True		False			
	Hes	se Fail		HasCov	Ab	ove EDM		R	each calllim			
		False		True		False			False			
		N	ame	Valu	e He	sse Error	Minos En	ror-	Minos Error	⊦ Límit-	Limit+	Fixed?
	0		NS	0.14950	7 0.0	0706756						No
	1	А	LOS	1.0627	4 0	0197111						No
	2	A	LPS	0.1	5	1						Yes

• Two "fitters" are implemented: Minuit and Neural network

Intro and status of fits

 Neural net fits

Summary O

GeParD — interactive example 6/12

GeParD

Neural net fits

Summary O

GeParD — interactive example 7/12

In [22]:	utils.describe_data(DVMPpoints)
	npt x obs collab FTn id ref.
	5 x X H1 N/A 76 arXiv:0910.5831 20 x X H1 N/A 79 arXiv:0910.5831
	TOTAL = 25
Out[22]:	25
In [23]:	th.print_chisq(DVMPpoints)
	P(chi-square, d.o.f) = P(1752.85, 22) = 0.0000
In [24]:	<pre>th.model.fix_parameters('NS', 'AL05', 'AL06') th.model.release_parameters('M02S', 'M02G', 'SECS', 'SECG', 'THIS', 'THIG')</pre>
In [25]:	<pre>%time f = Fitter.FitterMinuit(DVMPpoints, th) f.fit()</pre>
	CPU times: user 9min 55s, sys: 582 ms, total: 9min 55s Wall time: 25.7 s
In [30]:	th.print_chisq(DISpoints+DVMPpoints)
	P(chi-square, d.o.f) = P(85.51, 104) = 0.9066

Intro and status of fits

GeParD

Neural net fits

Summary O

GeParD — interactive example 8/12

In [22]:	utils.describe_data <u>(</u> DVMPpoints <u>)</u>								
	npt x obs	collab	FTn	id	ref.				
	5 x X	H1	N/A	76	arXiv:0910.5831				
	20 X X	HI	N/A	79	arX1V:0910.5831				
	TOTAL = 25								
Out[22]:	25								
In [23]:	th.print_ch:	isq <u>(</u> DVMP _l	points <u>)</u>						
	P(chi-square	e, d.o.f)) = P(17	752.8	35, 22) = 0.0000				

Intro	and	status	of	fits
0000	0000	00000	0	

 Neural net fits

Summary O

GeParD — interactive example 9/12

[24]: th.model.fix_parameters('NS', 'ALOS', 'ALOG')
 th.model.release_parameters('M02S', 'M02G', 'SECS', 'S

[25]: %%time
f = Fitter.FitterMinuit(DVMPpoints, th)
f.fit()

CPU times: user 9min 55s, sys: 582 ms, total: 9min 55s Wall time: 25.7 s

30]: th.print_chisq(DISpoints+DVMPpoints)
P(chi-square, d.o.f) = P(85.51, 104) = 0.9066

GeParD Neural net fits

Summary

GeParD — interactive example 10/12

fig = plots.DVMP(wdep, bands=[th])

GeParD

Neural net fits

Summary O

GeParD — interactive example 11/12

th.m.print_covariance <u>()</u>						
	M02S	SECS	THIS	M02G	SECG	THIG
M02S SECS THIS M02G SECG THIG	0.006 -0.010 -0.000 0.001 -0.007 0.002	-0.010 0.085 -0.008 -0.002 -0.016 -0.003	-0.000 -0.008 0.007 0.001 -0.003 -0.002	0.001 -0.002 0.001 0.011 0.003 0.004	-0.007 -0.016 -0.003 0.003 0.052 -0.005	0.002 -0.003 -0.002 0.004 -0.005 0.007

th.m.print_parameters(compare_with=[KM15.m])

NS	->	0.15	0.152
AL0S	->	1.06	1.16
ALPS	->	0.15	0.15
M02S	->	0.605	0.482

GeParD

Neural net fits

Summary O

GeParD — interactive example 12/12

 Neural net fits

Summary O

GeParD vs PARTONS, cross-section

• BM = [Belitsky & Müller], GV = [Guichon & Vanderhaeghen]

- 100 kinematical points:
 - GeParD: 24 seconds
 - PARTONS (XML driven): 9 seconds

GeParD

Neural net fits

Summary O

GeParD vs PARTONS, beam spin asymmetry

• BM = [Belitsky & Müller], GV = [Guichon & Vanderhaeghen]

 Neural net fits

Summary O

GPD/CFF server

 Neural net fits

Summary O

GPD/CFF server

\leftrightarrow \rightarrow G	https://calculon.phy.hr/gpd/server/CFF-grid	l.html	🖈 😟 🗆 🛛 🗮 🕵 🜢 🦃
		GPD SERVER	
Home	Model:	Model: KM15	i.
(plots)	xBmin: 0.01 xBmax: 0.9	# xB t Q2 ImH ReH ImE	ReE ImHt ReHt ImEt
CFFs	-t: 0.3	0.01 -0.3 4.0 116.7022 17.0661 0.0000	1.9801 3.6173 1.0873 0.0000
(grids)	Q2: 4.0	0.0112 -0.3 4.0 102.6172 14.5804 0.000	0 1.9001 3.5411 1.0715 0.000
3D tomography	npts: 40	0.0126 -0.3 4.0 90.2295 12.3970 0.0000	1.9001 3.4661 1.0565 0.0000
	Print	0.0141 -0.3 4.0 79.3347 10.4791 0.0000	1.9001 3.3922 1.0424 0.0000
		0.0159 -0.3 4.0 69.7531 8.7944 0.0000	1.9001 3.3192 1.0290 0.0000
		0.0178 -0.3 4.0 61.3271 7.3148 0.0000	1.9001 3.2473 1.0165 0.0000
		0.02 -0.3 4.0 53.9178 6.0158 0.0000 1	.9001 3.1762 1.0048 0.0000 1
		0.0224 -0.3 4.0 47.4029 4.8758 0.0000	1.9801 3.1059 0.9940 0.8000
		0.0252 -0.3 4.0 41.6746 3.8757 0.0000	1.9001 3.0363 0.9840 0.0000
		0.0282 -0.3 4.0 36.6384 2.9984 0.0000	1.9801 2.9674 0.9750 0.8000
		0.0317 -0.3 4.0 32.2114 2.2292 0.0000	1.9801 2.8990 0.9668 0.8000
		0.0356 -0.3 4.0 28.3207 1.5553 0.0000	1.9001 2.8311 0.9596 0.0000
		0.0399 -0.3 4.0 24.9018 0.9653 0.0000	1.9801 2.7636 0.9533 0.8000
		0.0448 -0.3 4.0 21.8983 0.4496 0.0000	1.9001 2.6964 0.9480 0.0000 -

GeParD 00000000000000000000000000 Neural net fits

Summary O

GeParD — test suite

```
% nosetests -v
Calculate anomalous dimensions up to NLO. ... passed
Calculate CFF H. ... passed
Calculate basic cross section Xunp. ... passed
Calculate long, polarized cross section XLP in BM10 Approach. ... passed
Calculate transv. polarized cross section XTP in BMK Approach. ... passed
Calculate longitudinal TSA in BM10 Approach. ... passed
Calculate transversal TSA in BMK Approach and frame. ... passed
Calculate NLO DVMP coef. functions ... passed
Calculate LO DVMP TFFs for rho production at input scale. ... passed
Calculate LO DVMP TFFs for rho production + evolution. ... passed
Test model: KM09a ... passed
Test GK model: Re(CFFH) ... passed
Non-singlet NLO CFF H ... passed
Singlet NLO CFF H ... passed
Calculate GPDs on trajectory xi=x ... passed
Calculate GPDs on trajectory xi=0 ... passed
Non-singlet LO CFF H evolved ... passed
Singlet LO CFF H evolved ... passed
Calculate LO DVCS partial cross section using gepard (no evolution). ... passed
Calculate NLO DVCS cross section using gepard (+evolution). ... passed
GepardDR with switched-off DR should be same as Gepard. ... passed
Testing fitting by FitterMinuit. ... passed
Test fitting to HERA DVCS via gepard nl-SO3 at NLO ... passed
Singlet NLO MSBAR CFF H evolved ... passed
Testing basic Neural Net framework. ... passed
Testing Neural Net fitting by FitterBrain. ... passed
[...]
64 tests run in 12.391 seconds (64 tests passed)
```

Intro and status of fits	GeParD	Neural net fits	Summary
0000000000	000000000000000000000000000000000000000	•0000000	0

Neural net fits

Intro and status of fits	GeParD	Neural net fits ○●○○○○○○	Summary O
Fitting with neu	ıral networks		

Essentially a least-square fit of a complicated many-parameter function. f(x) = tanh(∑ w_i tanh(∑ w_j ···)) ⇒ no theory bias

Neural net fits

Study A: NN fit to CLAS 2015 data

- We start by fitting just to the CLAS 2015 $d\sigma$ and $\Delta\sigma$ measurements [Jo et al. '15], and just ${\cal H}$
- We utilize dispersion relations (one NNet represents *Im H*, another represents *D(t)*)
- Uncertainty is estimated by averaging over ensemble of neural nets:

Neural net fits

Summary O

Model dependence: \mathcal{H} vs. $\mathcal{H}+\mathcal{H}$

Krešimir Kumerički

Intro	and	status	of	fits
0000	0000	00000	0	

Neural net fits

Adding more data points

• Adding HERMES $A_{LU,I}$ data. (Model now includes \mathcal{H} and \mathcal{E})

Neural net fits

Summary O

Study B: NN fit to world fixed target data

• Representative subset of world DVCS fixed target data:

npt	5 2	c obs	collab	harm.	ref.
6	x	ALUI	HERMES	-1.0	arXiv:1203.6287
12	x	AUTDV	CS HERMES	5 0	arXiv:0802.2499
12	x	AUTI	HERMES	1.0	arXiv:0802.2499
6	x	BCA	HERMES	0.0	arXiv:1203.6287
6	x	BCA	HERMES	1.0	arXiv:1203.6287
12	x	BSDw	CLAS	-1	arXiv:1504.02009
15	x	BSDw	HALLA	-1	arXiv:1504.05453
12	x	BSSw	CLAS	0.0	arXiv:1504.02009
12	x	BSSw	CLAS	1.0	arXiv:1504.02009
10	x	BSSw	HALLA	0.0	arXiv:1504.05453
10	x	BSSw	HALLA	1.0	arXiv:1504.05453
6	x	BTSA	HERMES	0.0	arXiv:1004.0177v1
3	x	TSA	CLAS	-1	arXiv:hep-ex/0605012
6	x	TSA	HERMES	-1.0	arXiv:1004.0177v1

TOTAL = 128

 We now use completely unconstrained neural nets representing Im H, Me H, Im E, Me E, ... (do not assume dispersion relations)

Intro and status of fits	GeParD	Neural net fits	Summary
	000000000000000000000000000000000000	000000●0	O
Results (1/2)			

Only Jm H, Jm H
 and Me E consistently extracted as different from zero, and, with somewhat smaller significance, Me H and Jm E:

Intro and status of fits	GeParD	Neural net fits	Summary
	000000000000000000000000000000000000	0000000●	O
Results (2/2)			

 Other CFFs come out consistent with zero. Only bounds on their size are obtained. E. g. for Im E:

Intro	and	status	of	fits
0000	0000	00000	0	

Neural net fits

- Global fits to DVCS data reasonably healthy (some problems with newest Hall A data)
- Substantial effort will be needed to include DVMP in global NLO fits and estimate EIC impact, but all components for such analysis are in principle known
- GeParD software can maybe be useful to community. Should be released "real soon now".
- Neural network method has a unique capability of extraction of Compton form factors (and, later, GPDs) with reliable uncertainties