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Motivation

1 The near forward photoproduction of a pair of particles with a large
invariant mass is a case for a natural extension of collinear QCD
factorization theorems which have been much studied for DVCS and for
DVMP

2 It opens a new way to the extraction of GPDs, both chiral even and chiral
odd, and to check their universality

3 Similar strategy was advocated by Strikman et al
S. Kumano, M. Strikman, and K. Sudoh, Phys. Rev. D80 (2009) 074003

A. B. Larionov and M. Strikman Phys. Lett. B760 (2016) 753
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Collinear factorization
Twist 2 GPDs

Classification of twist 2 GPDs

analogously, for gluons:

4 gluonic GPDs without helicity flip:

Hg ξ=0,t=0
−−−−−−→ PDF x g

Eg

H̃g ξ=0,t=0
−−−−−−→ polarized PDF x∆g

Ẽg

4 gluonic GPDs with helicity flip:
Hg

T

Eg
T

H̃g
T

Ẽg
T

(no forward limit reducing to gluons PDFs here: a change of 2 units of helicity
cannot be compensated by a spin 1/2 target)

3 / 39



Introduction A new way to access GPDs Non-perturbative ingredients Computation Results: ρ Results: π Conclusion

Chiral-odd sector: Transversity of the nucleon using hard processes

What is transversity?

Transverse spin content of the proton:
| ↑⟩(x) ∼ |→⟩+ |←⟩
| ↓⟩(x) ∼ |→⟩ − |←⟩

spin along x helicity states

Observables which are sensitive to helicity flip thus give access to
transversity ∆T q(x). Poorly known.

Transversity GPDs are completely unknown experimentally.

For massless (anti)particles, chirality = (-)helicity

Transversity is thus a chiral-odd quantity

Since (in the massless limit) QCD and QED are chiral-even (γµ, γµγ5),
the chiral-odd quantities (1, γ5, [γµ, γν ]) which one wants to measure
should appear in pairs
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Transversity of the nucleon using hard processes: using a two body final
state process?

How to get access to transversity GPDs?

the dominant DA of ρT is of twist 2 and chiral-odd ([γµ, γν ] coupling)

unfortunately γ∗ N↑ → ρT N ′ = 0

This cancellation is true at any order : such a process would require a
helicity transfer of 2 from a photon.

lowest order diagrammatic argument:

γα[γµ, γν ]γα → 0

[Diehl, Gousset, Pire], [Collins, Diehl]
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Transversity of the nucleon using hard processes: using a two body final
state process?

Can one circumvent this vanishing?

This vanishing only occurs at twist 2

At twist 3 this process does not vanish [Ahmad, Goldstein, Liuti],
[Goloskokov, Kroll]

However processes involving twist 3 DAs may face problems with
factorization (end-point singularities)
can be made safe in the high-energy kT −factorization approach

[Anikin, Ivanov, Pire, LS, Wallon]

One can also consider a 3-body final state process [Ivanov, Pire, LS,
Teryaev], [Enberg, Pire, LS], [El Beiyad, Pire, Segond, LS, Wsllon]
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Probing GPDs using ρ or π meson + photon production

We consider the process γN → γM N ′ M = meson

Collinear factorization of the amplitude for γ +N → γ +M +N ′

at large M2
γM

TH

A

φ φ

B

t′

M2
γM →

φ

t′

x+ ξ x− ξ

t (small)

N N ′

M2
γM

GPD

TH

M

large angle factorization
à la Brodsky Lepage
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Probing chiral-even GPDs using π meson + photon production

Processes with 3 body final states can give access to chiral-even GPDs

TH

φ

π±

chiral-even twist 2 DA

t′

x+ ξ x− ξ

t (small)

chiral-even twist 2 GPD

N N ′

M2
γρ

GPD
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Probing chiral-even GPDs using ρ meson + photon production

Processes with 3 body final states can give access to chiral-even GPDs

TH

φ

ρL chiral-even twist 2 DA

t′

x+ ξ x− ξ

t (small)

chiral-even twist 2 GPD

N N ′

M2
γρ

GPD
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Probing chiral-odd GPDs using ρ meson + photon production

Processes with 3 body final states can give access to chiral-odd GPDs

TH

φ

ρT chiral-odd twist 2 DA

t′

x+ ξ x− ξ

t (small)

chiral-odd twist 2 GPD

N N ′

M2
γρ

GPD

10 / 39



Introduction A new way to access GPDs Non-perturbative ingredients Computation Results: ρ Results: π Conclusion

Probing chiral-odd GPDs using ρ meson + photon production

Processes with 3 body final states can give access to chiral-odd GPDs

How did we manage to circumvent the no-go theorem for 2→ 2 processes?

Typical non-zero diagram for a transverse ρ meson

the σ matrices (from DA and GPD sides) do not kill it anymore!
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Master formula based on leading twist 2 factorization

The ρ example

A ∝
∫ 1

−1

dx

∫ 1

0

dz T (x, ξ, z)×H(x, ξ, t)Φρ(z) + · · ·

Both the DA and the GPD can be
either chiral-even or chiral-odd.

At twist 2 the longitudinal ρ DA is
chiral-even and the transverse ρ DA is
chiral-odd.

Hence we will need both chiral-even
and chiral-odd non-perturbative
building blocks and hard parts.

H ρ

GPD

x + ξ x− ξ

q k

p1 p2

zpρ

(1− z)pρ
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Kinematics

Kinematics to handle GPD in a 3-body final state process

use a Sudakov basis :
light-cone vectors p, n with 2 p · n = s

assume the following kinematics:
∆⊥ ≪ p⊥

M2, m2
ρ ≪ M2

γρ

initial state particle momenta:

qµ = nµ, pµ1 = (1 + ξ) pµ + M2

s(1+ξ)n
µ

final state particle momenta:

pµ2 = (1− ξ) pµ +
M2 + p⃗ 2

t

s(1− ξ)
nµ +∆µ

⊥

kµ = αnµ +
(p⃗t − ∆⃗t/2)

2

αs
pµ + pµ⊥ −

∆µ
⊥

2
,

pµρ = αρ n
µ +

(p⃗t + ∆⃗t/2)
2 +m2

ρ

αρs
pµ−pµ⊥ −

∆µ
⊥

2
,

H ρ

GPD

x + ξ x− ξ

q k

p1 p2

zpρ

(1− z)pρ

}hard scale

M
2
γρ
∝ p2⊥

∆ ↓
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Non perturbative chiral-even building blocks

Helicity conserving GPDs at twist 2 :
∫

dz−

4π
eixP

+z−⟨p2,λ2|ψ̄q

(

−1
2
z−

)

γ+ψ

(

1
2
z−

)

|p1,λ1⟩

=
1

2P+
ū(p2,λ2)

[

Hq(x, ξ, t)γ+ + Eq(x, ξ, t)
iσα+∆α

2m

]

∫

dz−

4π
eixP

+z−⟨p2,λ2|ψ̄q

(

−1
2
z−

)

γ+γ5ψ

(

1
2
z−

)

|p1,λ1⟩

=
1

2P+
ū(p2, λ2)

[

H̃q(x, ξ, t)γ+γ5 + Ẽq(x, ξ, t)
γ5∆+

2m

]

We will consider the simplest case when ∆⊥ = 0.

In that case and in the forward limit ξ → 0 only the Hq and H̃q terms
survive.

Helicity conserving (vector) DA at twist 2 :

⟨0|ū(0)γµu(x)|ρ0(p, s)⟩ =
pµ√
2
fρ

∫ 1

0

du e−iup·xφ∥(u)
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Non perturbative chiral-odd building blocks

Helicity flip GPD at twist 2 :
∫

dz−

4π
eixP

+z−⟨p2, λ2|ψ̄q

(

−1
2
z−

)

iσ+iψ

(

1
2
z−

)

|p1,λ1⟩

=
1

2P+
ū(p2,λ2)

[

Hq
T (x, ξ, t)iσ

+i + H̃q
T (x, ξ, t)

P+∆i −∆+P i

M2
N

+ Eq
T (x, ξ, t)

γ+∆i −∆+γi

2MN
+ Ẽq

T (x, ξ, t)
γ+P i − P+γi

MN

]

u(p1,λ1)

We will consider the simplest case when ∆⊥ = 0.

In that case and in the forward limit ξ → 0 only the Hq
T term survives.

Transverse ρ DA at twist 2 :

⟨0|ū(0)σµνu(x)|ρ0(p, s)⟩ = i√
2
(ϵµρp

ν − ϵνρpµ)f⊥
ρ

∫ 1

0

du e−iup·x φ⊥(u)
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Models for DAs

Asymptotical DAs

We take the simplistic asymptotic form of the (normalized) DAs
(i.e. no evolution):

φπ(z) = φρ∥(z) = φρ⊥(z) = 6z(1− z) .

For the π case, a non asymptotical wave function can be also investigated:

φπ(z) =
8
π

√

z(1− z) .

(under investigation)
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Model for GPDs: based on the Double Distribution ansatz

Realistic Parametrization of GPDs

GPDs can be represented in terms of Double Distributions [Radyushkin]

based on the Schwinger representation of a toy model for GPDs which has the structure

of a triangle diagram in scalar φ3 theory

Hq(x, ξ, t = 0) =

∫ 1

−1

dβ

∫ 1−|β|

−1+|β|

dα δ(β + ξα− x) fq(β,α)

ansatz for these Double Distributions [Radyushkin]:

chiral-even sector:

fq(β,α, t = 0) = Π(β,α) q(β)Θ(β) −Π(−β,α) q̄(−β)Θ(−β) ,

f̃q(β,α, t = 0) = Π(β,α)∆q(β)Θ(β) +Π(−β,α)∆q̄(−β)Θ(−β) .

chiral-odd sector:

fq
T (β,α, t = 0) = Π(β,α) δq(β)Θ(β) − Π(−β,α) δq̄(−β)Θ(−β) ,

Π(β,α) = 3
4

(1−β)2−α2

(1−β)3
: profile function

simplistic factorized ansatz for the t-dependence:

Hq(x, ξ, t) = Hq(x, ξ, t = 0)× FH(t)

with FH(t) = C2

(t−C)2
a standard dipole form factor (C = .71 GeV)
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Model for GPDs: based on the Double Distribution ansatz

Sets of used PDFs

q(x) : unpolarized PDF [GRV-98]
and [MSTW2008lo, MSTW2008nnlo, ABM11nnlo, CT10nnlo]

∆q(x) polarized PDF [GRSV-2000]

δq(x) : transversity PDF [Anselmino et al.]
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Model for GPDs: based on the Double Distribution ansatz

Typical sets of chiral-even GPDs (C = −1 sector)
ξ = .1 ↔ SγN = 20 GeV2 and M2

γρ = 3.5 GeV2

! 1 .0 ! 0 .5 0 .0 0 .5 1 .0

2

4

6

8

10

12

14

x

Hu(−)(x, ξ)

! 1 .0 ! 0 .5 0 .0 0 .5 1 .0

2

4

6

8

x

Hd(−)(x, ξ)

Hq(−)(x, ξ, t) = Hq(x, ξ, t) +Hq(−x, ξ, t)

five Ansätze for q(x): GRV-98, MSTW2008lo, MSTW2008nnlo, ABM11nnlo, CT10nnlo

! 1 .0 ! 0 .5 0 .5 1 .0
H

! 3

! 2

! 1

1

2

3
H̃u(−)(x, ξ)

! 1 .0 ! 0 .5 0 .5 1 .0
H

! 1 .0

! 0 .5

0 .5

1 .0H̃d(−)(x, ξ)

H̃q(−)(x, ξ, t) = H̃q(x, ξ, t)− H̃q(−x, ξ, t)
“valence” and “standard” (flavor-asymmetries in the polarized antiquark sector are neglected):
two GRSV Ansätze for ∆q(x) 19 / 39
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Model for GPDs: based on the Double Distribution ansatz

Typical sets of chiral-odd GPDs (C = −1 sector)

ξ = .1 ↔ SγN = 20 GeV2 and M2
γρ = 3.5 GeV2

! 1 .0 ! 0 .5 0 .0 0 .5 1 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

x

Hu(−)
T (x, ξ)

! 1 .0 ! 0 .5 0 .5 1 .0

! 0 .8

! 0 .6

! 0 .4

! 0 .2

x

Hd(−)
T (x, ξ)

Hq(−)
T (x, ξ, t) = Hq

T (x, ξ, t) +Hq
T (−x, ξ, t)

“valence” and “standard”: two GRSV Ansätze for ∆q(x)
⇒ two Ansätze for δq(x)
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Computation of the hard part

20 diagrams to compute

The other half can be deduced by q ↔ q̄ (anti)symmetry depending on
C-parity in t−channel

Red diagrams cancel in the chiral-odd case
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Final computation

Final computation

A ∝
∫ 1

−1

dx

∫ 1

0

dz T (x, ξ, z) H(x, ξ, t) Φρ(z)

One performs the z integration analytically
using an asymptotic DA ∝ z(1− z)

One then plugs our GPD models into the
formula and performs the integral w.r.t. x
numerically.

Differential cross section:

dσ
dt du′ dM2

γρ

∣

∣

∣

∣

−t=(−t)min

=
|M|2

32S2
γNM2

γρ(2π)3
.

|M|2 = averaged amplitude squared

Kinematical parameters: S2
γN , M2

γρ and −u′

H ρ

GPD

x + ξ x− ξ

q k

p1 p2

zpρ

(1− z)pρ
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Fully differential cross section: ρL

Chiral even cross section
at −t = (−t)min

1 2 3 4 5
0

20

40

60

80

100

120

140

−u′ (GeV2)

dσeven

dM2
γρd(−u′)d(−t)

(pb ·GeV−6)

1 2 3 4 5
0

5

10

15

20

−u′ (GeV2)

dσeven

dM2
γρd(−u′)d(−t)

(pb ·GeV−6)

proton target neutron target

SγN = 20 GeV2

M2
γρ = 3, 4, 5, 6 GeV2

solid: “valence” model

dotted: “standard” model 23 / 39
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Fully differential cross section: ρT

Chiral odd cross section
at −t = (−t)min

1 2 3 4 5
0 .0

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

3 .5

−u′(GeV2)

dσodd

dM2
γρd(−u′)d(−t)

(pb ·GeV−6)

1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0
0 .0

0 .5

1 .0

1 .5

2 .0

−u′(GeV2)

dσodd

dM2
γρd(−u′)d(−t)

(pb ·GeV−6)

proton target neutron target
“valence” and “standard” models, “valence“ model only

each of them with ±2σ [S. Melis]

SγN = 20 GeV2

M2
γρ = 3, 4, 5, 6 GeV2
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Phase space integration

Evolution of the phase space in (−t,−u′) plane

large angle scattering: M2
γρ ∼ −u′ ∼ −t′

in practice: −u′ > 1 GeV2 and −t′ > 1 GeV2 and (−t)min ! −t ! .5 GeV2

this ensures large M2
γρ

example: SγN = 20 GeV2

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

−t

−u′

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

1 .4

−t

−u′

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0 .0

0 .5

1 .0

1 .5

2 .0

−t

−u′

Mγρ = 2.2 GeV2 M2
γρ = 2.5 GeV2 Mγρ = 3 GeV2

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0

1

2

3

4

−t

−u′

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0

1

2

3

4

5

6

7

−t

−u′

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0

2

4

6

8

−t

−u′

Mγρ = 5 GeV2 Mγρ = 8 GeV2 Mγρ = 9 GeV2
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Variation with respect to SγN

Mapping (SγN ,Mγρ) -→ (S̃γN , M̃γρ)

One can save a lot of CPU time:

M(α, ξ) and GPDs(ξ, x)

In the generalized Bjorken limit:

α = −u′

M2
γρ

ξ =
M2

γρ

2(SγN−M2)−M2
γρ

Given SγN (= 20 GeV2), with its grid in M2
γρ, choose another S̃γN .

One can get the corresponding grid in M̃γρ by just keeping the same ξ’s:

M̃2
γρ = M2

γρ

S̃γN −M2

SγN −M2
,

From the grid in −u′, the new grid in −ũ′ is given by just keeping the same α’s:

−ũ′ =
M̃2

γρ

M2
γρ

(−u′) .

⇒ a single set of numerical computations is required (we take SγN = 20 GeV2)
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Single differential cross section: ρL

Chiral even cross section

3 4 5 6 7 8 9

2

4

6

8

M2
γρ (GeV2)

dσeven

dM2
γρ

(pb ·GeV−2)

3 4 5 6 7 8 9

0 .2

0 .4

0 .6

0 .8

1 .0

M2
γρ (GeV2)

dσeven

dM2
γρ

(pb ·GeV−2)

proton target neutron target
“valence” scenario

SγN vary in the set 8, 10, 12, 14, 16, 18, 20 GeV2 (from left to right)

typical JLab kinematics
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Single differential cross section: ρT

Chiral odd cross section

2 4 6 8 10
0 .00

0 .05

0 .10

0 .15

0 .20

M2
γρ (GeV2)

dσodd

dM2
γρ

(pb ·GeV−2)

SγN = 20 GeV2

Various ansätze for the PDFs ∆q used to build the GPD HT :

dotted curves: “standard” scenario

solid curves: “valence” scenario

deep-blue and red curves: central values

light-blue and orange: results with ±2σ.
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Single differential cross section: ρT

Chiral odd cross section

3 4 5 6 7 8 9

0 .05

0 .10

0 .15

0 .20

0 .25

0 .30

M2
γρ(GeV2)

dσodd

dM2
γρ

(pb ·GeV−2)

proton target, “valence” scenario

SγN vary in the set 8, 10, 12, 14, 16, 18, 20 GeV2 (from left to right)

typical JLab kinematics
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Integrated cross-section: ρL

Chiral even cross section

5 10 15 20

5

10

15

20

SγN (GeV2)

σeven (pb)

5 10 15 20

0 .5

1 .0

1 .5

2 .0

2 .5

3 .0

SγN (GeV2)

σeven (pb)

proton target neutron target

solid red: “valence” scenario

dashed blue: “standard” one
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Integrated cross-section: ρT

Chiral odd cross section

5 10 15 20

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

SγN (GeV2)

σodd (pb)

5 10 15 20

0 .1

0 .2

0 .3

0 .4

SγN (GeV2)

σodd (pb)

proton target neutron target

solid red: “valence” scenario

dashed blue: “standard” one
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Counting rates for 100 days: ρ

example: JLab Hall B

untagged incoming γ ⇒ Weizsäcker-Williams distribution

With an expected luminosity of L = 100 nb−1s−1, for 100 days of run:

Chiral even case : ≃ 1.9 105 ρL .

Chiral odd case : ≃ 7.5 103 ρT
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Fully differential cross section: π±

Chiral even sector: π±

at −t = (−t)min

1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

20

−u′ (GeV2)

dσγπ+

dM2
γπ+d(−u′)d(−t)

(pb ·GeV−6)

1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

20

−u′ (GeV2)

dσγπ−

dM2
γπ−d(−u′)d(−t)

(pb ·GeV−6)

π+ photoproduction (proton target) π− photoproduction (neutron target)

SγN = 20 GeV2 M2
γρ = 4 GeV2

vector GPD / axial GPD / total result

solid: “valence” model

dotted: “standard” model
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Fully differential cross section: π±

Chiral even sector: π±
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Single differential cross section: π±

Chiral even sector: π±
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solid: “valence” model

dotted: “standard” model
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Integrated cross-section: π±

Chiral even sector: π±
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solid red: “valence” scenario

dashed blue: “standard” one
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Counting rates for 100 days: π±

example: JLab Hall B

untagged incoming γ ⇒ Weizsäcker-Williams distribution

With an expected luminosity of L = 100 nb−1s−1, for 100 days of run:

π+ : ≃ 104

π− : ≃ 4× 104
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Conclusion
Results and experimental perspectives

High statistics for the chiral-even components: enough to extract H (H̃?)
and test the universality of GPDs in ρ0, ρ± (not shown) and π± channels

In this chiral-even sector: analogy with Timelike Compton Scattering, the
γρ or γπ pair playing the role of the γ∗.

ρ-channel: chiral-even component w.r.t. the chiral-odd one:
σodd/σeven ∼ 1/25.

possible separation ρL/ρT through an angular analysis of its decay products
Future: study of polarization observables ⇒ sensitive to the interference of
these two amplitudes: very sizable effect expected, of the order of 20%

The Bethe Heitler component (outgoing γ emitted from the incoming lepton) is:
zero for the chiral-odd case
suppressed for the chiral-even case

Possible measurement at JLab (Hall B, C, D)

A similar study could be performed at COMPASS. EIC, LHC in UPC?
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Conclusion
Future

For γπ± photoproduction:
Effect of non asymptotical π DA?

φπ(z) =
8

π

√

z(1− z)

AdS/QCD correspondence, dynamical chiral symmetry breaking on the light-front, etc.

Effect of twist 3 contributions? presumably important for π electroproduction

Observables sensitive to quantum interferences:
γ beam asymmetry
Target polarization asymmetries
For ρ0γ photoproduction: built from the π+π− decay product angular
distribution ⇒ chiral odd versus chiral even

Loop corrections: in progress

Accessing GPDs in light nuclei: spin-0 case using an 4He target

Crossed-channel: using the J-PARC π beam (spallation reaction of a proton beam):

πN → γγN

The processes γN → γπ0N ′ and γN → γη0N ′ are of particular interest:
they give an access to the gluonic GPDs at Born order.

Our result can also be applied to electroproduction (Q2 ≠ 0) after adding
Bethe-Heitler contributions and interferences.
New release of PARTONS platform 39 / 39



Restrictions and further studies Details on various contributions (ρ case)

Effects of an experimental angular restriction for the produced γ

Angular distribution of the produced γ
ρL photoproduction

after boosting to the lab frame
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JLab Hall B detector equipped between 5◦ and 35◦

⇒ this is safe!
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Restrictions and further studies Details on various contributions (ρ case)

Effects of an experimental angular restriction for the produced γ

Angular distribution of the produced γ
ρL photoproduction
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⇒ this is safe!
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Restrictions and further studies Details on various contributions (ρ case)

Effects of an experimental angular restriction for the produced γ

Angular distribution of the produced γ
ρT photoproduction

after boosting to the lab frame
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⇒ this is safe!
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Restrictions and further studies Details on various contributions (ρ case)

Effects of an experimental angular restriction for the produced γ

Angular distribution of the produced γ
ρT photoproduction
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Restrictions and further studies Details on various contributions (ρ case)

Chiral-even cross section

Contribution of u versus d
ρL photoproduction
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u + d quarks u quark d quark

Solid: “valence” model

dotted: “standard” model

u-quark contribution dominates due to the charge effect
the interference between u and d contributions is important and negative.
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Restrictions and further studies Details on various contributions (ρ case)

Chiral-even cross section

Contribution of vector versus axial amplitudes
ρL photoproduction
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dominance of the vector GPD contributions
no interference between the vector and axial amplitudes 6 / 6



Gluon GPDs in the UPC production of heavy mesons

D. Yu. Ivanov , A. Schafer , L. Szymanowski and G. Krasnikov - Eur.Phys.J. C34 (2004)
297-316

The amplitude M is given by factorization formula:

M ⇠
✓ hO1iV

m3

◆1/2
1Z

�1

dx
h
Tg(x, ⇠)F

g(x, ⇠, t) + Tq(x, ⇠)F
q,S(x, ⇠, t)

i
,

F q,S(x, ⇠, t) =
X

q=u,d,s

F q(x, ⇠, t) .

where m is a pole mass of heavy quark, hO1iV is given by NRQCD through leptonic meson
decay rate.
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Heavy Vector Mesons Photoproduction

We have good data! See H1 2013 paper:
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Photoproduction cross section - LO and NLO

Work with D.Yu.Ivanov and J. Wagner
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Figure: Photoproduction cross section as a function of W =
p
s�p for

µ2
F = M2

J/ ⇥ {0.5, 1, 2}- LO and NLO. Thick lines for LO and NLO for

µ2
F = 1/4M2

J/ .
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I Jones & Martin & Ryskin & Teubner, arXiv:1507.06942. Choice of the factorization
scale.

I Why NLO corrections are large at small xB?
large contribution comes from

ImAg ⇠ Hg(⇠, ⇠) +
3↵s

⇡

"
log

M2
V

µ2
F

� log 4

# 1Z

⇠

dx

x
Hg(x, ⇠)

Hg(x, ⇠) ⇠ xg(x) ⇠ const, therefore
R
dx/xHg(x, ⇠) ⇠ log(1/⇠)Hg(⇠, ⇠)

γ∗ γ∗
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Resummed amplitude for J/ 
S. Catani and F. Hautmann, Nucl. Phys. B 427 (1994) 475. for DIS

ImA
g ⇠ H

g(⇠, ⇠) +
R 1

2⇠
dx
x H

g(x, ⇠)
P

n=1 Cn(L)
↵̄n
s

(n�1)! log
n�1 x

⇠
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