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Part 1:
Models of Distribution Amplitudes

and consequences
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DVMP and DA

Deep meson production: a key channel for GPDs extractions
“Golden objective”: combined DVCS & DVMP extraction
Possibility to do this at NLO ?

Difficulty 1
Effects of the choice of the DA for this kind of extraction ?

Difficulty 2
At NLO, possible scheme/scale effects (canonical choice vs. BLM choice)?

Pragmatic approach
Gather as much information from any side, and make “reasonable”
assumptions
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Recent models and calculations of PDA

Dyson-Schwinger techniques:
I Multiple meson can be addressed

F Pion DA (leading and sub-leading twist)
F ρ-meson DA (leading twist)
F J/Ψ DA (leading twist)

I Many Mellin moments can be computed
I Interaction is approximated
I Computation of the gauge link remains to be addressed (although

claimed to be small in the case of DA)
Lattice QCD computations

I Precise computations of the first non-trivial Mellin Moment
I x dependence with LaMET but with wide errors

Possible parametrisations combining information from the two ?
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Bethe-Salpeter Equation

Two-body bound states obey their own equation called the
Bethe-Sapeter equation:

= K

It is needed to approximate K consistently the quark propagator used
to fulfil QCD symmetries (especially the Axial-Vector Ward-Takahashi
Identities)
The DA is given by projecting the Bethe-Salpeter wave function:

ϕ(x) ∝
∫

d4k
(2π)4 δ

(
x − k · n

P · n

)
χ(k ,P)

Advantages and Drawbacks
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Pion DA in BSE framework

Leading twist (MOM 2GeV)
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Vector meson and heavy quark

MOM 2 GeV
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Lattice QCD Moments for the pion

Lattice can compute local operators related to 〈ξm〉:

〈ξm〉(µ) =

∫
dx(2x − 1)mϕ(x , µ)

Calculation possible for m = 2, beyond operator mixing makes it
difficult:

〈ξ2〉MS(µ = 2GeV) = 0.2361(41)(39)(?)

V. Braun et al., Phys.Rev. D92 (2015) no.1, 014504

Preliminary results shown at ECT* workshop last September for 〈ξ2〉
at physical point and in the continuum limit, but with renormalisation
to be finalised:

〈ξ2〉MS(µ = 2GeV) = 0.2399(64)

G. Bali, talk at “Mapping PDF and PDA”, ECT*, September 10-14, 2018
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LaMET for the pion

LaMET

Param 1

Param 2
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Parametrisations

Assumptions
1) DSE + LaMET → broad unimodal DA is favoured over bimodal one
2) Lattice computation of 〈ξ2〉 is reliable

Asymptotic DA
ϕAs(x) = 6x(1− x)

Logarithmic DA (one parameter κ fitted on lattice data)

ϕln(x) ∝ 1− ln [1 + κx(1− x)]

κx(1− x)

Power DA (one parameter ν fitted on lattice data)

ϕν(x) ∝ xν(1− x)ν

Square root DA
ϕ1/2(x) ∝

√
x(1− x)
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n = −1 Mellin Moment

〈x−1〉 =

∫ 1

0
dx

ϕ(x)

1− x

ϕAs(x) ϕln(x) ϕν(x) ϕ1/2(x)

〈x−1〉 3 3.41 3.66 4
〈x−1〉
〈x−1〉As
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Form Factors

Q2F (Q2) = N

∫
[dxi ][dyi ]ϕ(x , ζ2

x )T (x , y ,Q2, ζ2
x , ζ

2
y )ϕ(y , ζ2

y )

LO Kernel and NLO kernels are known
T0 ∝

αS (µ2R)

(1−x)(1−y)

T1 ∝
α2s (µ2R)

(1−x)(1−y) (fUV (µ2
R) + fIR(ζ2) + ffinite)

R Field et al., NPB 186 429 (1981)
F. Dittes and A. Radyushkin, YF 34 529 (1981)

B. Melic et al., PRD 60 074004 (1999)
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Pion FF

The UV scale dependent term behaves like:

fUV (µ2
R) ∝ β0

(
5/3− ln((1− x)(1− y)) + ln

(
µ2
R

Q2

))
Here I take two examples:

I the standard choice of ζ2
x = ζ2

y = µ2 = Q2/4
I the regularised BLM-PMC scale ζ2

x = ζ2
y = µ2 = e−5/3Q2/4

S. Brodsky et al., PRD 28 228 (1983)
S. Brodsky and L. Di Giustino, PRD 86 085026 (2011)

Take ϕln for our calculations
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Pion FF
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Pion FF

The UV scale dependent term behaves like:

fUV (µ2
R) ∝ β0

(
5/3− ln((1− x)(1− y)) + ln
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R

Q2

))
Here I take two examples:

I the standard choice of ζ2
x = ζ2

y = µ2 = Q2/4
I the regularised BLM-PMC scale ζ2

x = ζ2
y = µ2 = e−5/3Q2/4

S. Brodsky et al., PRD 28 228 (1983)
S. Brodsky and L. Di Giustino, PRD 86 085026 (2011)

Take ϕln for our calculations
BLM scale reduces significantly the impact of the NLO corrections and
increase dramatically the LO one.
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Part 2:
Modeling Generalised Parton

Distributions
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Properties

Polynomiality Property:∫ 1

−1
dx xmHq(x , ξ, t) =

[m
2 ]∑

j=0

ξ2jCq
2j(t) + mod(m, 2)ξm+1Cq

m+1(t)

Lorentz Covariance

Positivity property:
Positivity of Hilbert space norm

Support property:
Relativistic quantum mechanics

Soft pion theorem (pion GPDs only)
Axial-Vector WTI

No model (so far) fulfils all the constraints a priori
People emphasise either:

Polynomiality through Double Distribution or conformal moments
modeling,
Positivity through LFWFs approaches
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∣∣∣∣Hq(x , ξ, t)− ξ2

1− ξ2
Eq(x , ξ, t)

∣∣∣∣ ≤
√√√√q

(
x+ξ
1+ξ

)
q
(
x−ξ
1−ξ

)
1− ξ2

A. Radysuhkin, Phys. Rev. D59, 014030 (1999)
B. Pire et al., Eur. Phys. J. C8, 103 (1999)

M. Diehl et al., Nucl. Phys. B596, 33 (2001)
P.V. Pobilitsa, Phys. Rev. D65, 114015 (2002)
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Double Distributions for spin 0

Definition in terms of matrix element for z2 = 0:

〈P +
∆

2
|q̄
(
−z
2

)
γµq

(z
2

)
|P − ∆

2
〉 = 2Pµ

∫
Ω

dβdα e−iβ(P · z)+iα (∆ · z)
2 F q(β, α, t)

−∆µ

∫
Ω

dβdα e−iβ(P · z)+iα (∆ · z)
2 Gq(β, α, t)

+ higher twist terms.

D. Müller et al., Fortsch. Phy. 42 101 (1994)
A. Radyushkin, Phys. Rev. D56, 5524 (1997)

Simple relation to GPDs:

H(x , ξ, t) =

∫
Ω

dβdα δ(x − β − αξ) [F (β, α, t) + ξG(β, α, t)]

Automatically fulfil the polynomiality property
But positivity is not fulfilled a priori
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LFWFs

Lightfront quantization allows to expand hadrons on a Fock basis

|P, π〉 ∝
∑
β

Ψqq̄
β |qq̄〉+

∑
β

Ψqq̄,qq̄
β |qq̄, qq̄〉+ . . .

|P,N〉 ∝
∑
β

Ψqqq
β |qqq〉+

∑
β

Ψqqq,qq̄
β |qqq, qq̄〉+ . . .

DGLAP: |x | > |ξ|

Same N LFWFs
Truncation unambiguous

ERBL: |x | < |ξ|

N and N + 2 LFWFs
Truncation ambiguous

LFWFs formalism has the positivity property inbuilt but polynomiality is
lost by truncating both in DGLAP and ERBL sectors.

Is there a solution to get all the good properties?
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Context

A specific algebraic parametrisation of LFWF was introduced by D.
Mueller and D. Hwang

D. Müller and D. Hwang PLB 660 (2008) 350-359

After computing the DGLAP (or outer) region, it was possible to
obtain the DD by using a clever change of variable
This allows the computations in the ERBL region (up to a D-term).

Question
How general is the procedure? Can it be done for any LFWFs?
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Chapter 4:

The Inverse Radon Transform
N.Chouika, CM, H. Moutarde, J. Rodriguez-Quintero,

EPJC 77 (2017) no.12, 906
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Intuitive picture

H(x , ξ) =

∫
Ω

dβdαδ(x − β − αξ) [F (β, α) + ξG (β, α)]

DGLAP (red) and ERBL (green) lines
cut β = 0 outside or inside the square
Every point (β 6= 0, α) contributes
both to DGLAP and ERBL regions
For every point (β 6= 0, α) we can draw
an infinite number of DGLAP lines.

Is it possible to recover the DDs from the DGLAP region only?
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Radon Transform and GPDs

We can define a D-term such that:∫ 1

−1
dx xm (H(x , ξ)− D(x/ξ)) =

m∑
i even

(2ξ)iCm,i ,

yielding the Ludwig-Helgason consistency conditions.
From Hertle theorem (1983), we know that H − D is in the range of
the Radon transform and that:

H(x , ξ) = D(x/ξ) +

∫
Ω

dβdαδ(x − β − αξ)FD(β, α)

This allows us to identify the DD FD with the Radon transform of
H −D. This has been first noticed by O. Teryaev (PLB510 2001 125).
It should be possible to use the limited Radon inverse transform to
obtain the DD and thus the ERBL part.

NB: This is equivalent to fixing the DD to the Polyakov-Weiss scheme. The same
argument can be done in other schemes, but the D-term remains ambiguous.
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Uniqueness of the Extension

Since DD are compactly supported, we can use the Boman and
Todd-Quinto theorem which tells us

H(x , ξ) = 0 for (x , ξ) ∈ DGLAP⇒ FD(β, α) = 0 for all (β 6= 0, α) ∈ Ω

Boman and Todd-Quinto, Duke Math. J. 55, 943 (1987)

insuring the uniqueness of the extension up to D-term like terms.
The DGLAP region almost completely characterises the entire GPD.

New modeling strategy
Compute the DGLAP region through overlap of LFWFs
⇒ fulfilment of the positivity property
Extension to the ERBL region using the Radon inverse transform
⇒ fulfilment of the polynomiality property
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Chapter 5:

An example on the pion
N.Chouika, CM, H. Moutarde, J. Rodriguez-Quintero,

PLB 780 (2018) 287-293
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An algebraic model for the Pion BSWF

Consider the Euclidean Bethe-Salpeter Wave Function based on the
Nakanishi representation:

Ψ(k,P) = S(k − P/2)Γ(k,P)S(k + P/2)

S(k) =
iγ · k + M
k2 + M2 Γ(k,P) = iNγ5

∫ 1

−1

dz(1− z2)M2[(
k − 1−z

2 P
)2

+ M2
]

We can compute from it the 2-body LFWFs:

Φ↑↓(x , k⊥) = 8
√
15π

M3

(k2⊥ + M2)2
(1− x) x

Φ↑↑(x , k⊥) = −8i
√
15π

M2

(k2⊥ + M2)2
(1− x) x

Nakanishi Representation
The present model is very simple, but the Nakanishi formalism is general,
and can be straigthforwardly apply to more complicated models.
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Algebraic Results

Hu
π+ (x , ξ, t)|ξ≤x =

15
2

(1− x)2(x2 − ξ2)

(1− ξ2)2
1

(1 + ζ)2

3 +
1− 2ζ
1 + ζ

arctanh

(√
ζ

1 + ζ

)
√

ζ

1 + ζ

 ,

ζ =
−t
4M2

(1− x)2

1− ξ2 ,

Few comments
Simple LFWFs yield quite complicated GPDs in the DGLAP region;
Yet algebraic results can be obtained both for the DD and the GPD in
the ERBL region;
Provide us with a benchmarck for numerical approaches
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Numerical Inversion

For more complicated LFWFs, algebraic inversion is not possible, we
need to develop a systematic numerical method to handle it.

Difficulty: The limited inverse Radon transform is a severely ill-posed
problem in the sens of Hadamard.
Using finite element analysis we obtained:

H(x , ξ, 0) H(x , 0.5, t)
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Modeling through LFWF

We have now a generic technique to model GPDs from LFWFs
guaranteeing both positivity and polynomiality.
PARTONS allows us to go from LFWFs up to the DVCS observables.
The question of building a model based on effective LFWFs can be
addressed
Advantages:

I Fulfil all properties by construction
I Bridges with other hadron physics communities (?)

Drawbacks: hole at x = ξ kinematics due to LFWF being zero at their
edges.

I filled by evolution (?)
I effective LFWFs not vanishing at the edges (?)
I specific x = ξ physics (?)
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Conclusion
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Perspectives and questions

Modeling DA
Progresses have been done on the theory side
Theoretical calculations seem to favour the broad unimodal DA
Is it compatible with phenomenology (?)
Would help extraction of GPDs from DVMP

Modeling GPDs
New modeling approach based on LFWFs
Fulfil all theoretical constraints
Is it compatible with phenomenology (?)
Use for global GPD fit and beyond (?)
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Thank you for your attention
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Back up slides
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Algebraic Inversion

H(x , ξ, t) = (1− x)

∫
Ω

dβdαδ(x − β − αξ)hP(β, α, t)

hP(β, α, t) =
15
2
θ(β)

[
1 +

−t
4M2

(
(1− β)2 − α2)]−3

×
[
1− 3(α2 − β2)− 2β +

−t
4M2

(
1− (α2 − β2)2 − 4β(1− β)

)]
,

From the algebraic DD we can deduce the GPD in ERBL region

H(x , ξ, 0)||x |≤ξ =
15
2

(1− x)(ξ2 − x2)

ξ3(1 + ξ)2

(
x + 2xξ + ξ2

)
,

Cédric Mezrag (INFN) DAs and GPDs January 24th , 2019 32 / 30



Numerical Basis

Use of a P1 (planar by pieces) basis
We have to trade of precision and noise:
In ill-posed inverse problem, small errors coming from our
discretisations can trigger significant increases in the numerical noise.
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