

CEAI

Center of Excellence in Artificial Intelligence

AGH UNIVERSITY
OF KRAKOW

From imaging algorithms to quantum
methods Seminar, 12.01.2026

Multi-Object Tracking and Label Fusion in Automotive Sensor Data

Piotr Kalaczyński, Tomasz Rybotycki, Piotr Gawron

We gratefully acknowledge the funding support by program “Excellence initiative—research university” for the AGH University in Krakow as well as the ARTIQ project: UMO-2021/01/2/ST6/00004 and ARTIQ/0004/2021.

Outline

Introduction

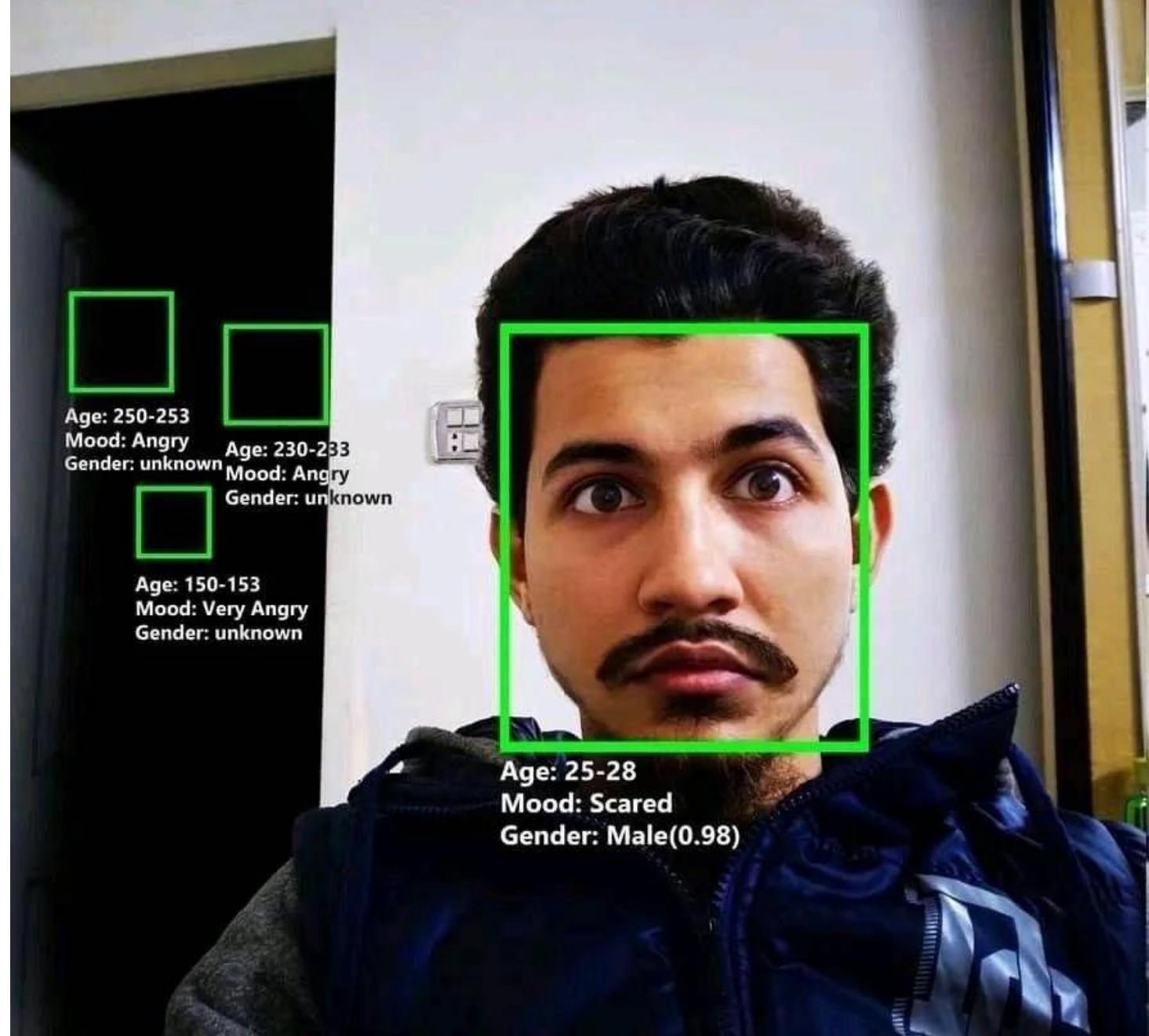
Data used

Object detection & tracking

Label fusion

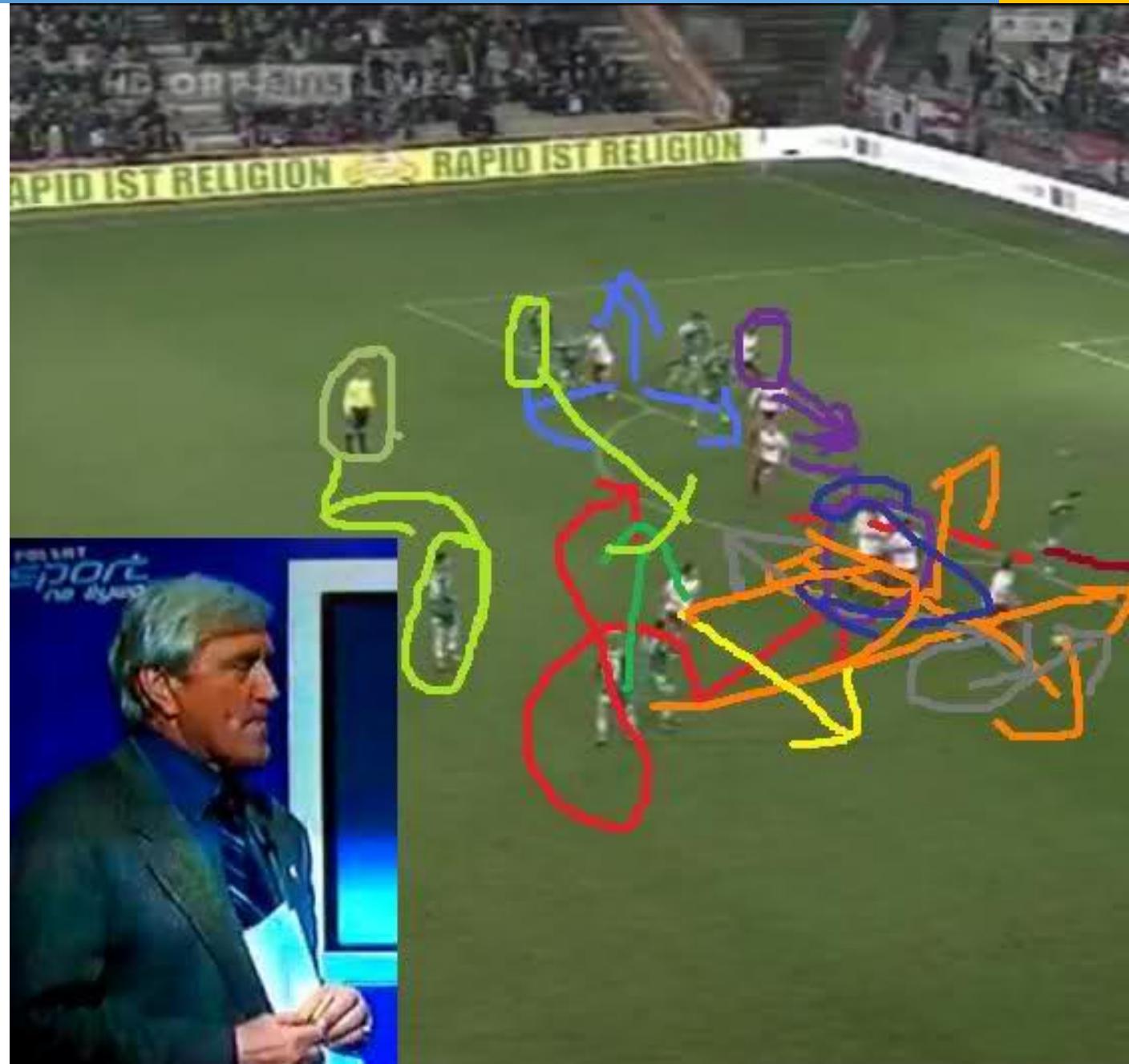
Summary

Multi-object tracking (MOT):
❖ identifying objects in video frames



Multi-object tracking (MOT):

- ❖ identifying objects in video frames
- ❖ maintaining a unique ID for each detected object across video frames.

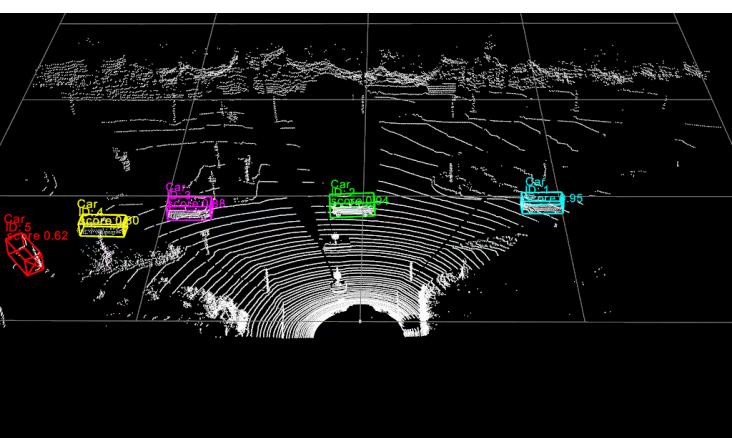
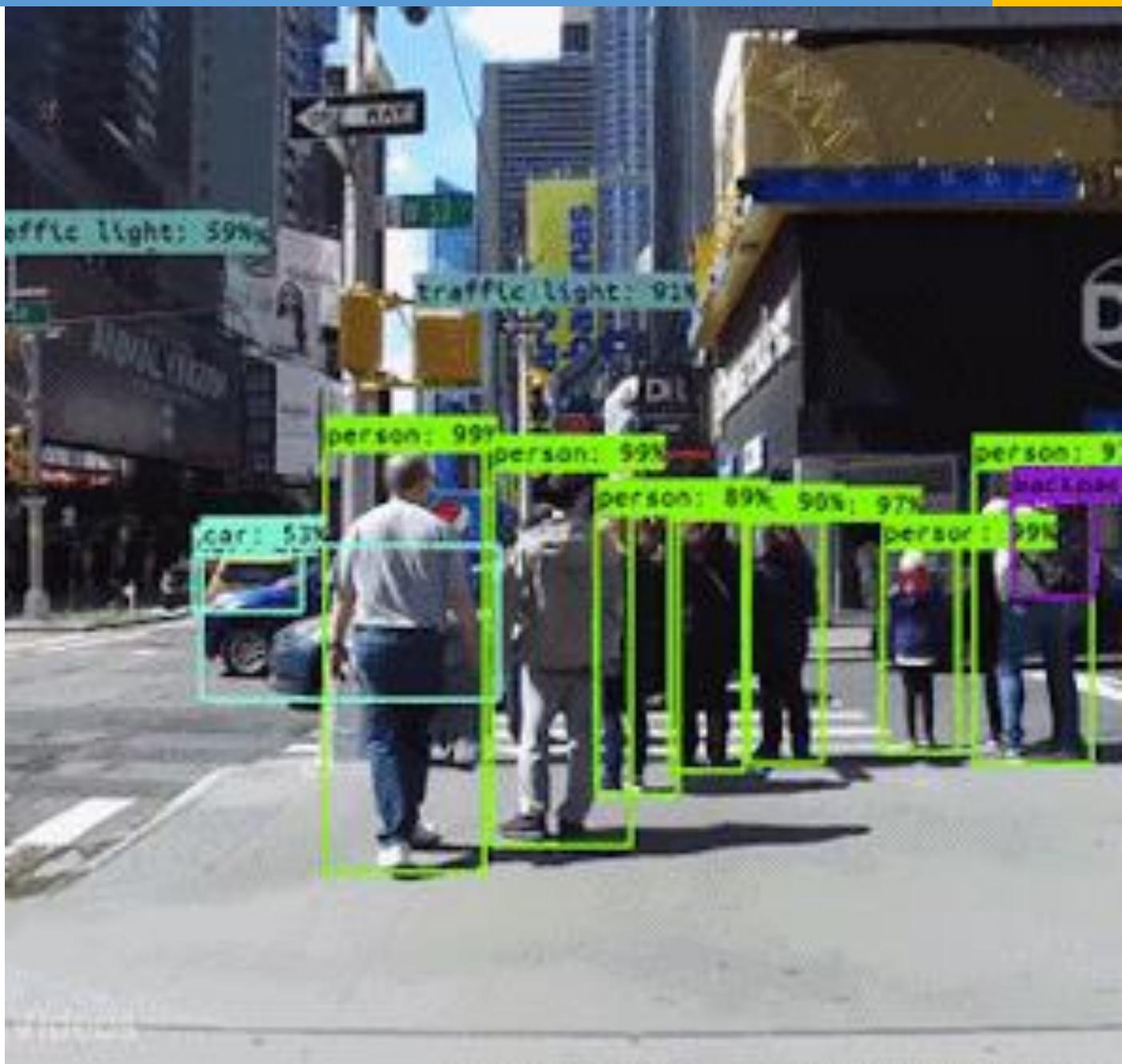


Multi-object tracking (MOT):

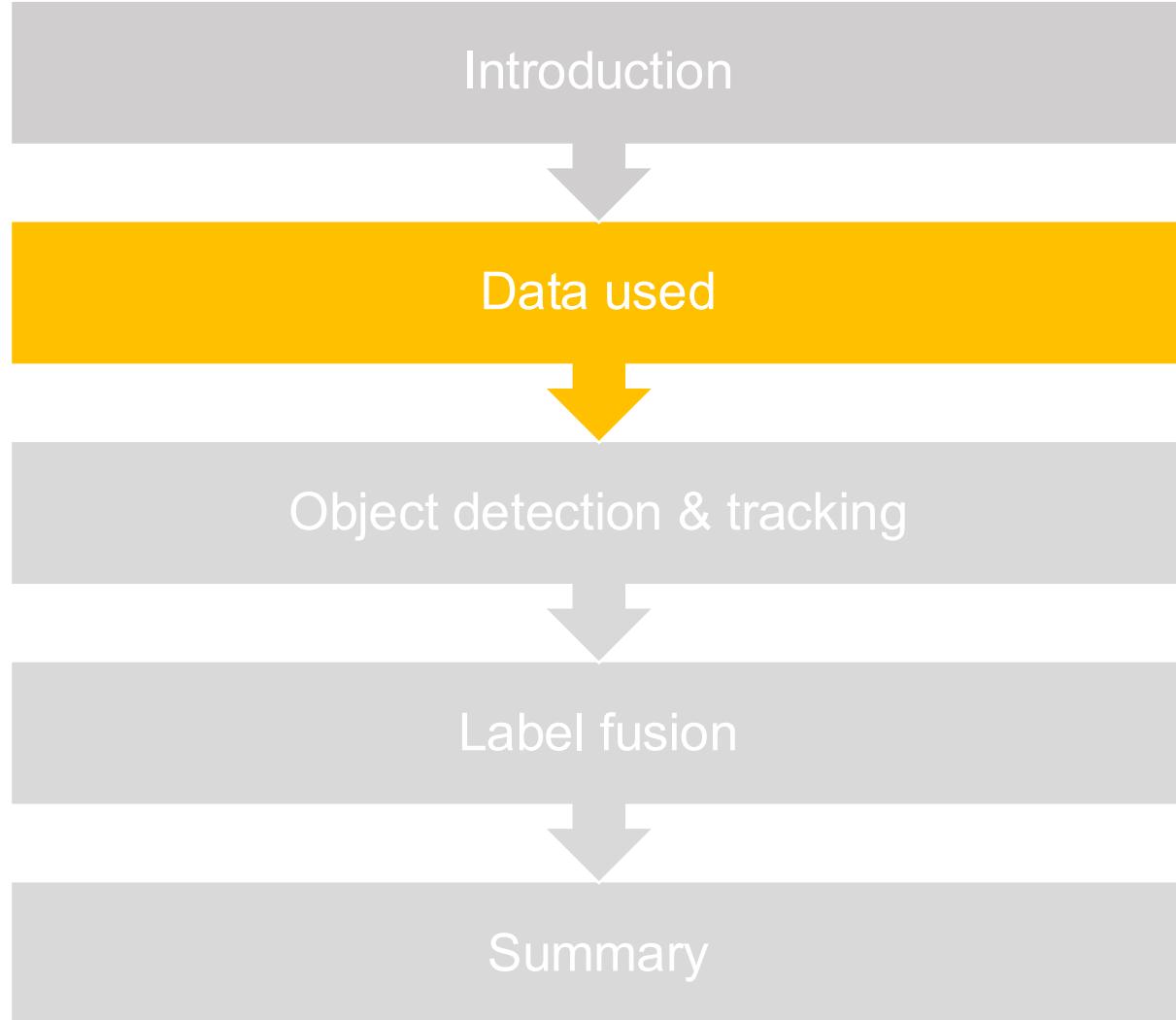
- ❖ identifying objects in video frames
- ❖ maintaining a unique ID for each detected object across video frames.

Applications:

- ❖ video surveillance
- ❖ sports analytics
- ❖ robotics
- ❖ retail analytics
- ❖ autonomous driving ← this talk



Outline



The KITTI Vision Benchmark Suite:

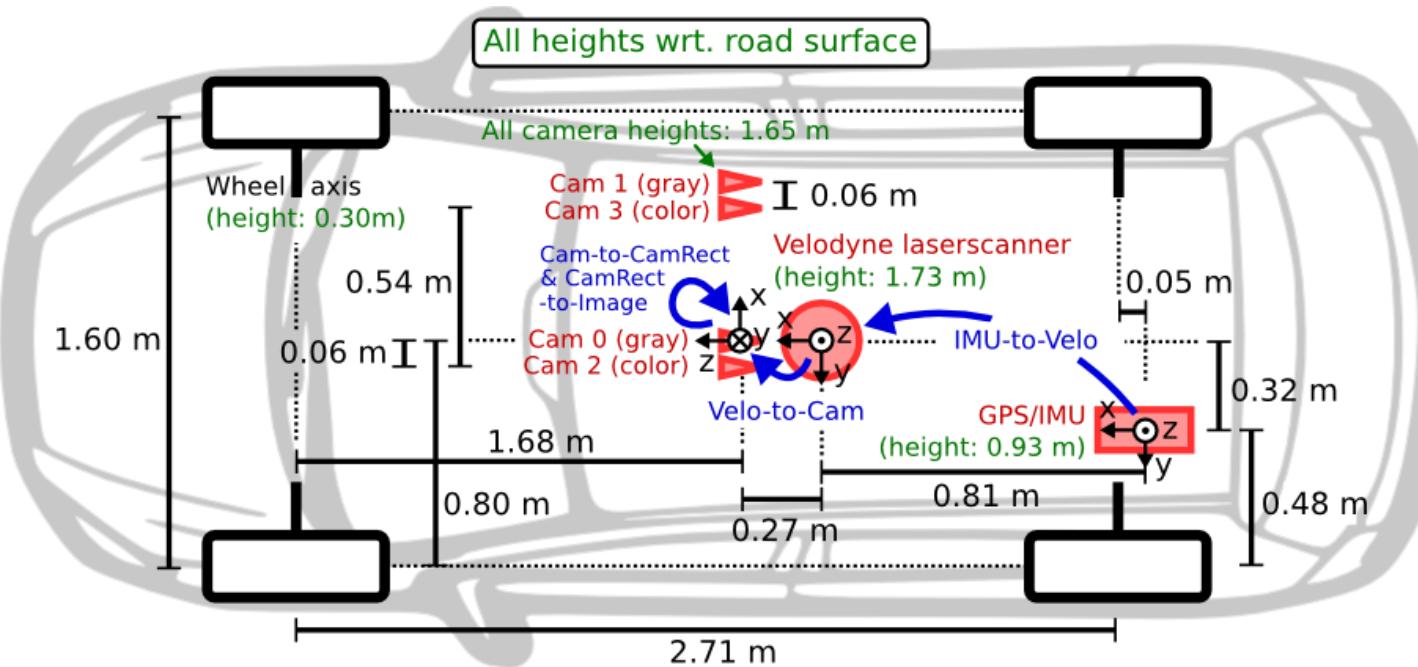
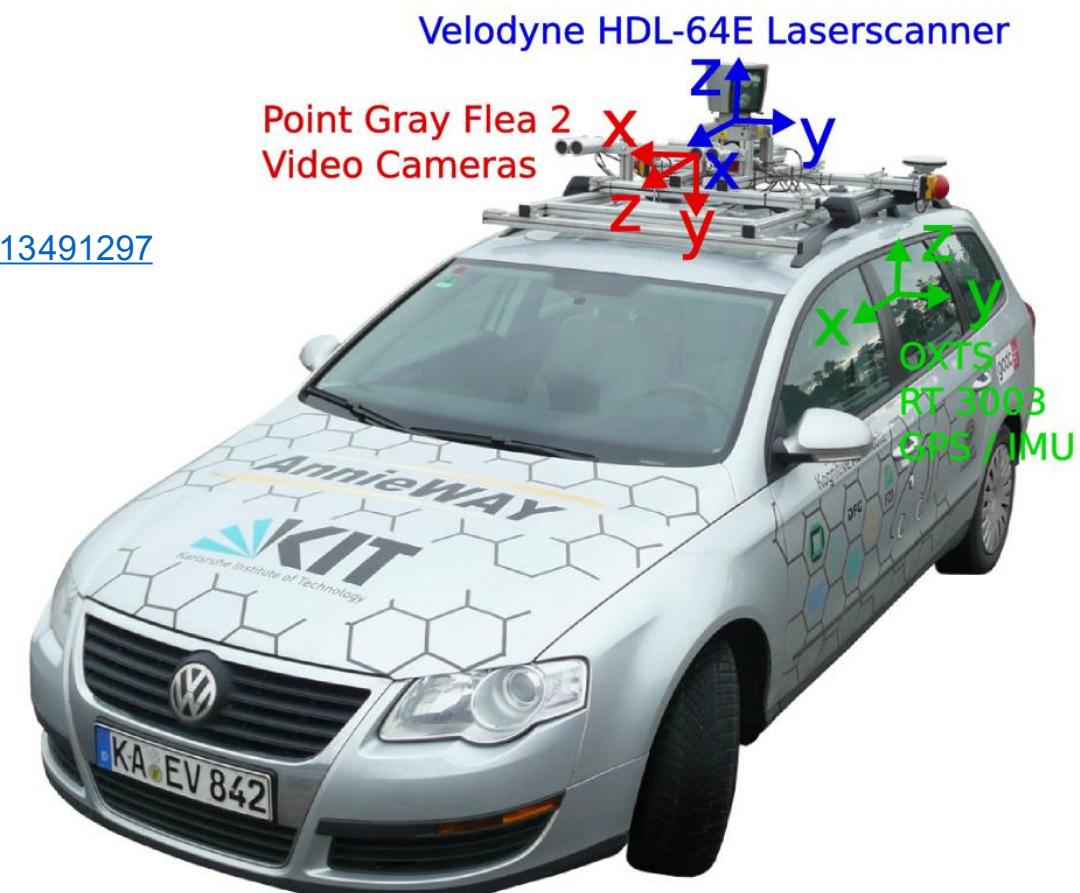
- ❖ Project of Karlsruhe Institute of Technology (KIT) & Toyota Technological Institute at Chicago (TTIC)
- ❖ Annotated automotive datasets recorded in and around Karlsruhe, Germany
- ❖ Well-established benchmarks for:
 - Stereo
 - Scene flow
 - Odometry
 - Image depth completion and prediction
 - Object detection: 2D and 3D
 - Multi-object tracking
 - Road/Lane Detection
 - Semantic segmentation
- ❖ Widely used by the computer vision community



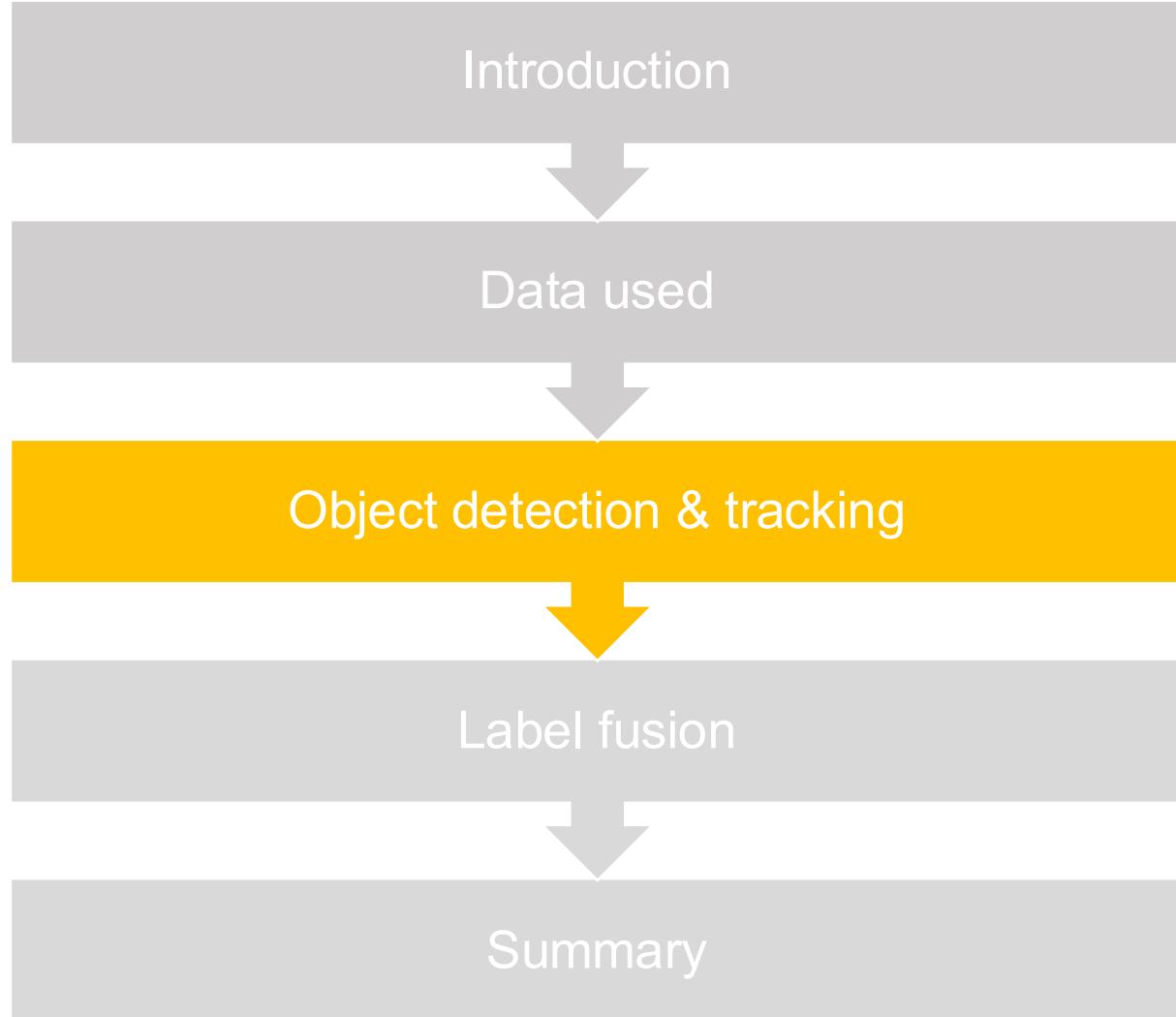
The KITTI dataset has data from:

- ❖ 2 grayscale cameras: [Point Grey Flea 2 \(FL2-14S3M-C\)](#), 1.4Mpix each
- ❖ 2 color cameras: [Point Grey Flea 2 \(FL2-14S3C-C\)](#), 1.4Mpix each
- ❖ 1 lidar: [Velodyne HDL-64E](#) (laser scanner)
- ❖ 1 GPS/IMU: [OXTS RT 3003](#) (used indirectly, for calibration)

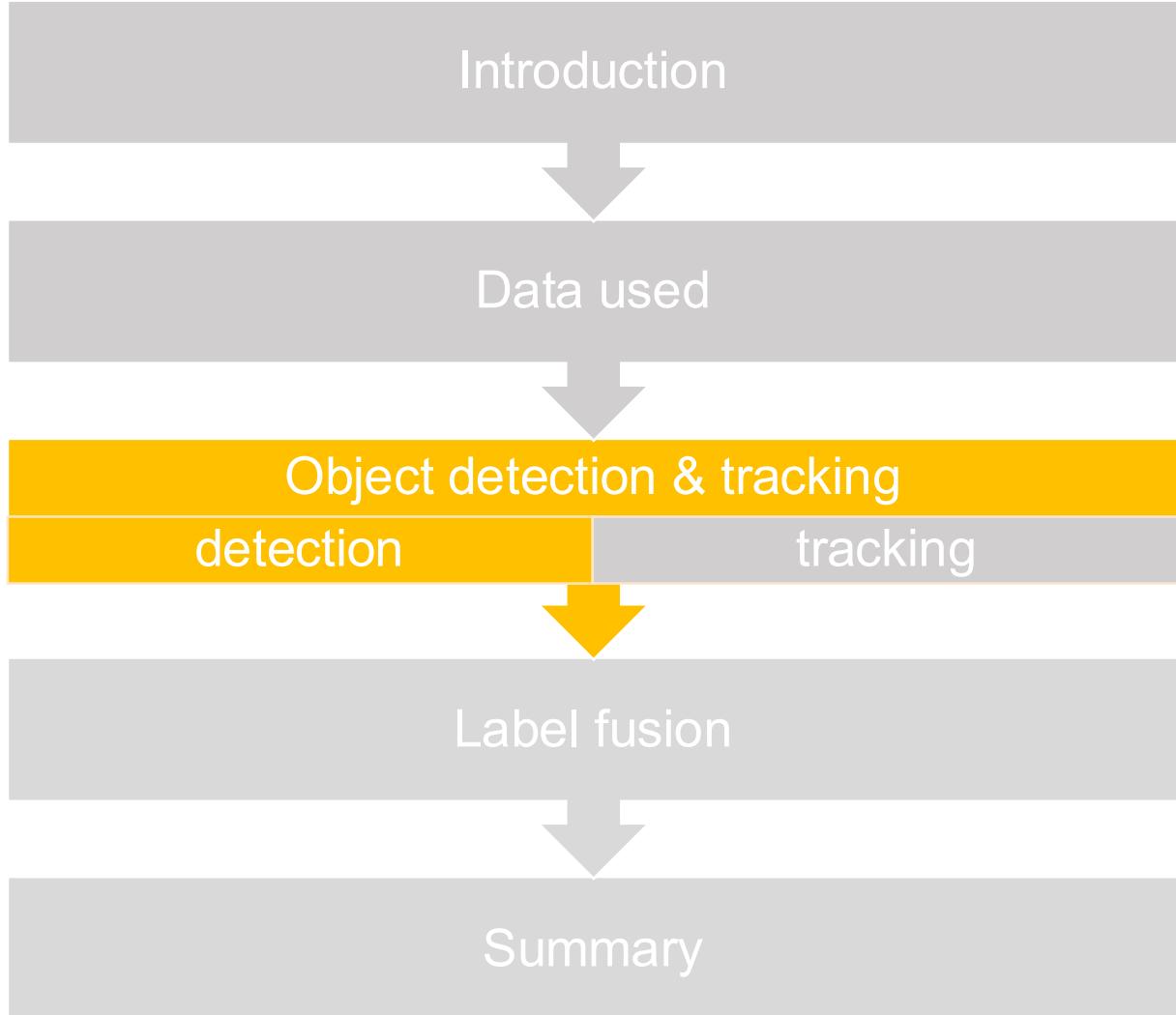
A. Geiger et al., *Vision meets robotics: The KITTI dataset*, <https://doi.org/10.1177/0278364913491297>



Outline



Outline

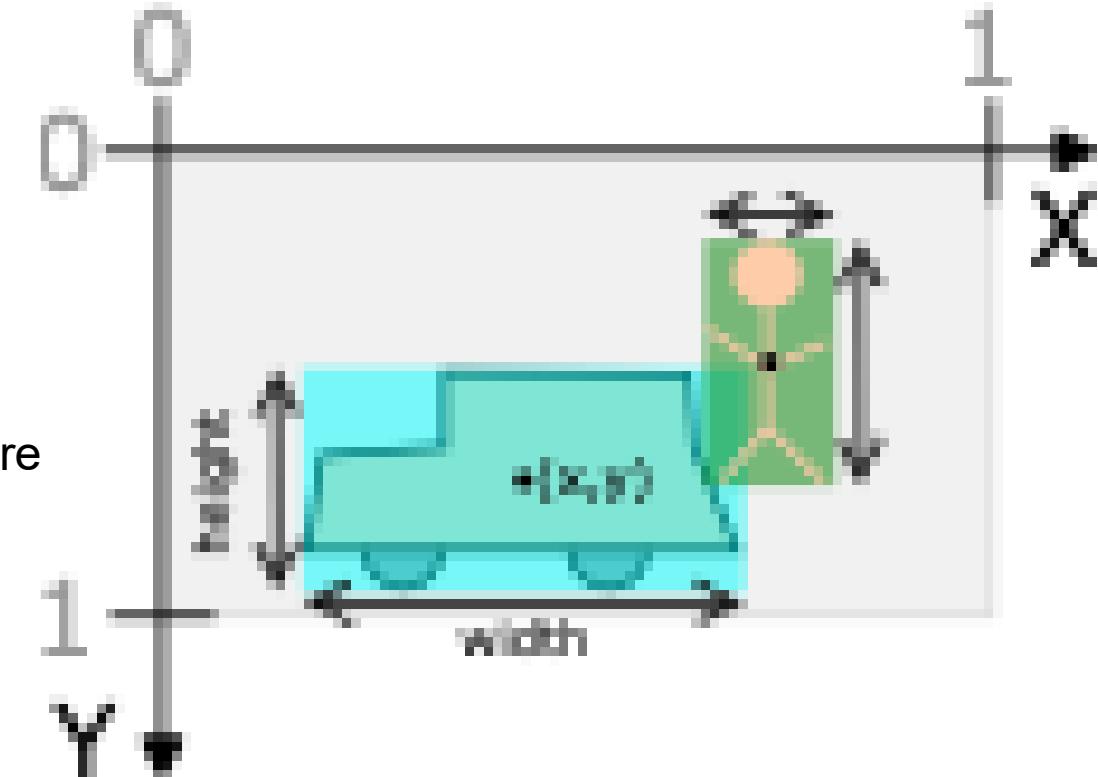


Our code:

github.com/AGH-CEAI/automotive-tracking/

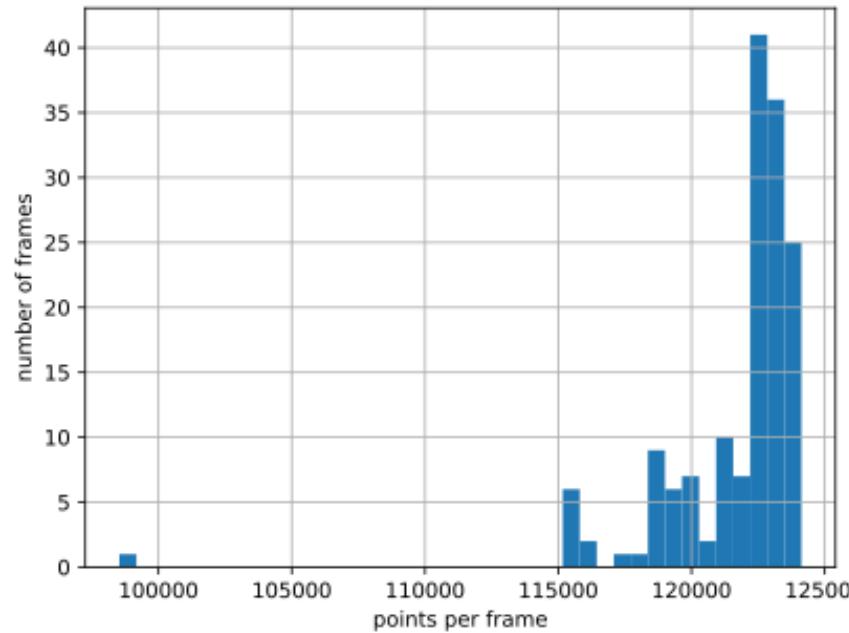
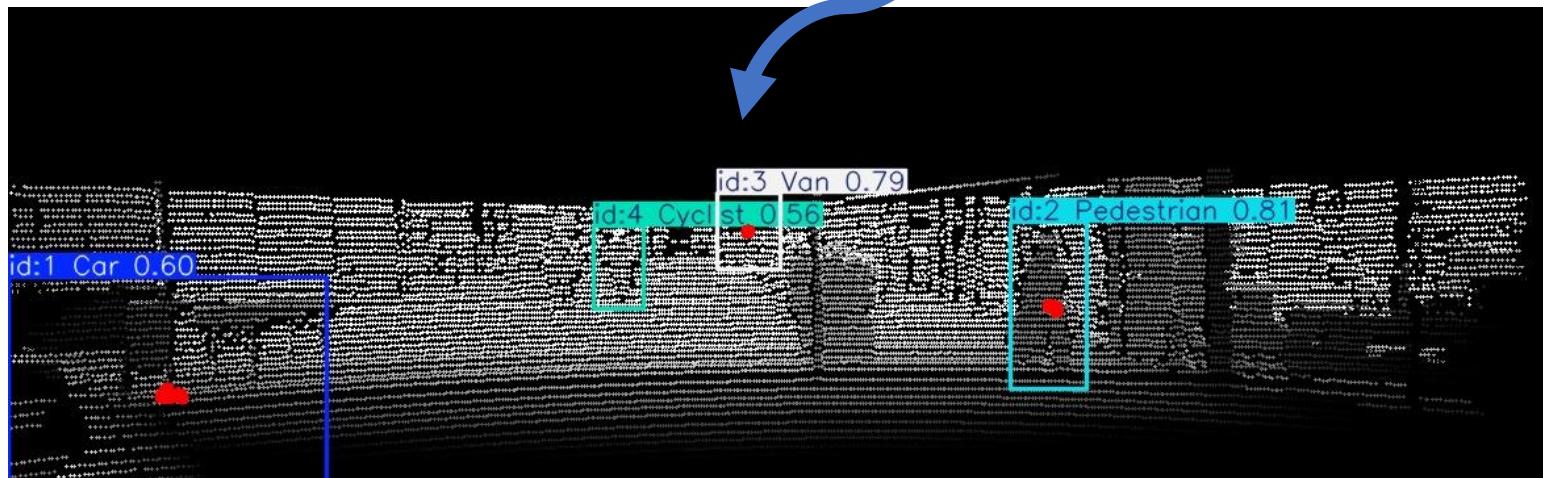
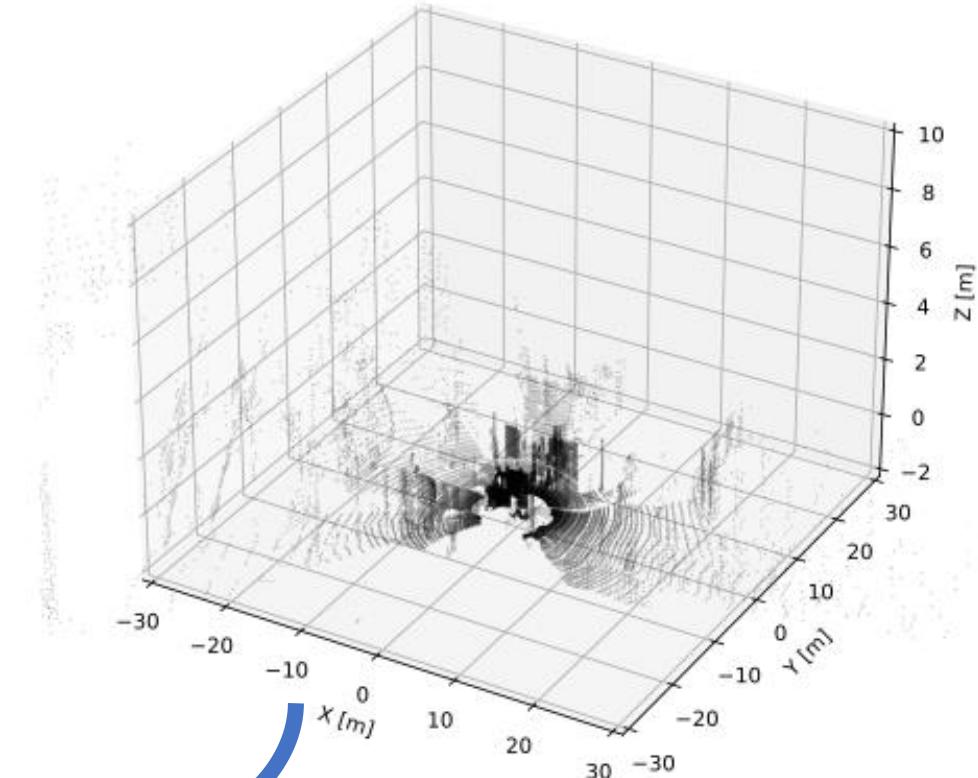
Object detection:

- ❖ In our context: 2D bounding boxes: (x, y, height, width)
- ❖ Each box gets: id, detected class, classification confidence score
- ❖ Done individually for each video frame
- ❖ Separately for camera and lidar
- ❖ Can be done out-of-the-box with pre-trained models
- ❖ Better results after training on KITTI itself
- ❖ Used model: You Only Look Once (YOLO) v8

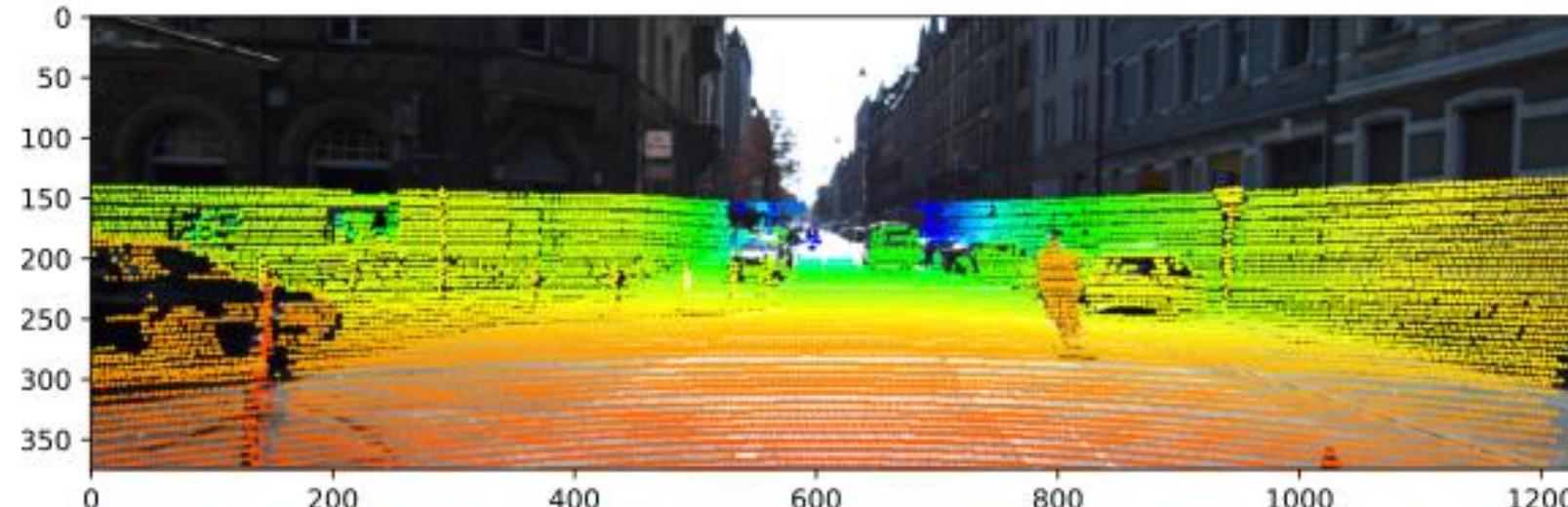


Data preprocessing:

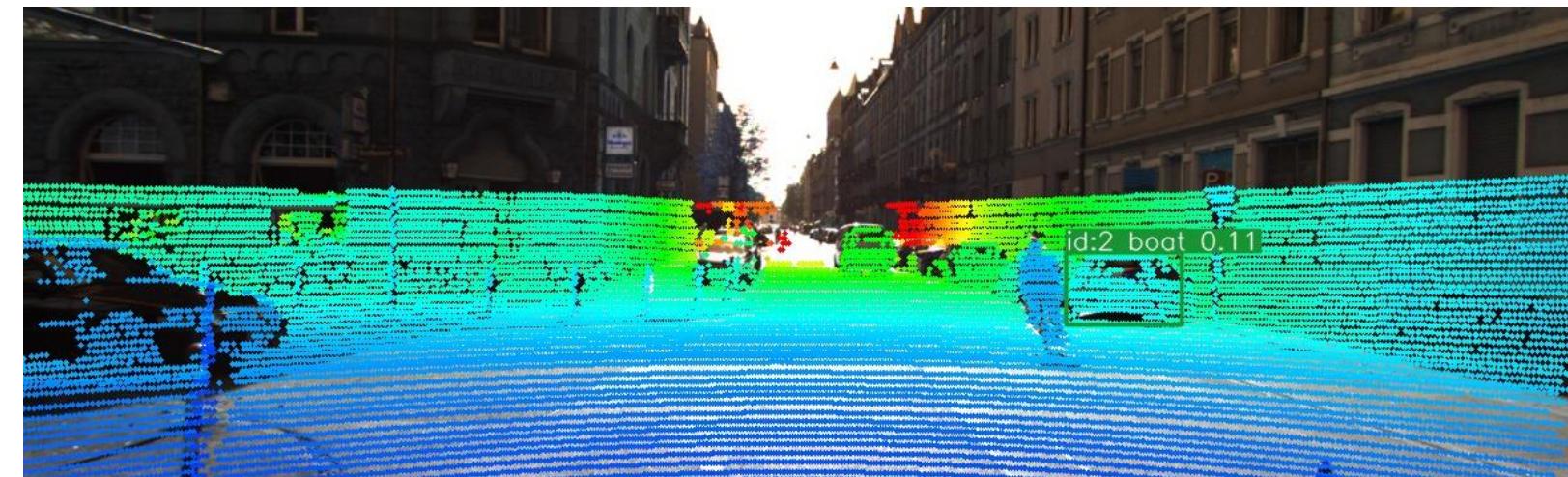
- ❖ Data: tracking dataset from KITTI
- ❖ Train & test split:
 - ❖ 17:4
 - ❖ by scenes, not by frames
(otherwise tracking would be meaningless)
- ❖ KITTI labels → **ultralytics** format (we use their YOLO model)
- ❖ Lidar data: pointcloud → 2D projection (data shape & FoV coverage)



Why not just merge camera and lidar data into a single image like that?



Well, you can but the performance is terrible:

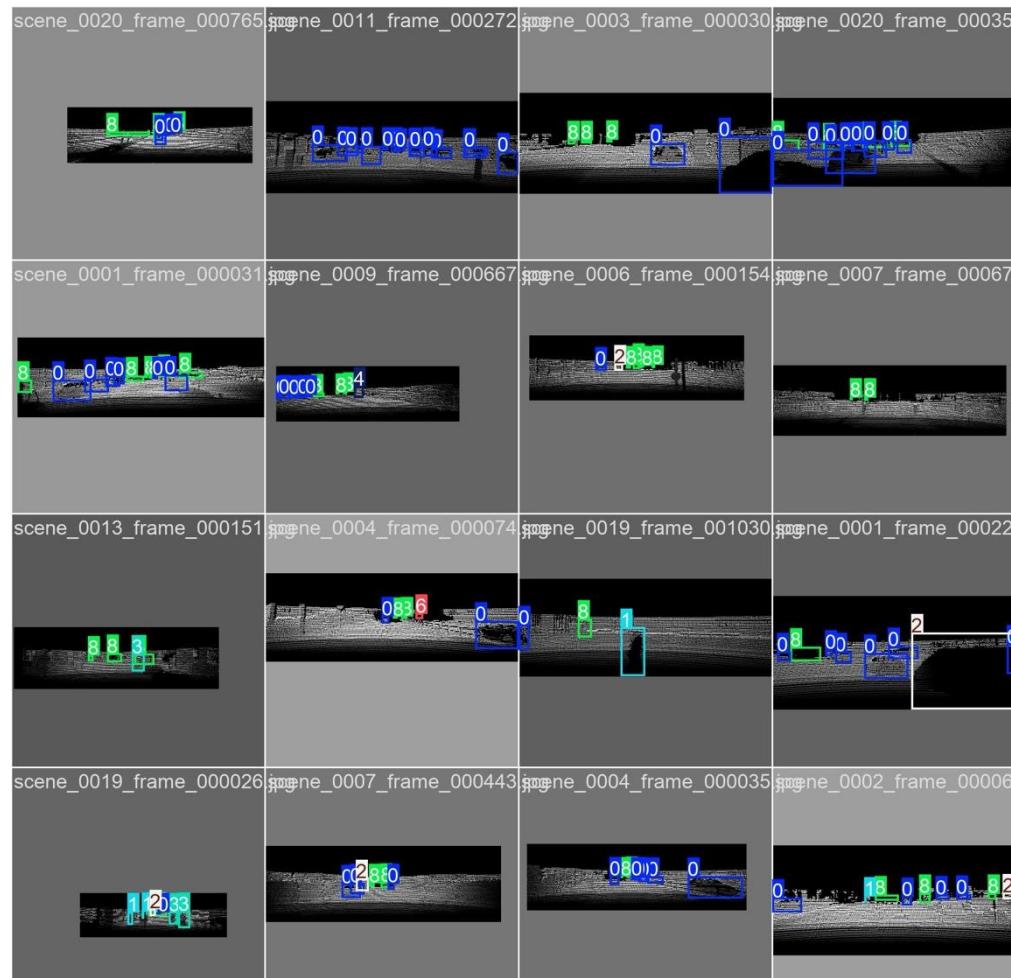
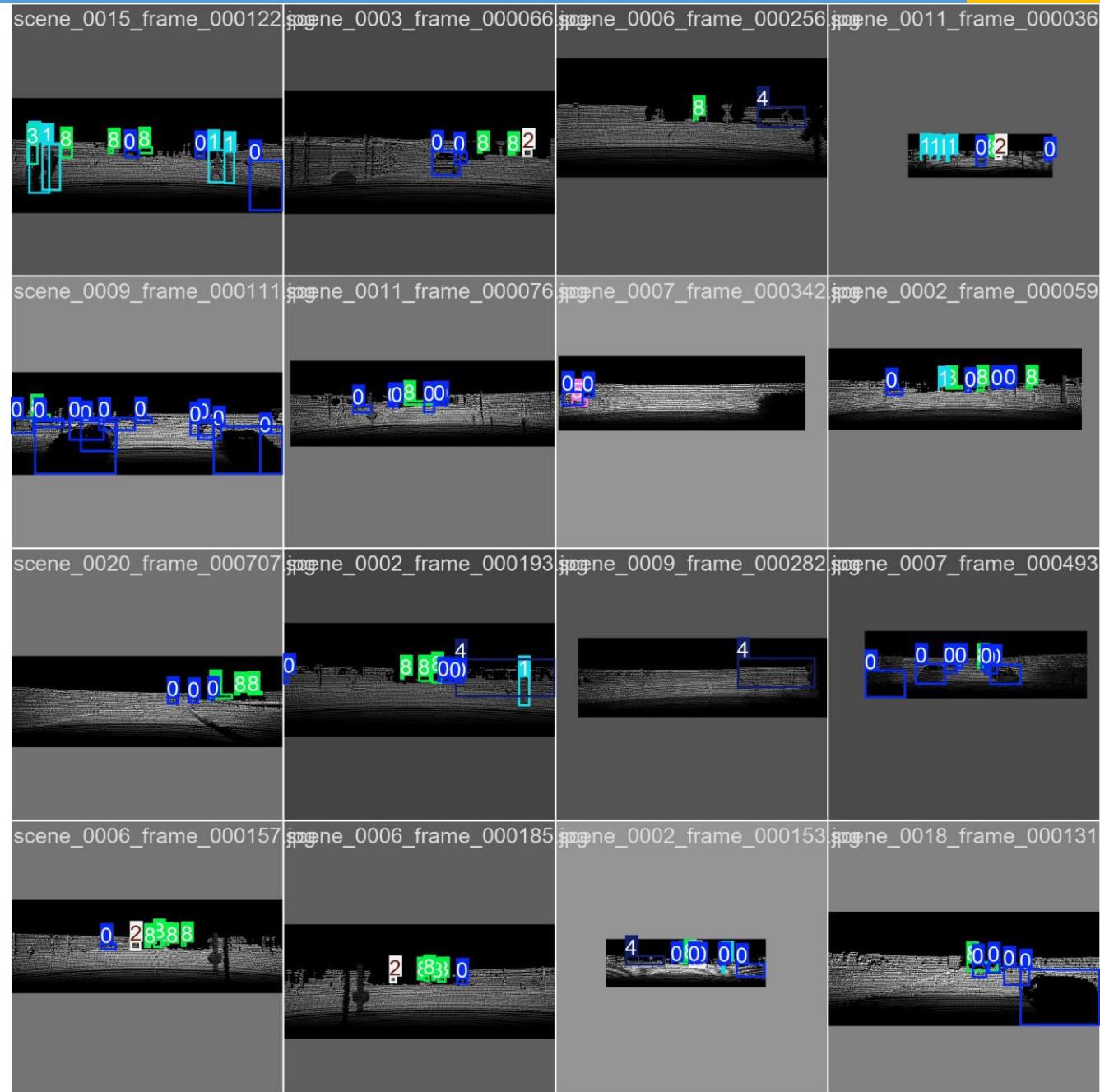


What the acutal training batches look like:

- ❖ Labels are encoded to ints
- ❖ Frames are shrinked, enlarged and moved for a more robust detection

What the acutal training batches look like:

- ❖ Labels are encoded to ints
- ❖ Frames are shrunked, enlarged and moved for a more robust detection



Object detection: YOLO validation (camera images)

16

1st validation batch

Predicted labels:

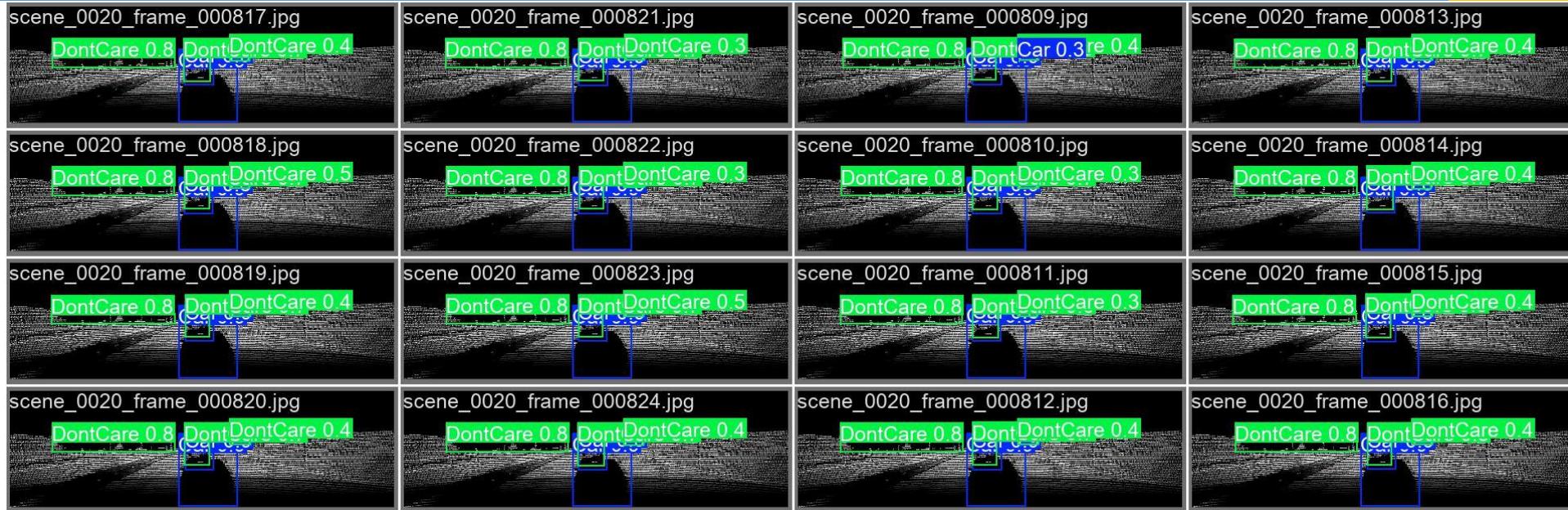
Annotated labels:
(~true)

Object detection: YOLO validation (lidar images)

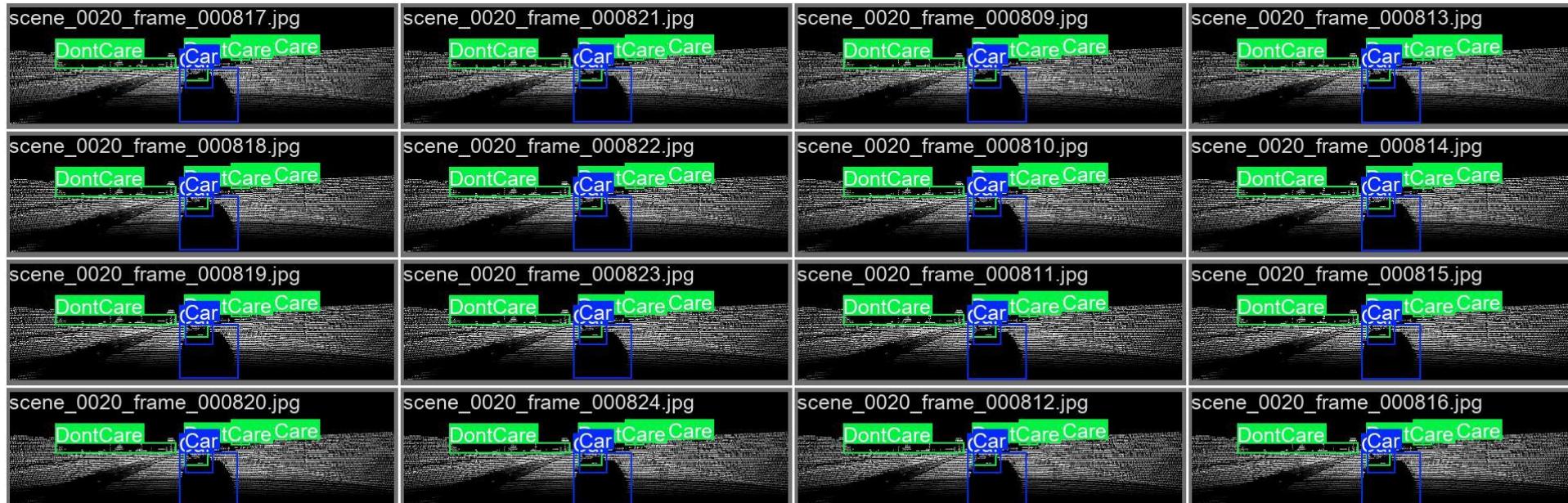
17

1st validation batch

Predicted labels:



Annotated labels:
(~true)



Camera:

- ❖ Slightly better confidence for pedestrian, could be just by chance

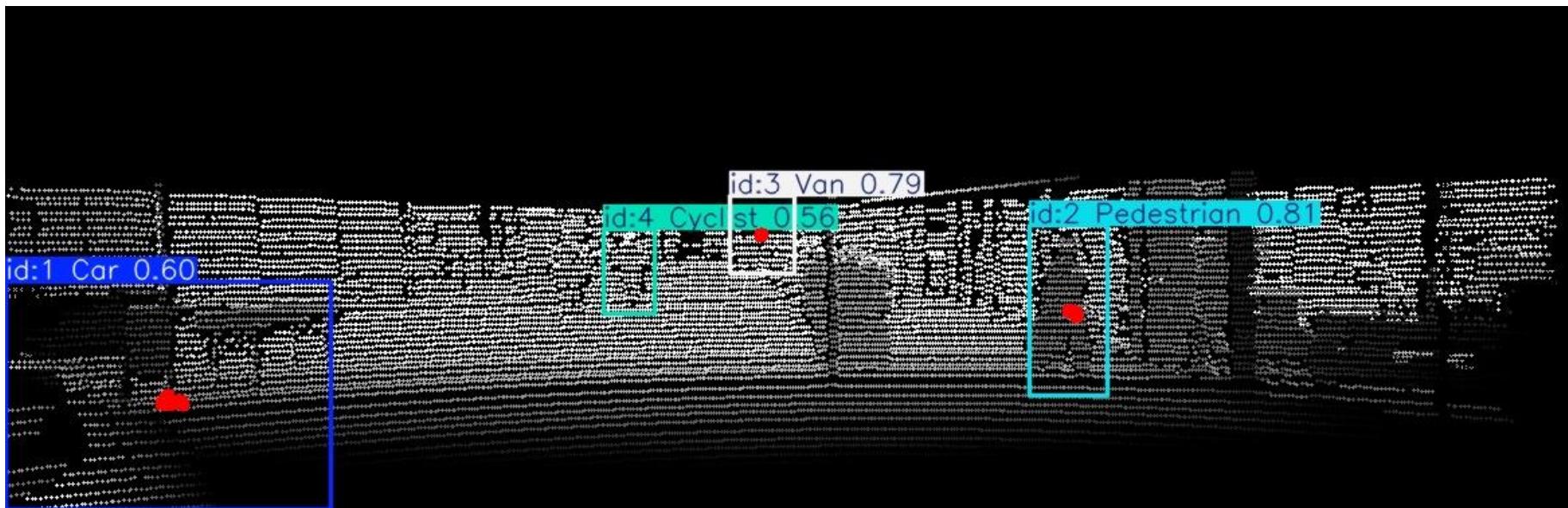
Combined even better?

Lidar:

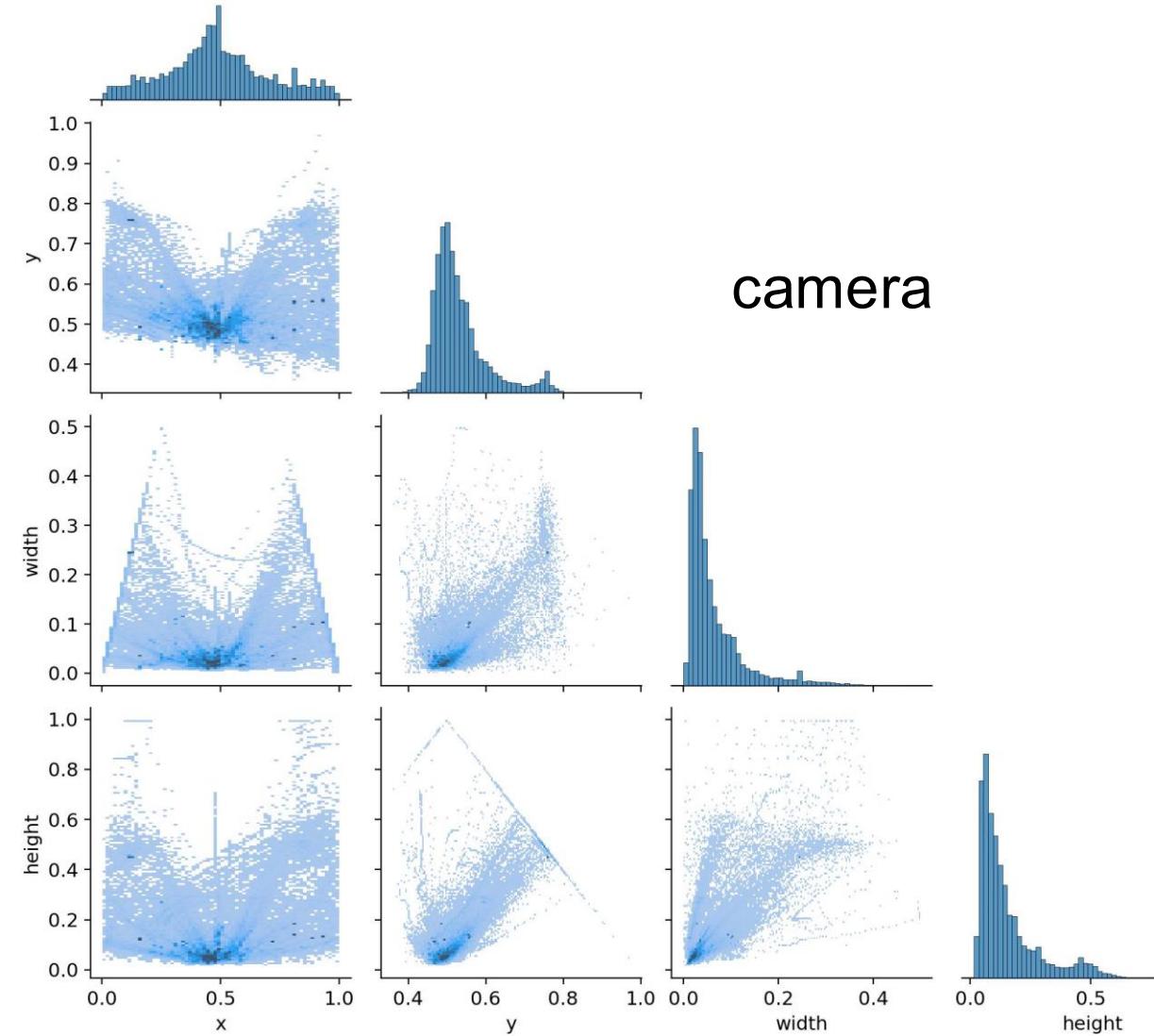
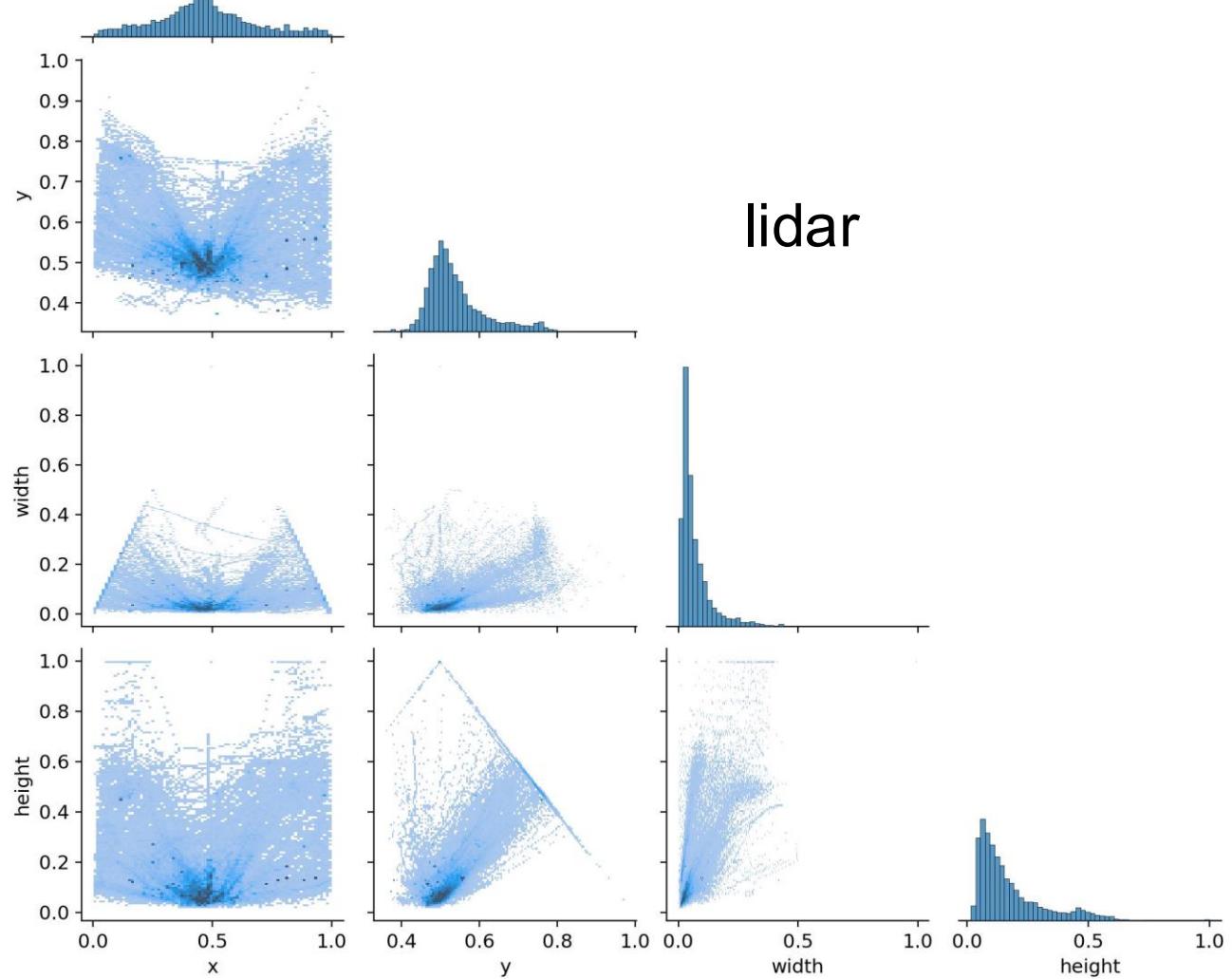
- ❖ Seems overall better
- ❖ not fooled by reflection



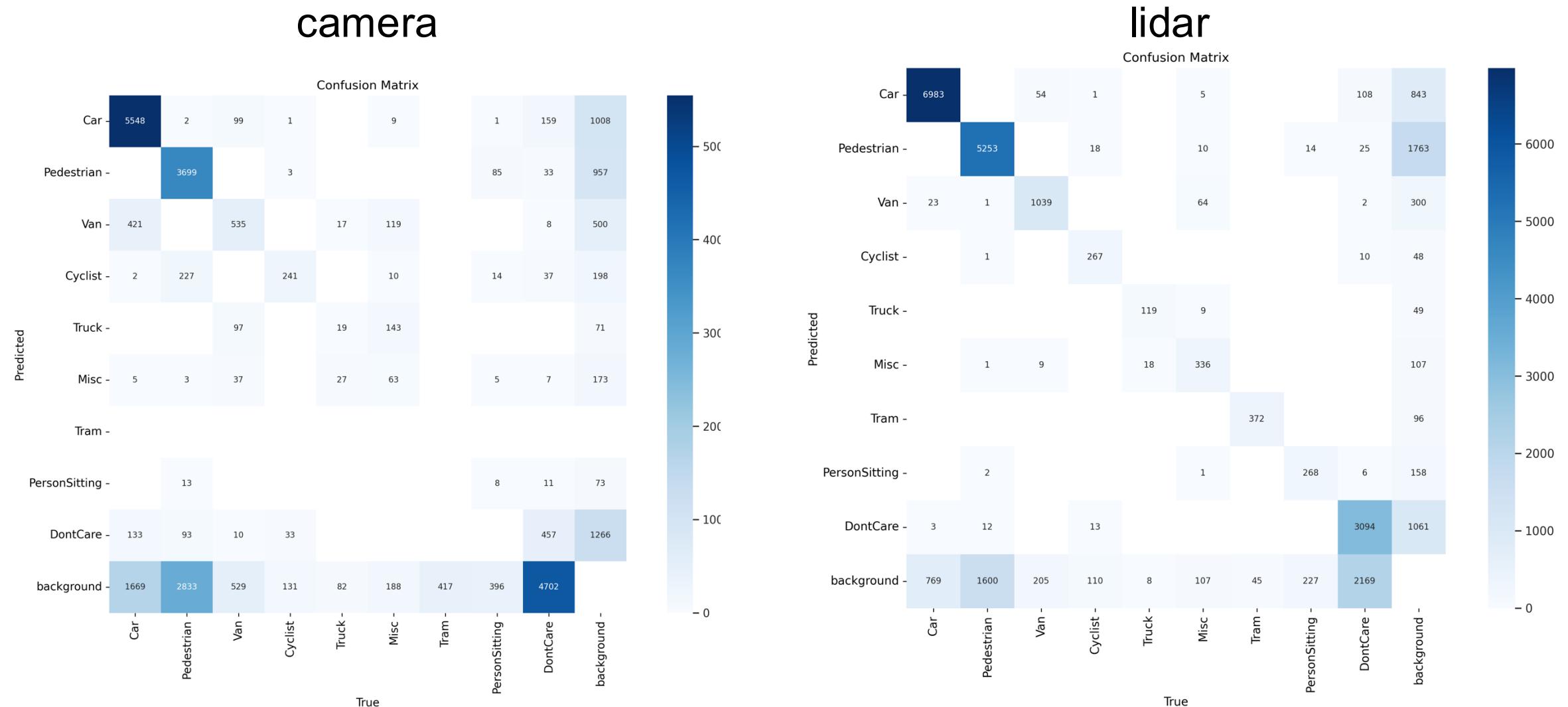
Those are with tracking switched on (in red), but let's pretend it's not there ;)



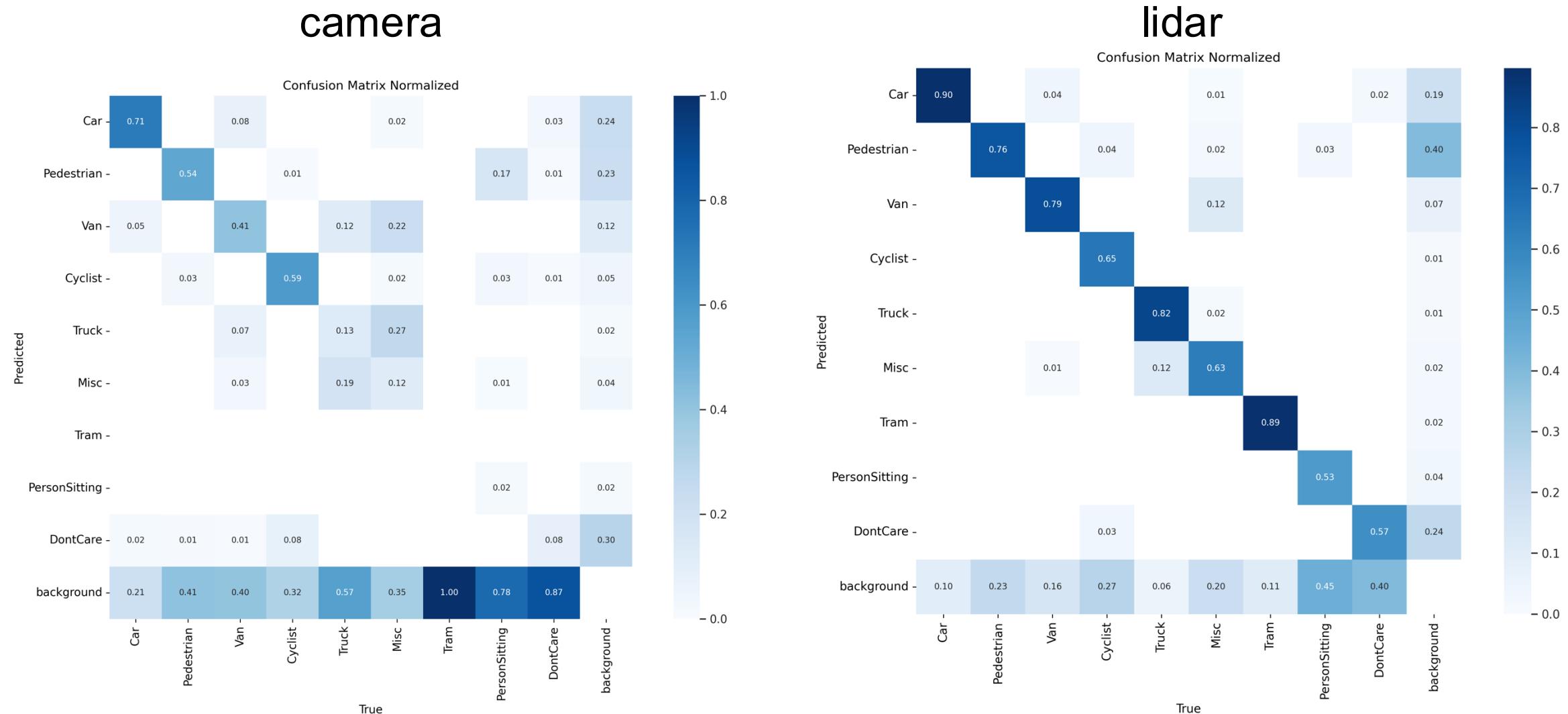
Rather consistent distributions



Confusion matrices:

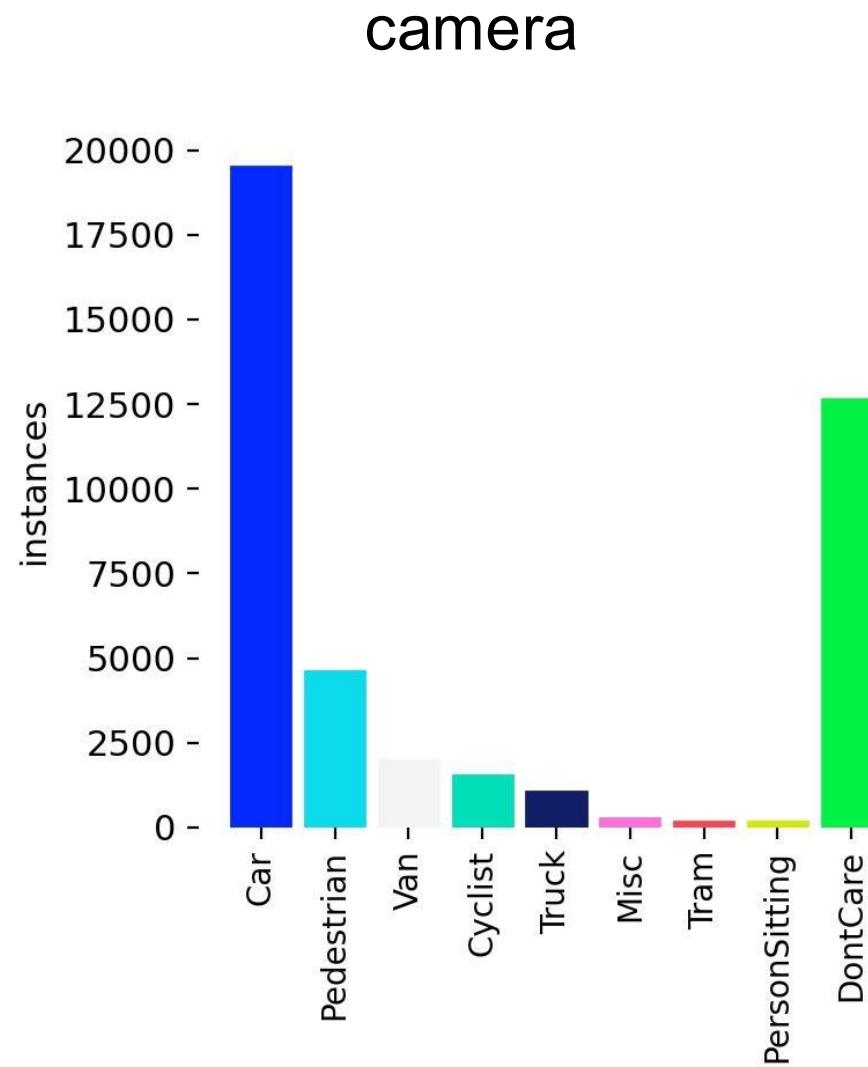
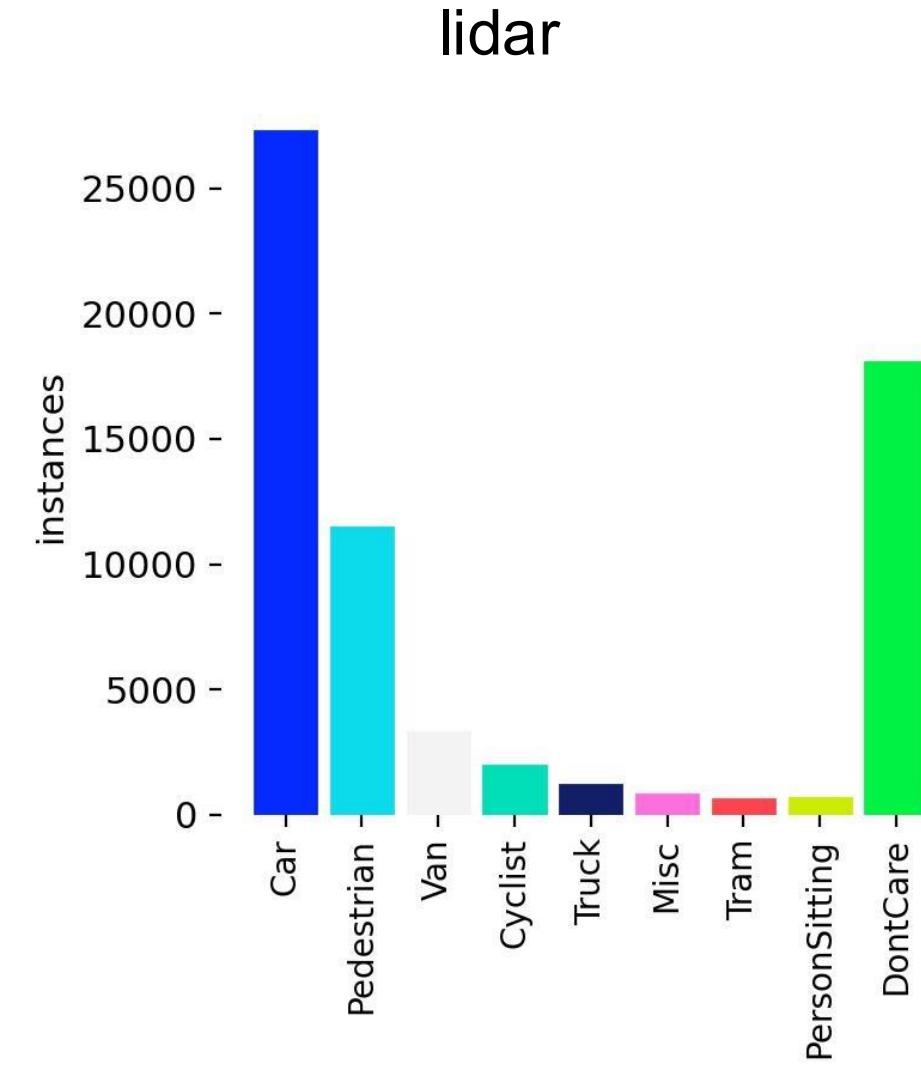


Normalized confusion matrices:



Normalized confusion matrices:

- ❖ Clearly not a balanced dataset
- ❖ Did not attempt to mitigate it (yet)



Precision-confidence curves:

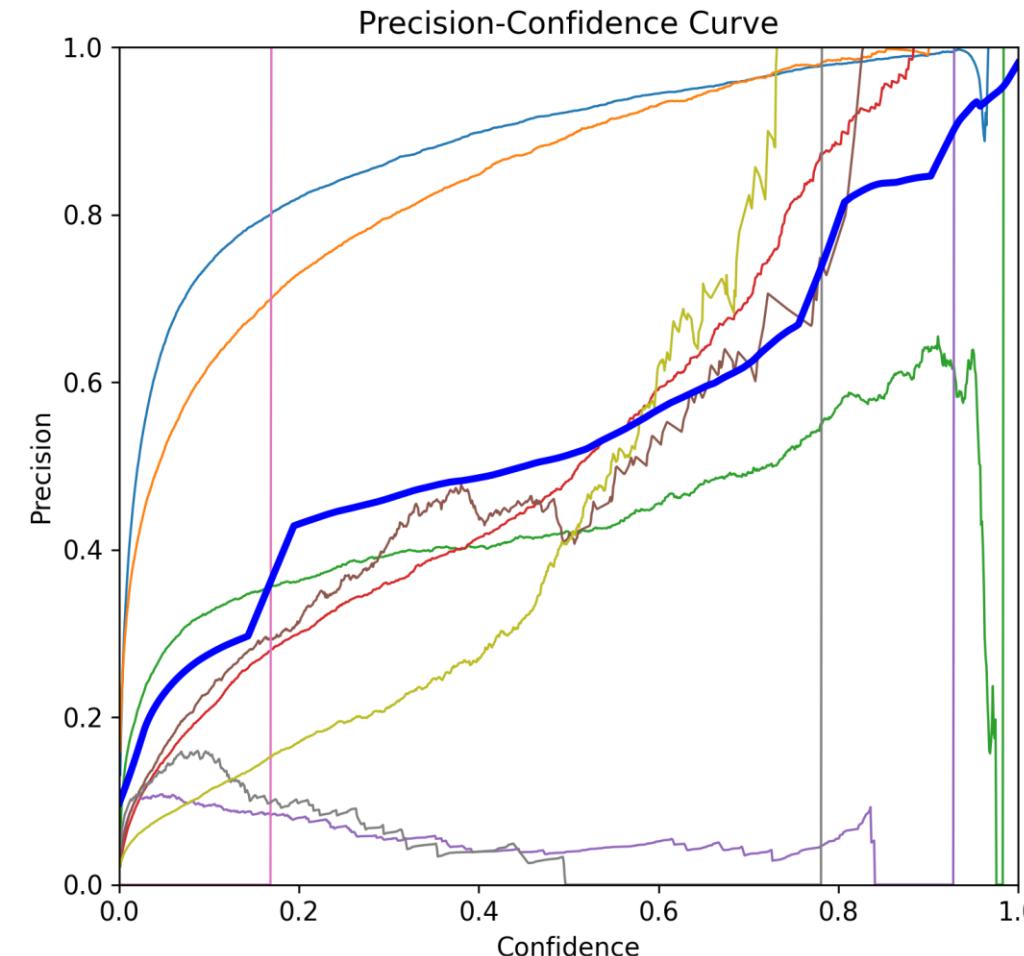
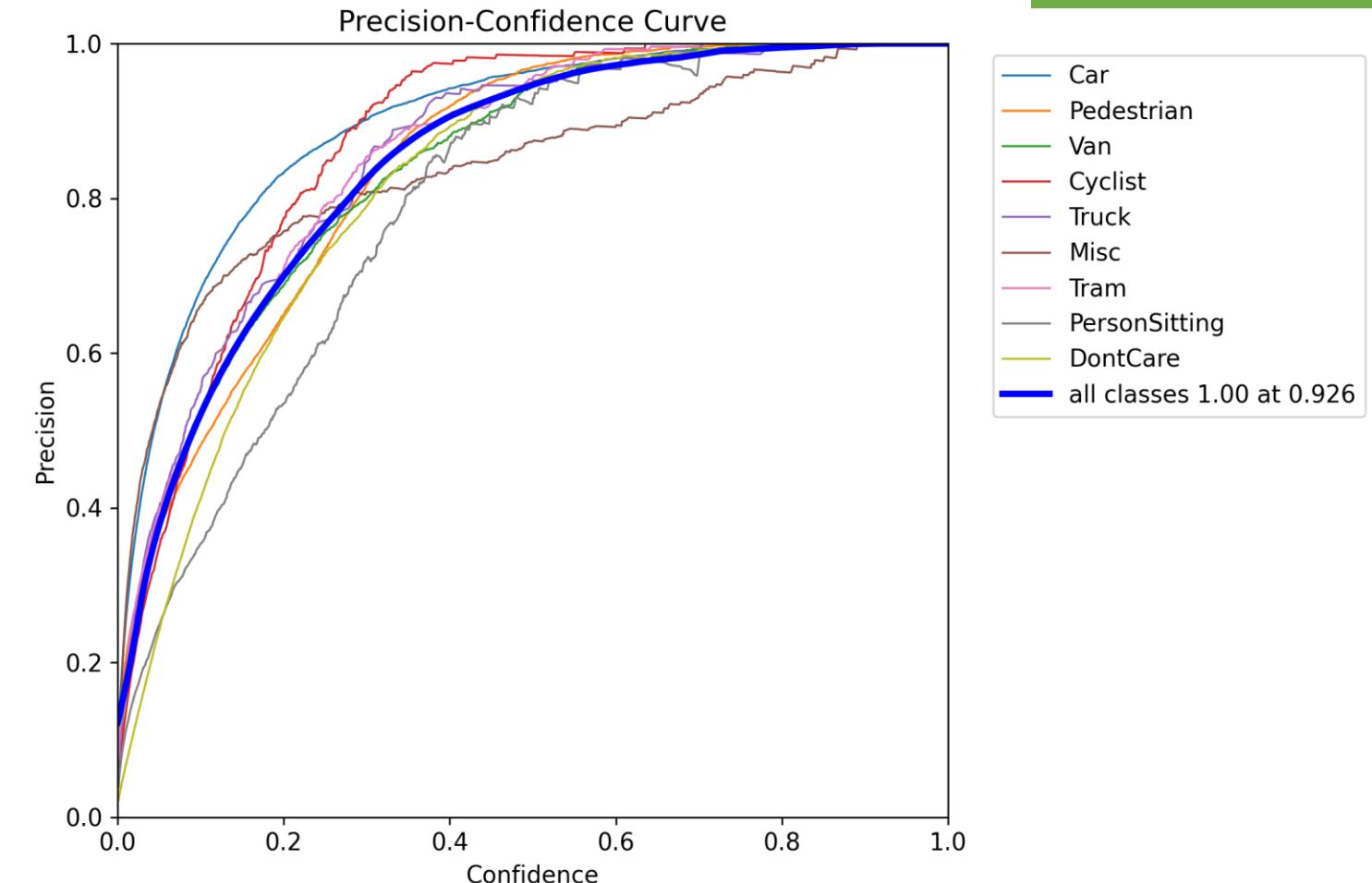
- ❖ For camera total ~ok, but class-wise mostly terrible
- ❖ For lidar we're underconfident: room for better calibration

C = likelihood that a prediction is correct

$$P = \frac{TP}{TP + FP}$$

camera (ideally diagonal)

lidar

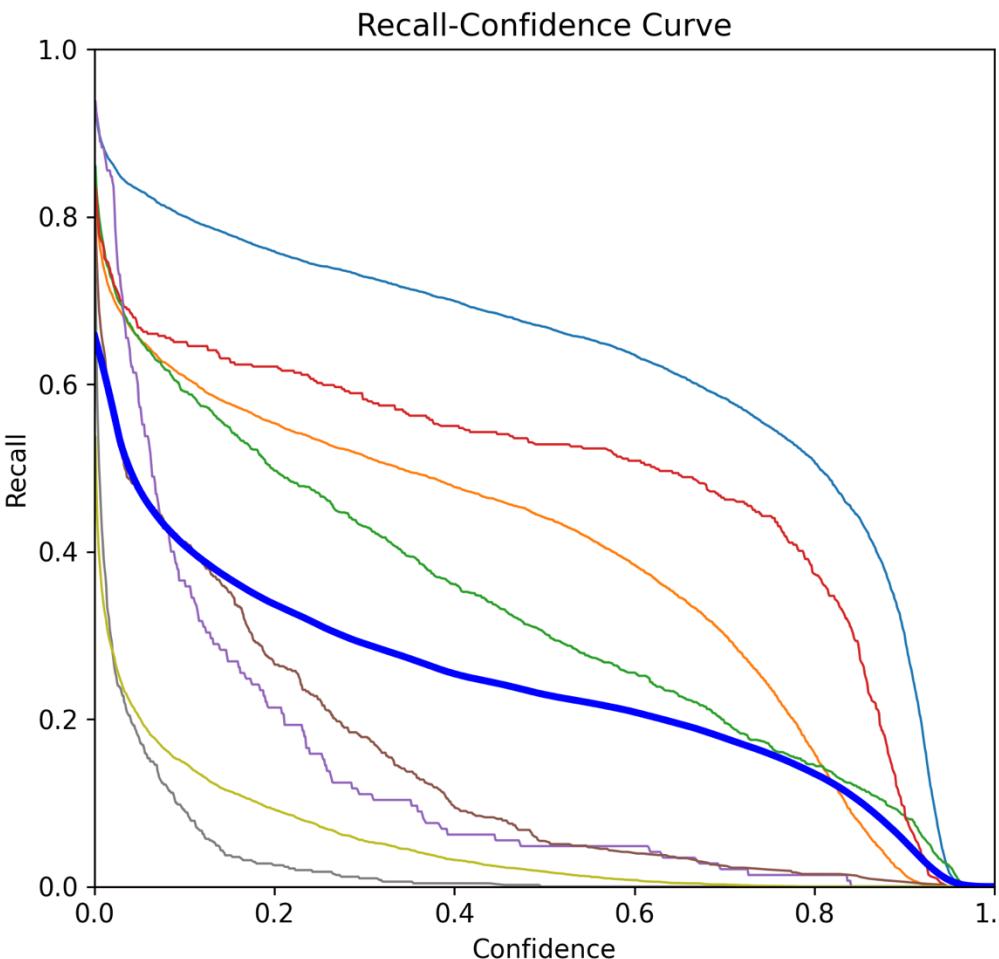


- Car
- Pedestrian
- Van
- Cyclist
- Truck
- Misc
- Tram
- PersonSitting
- DontCare
- all classes 1.00 at 0.926

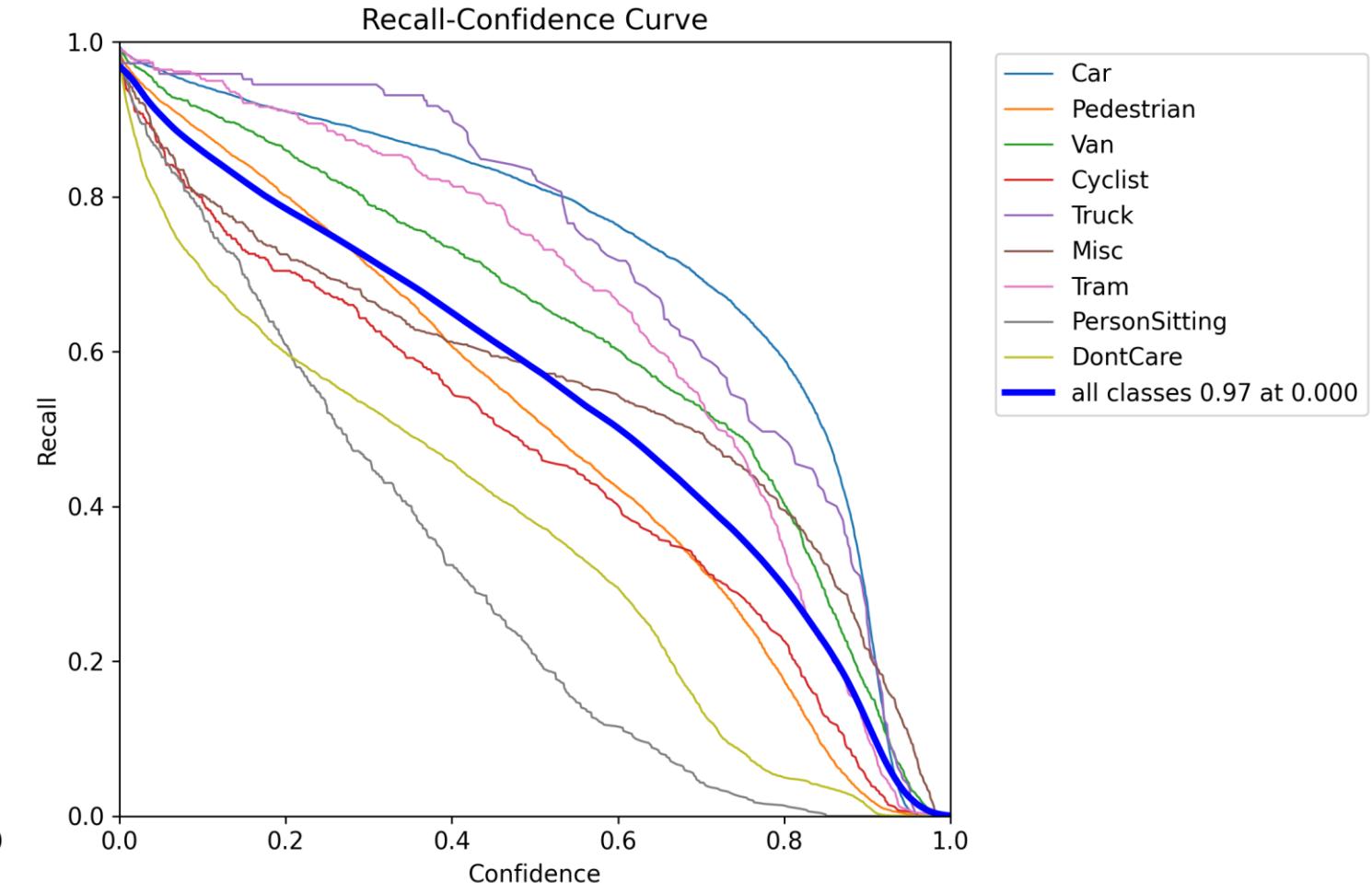
Recall-confidence curves:

- ❖ Ideally: AUC=1
- ❖ Both with room for improvement, lidar clearly better

camera



lidar

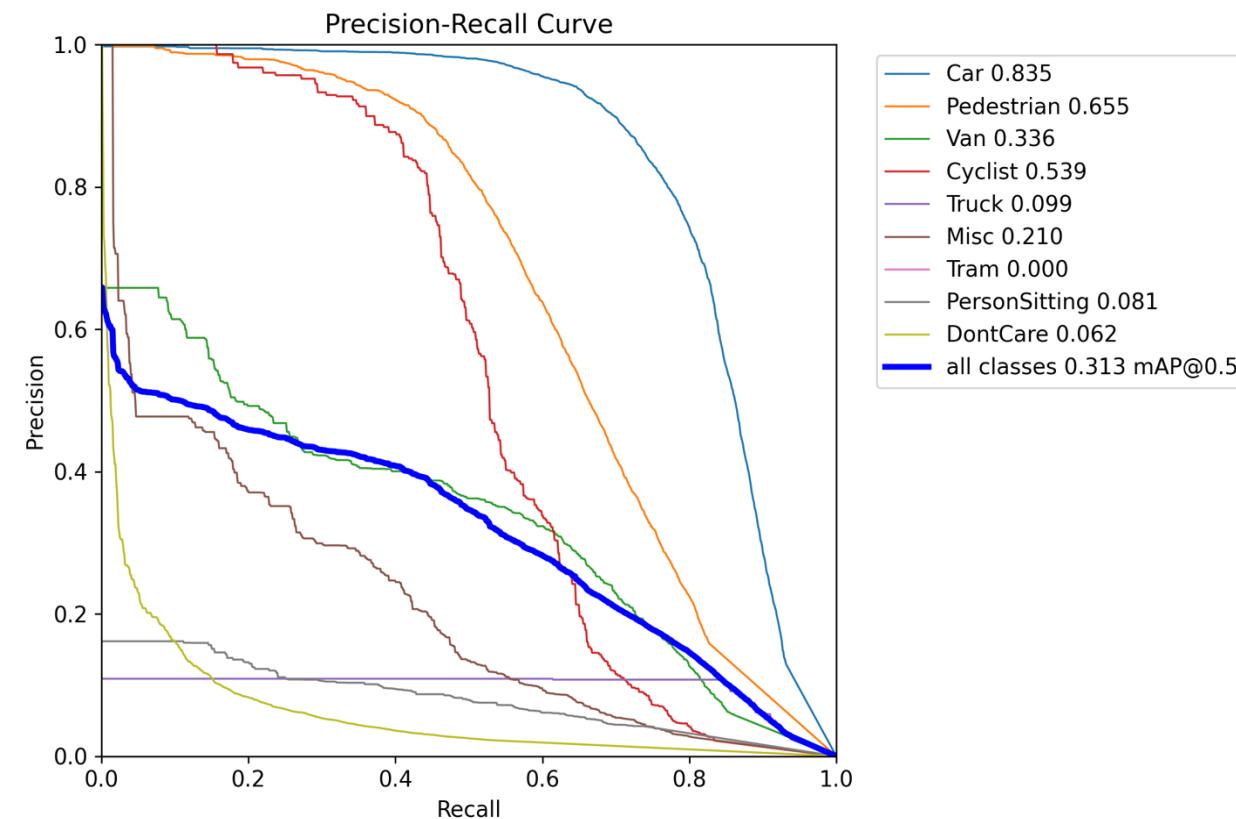


$$R = \frac{TP}{TP + FN} = \frac{TP}{P}$$

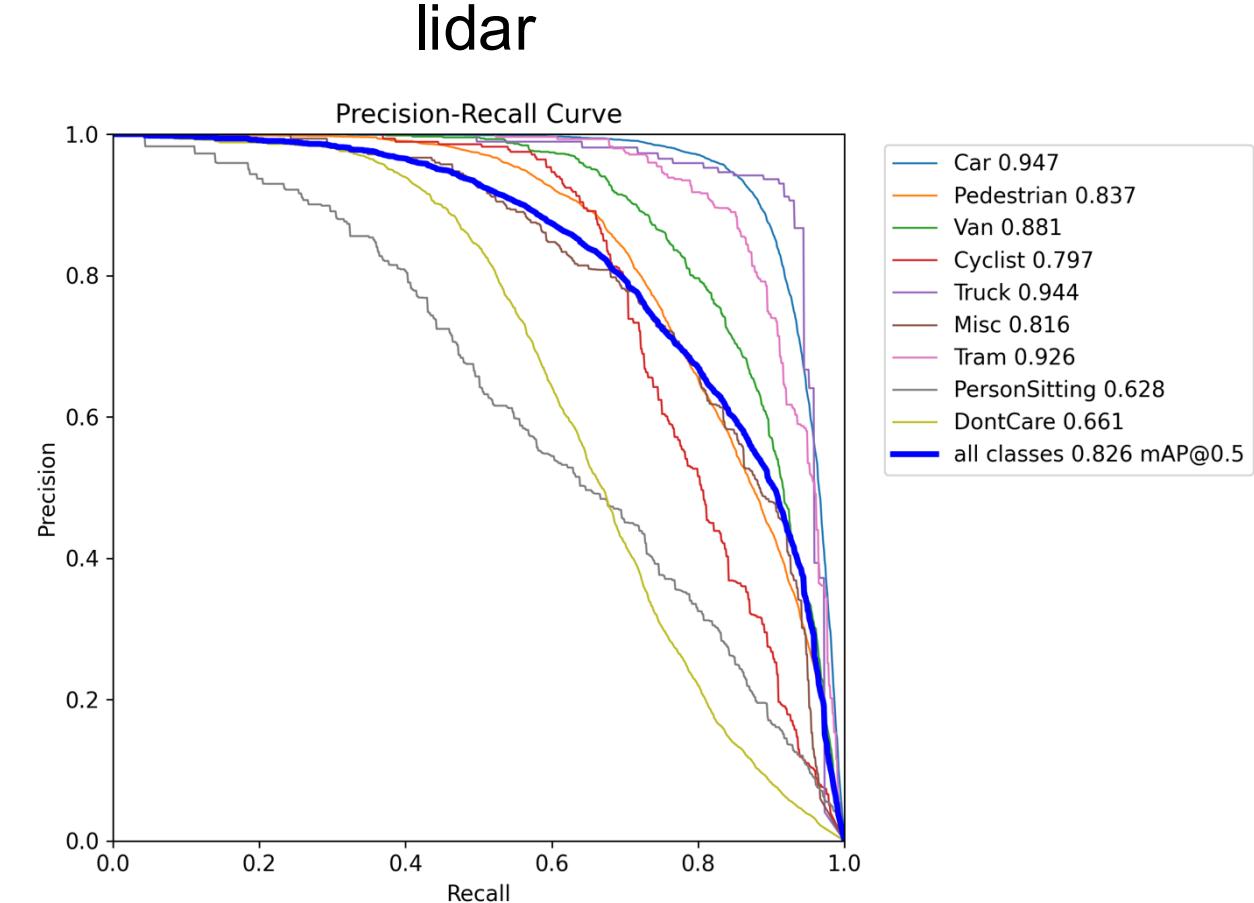
Precision-recall curves:

- ❖ Lidar close to ideal, camera poor performance
- ❖ Interesting case: Truck
(rare but very well detected by lidar, better than cars → big size effect?)

camera



lidar

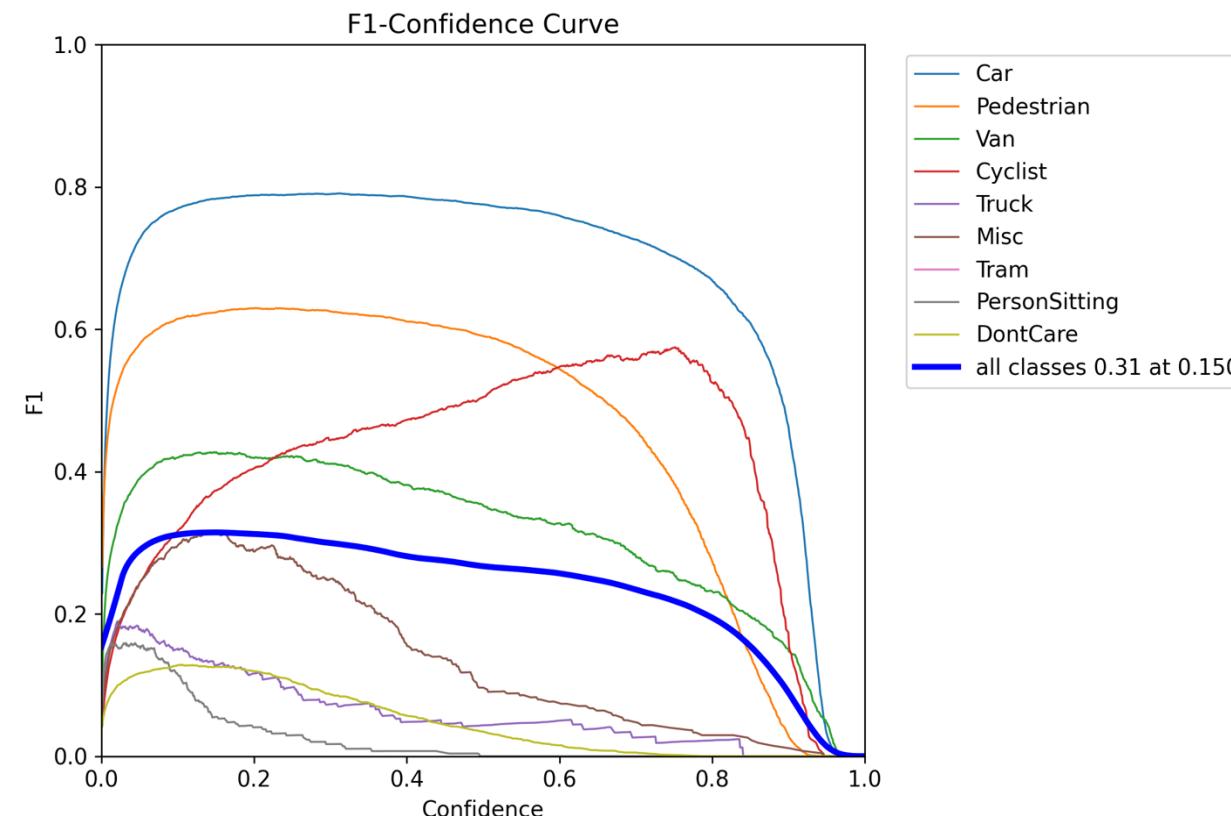


F1-confidence curves:

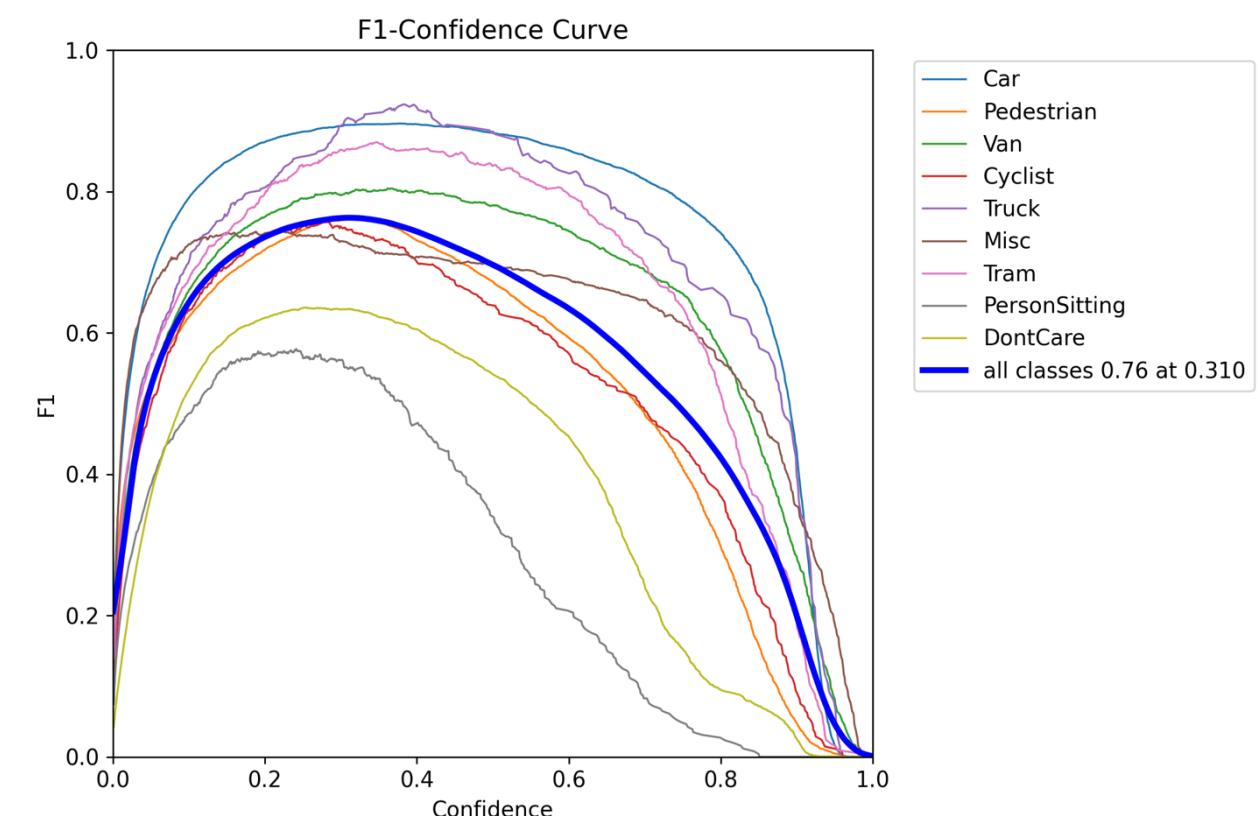
- ❖ curious case: cyclist opposite trend to all other classes for camera
- ❖ lidar again superior to camera

$$F_1 = 2 \cdot \frac{P \cdot R}{P + R}$$

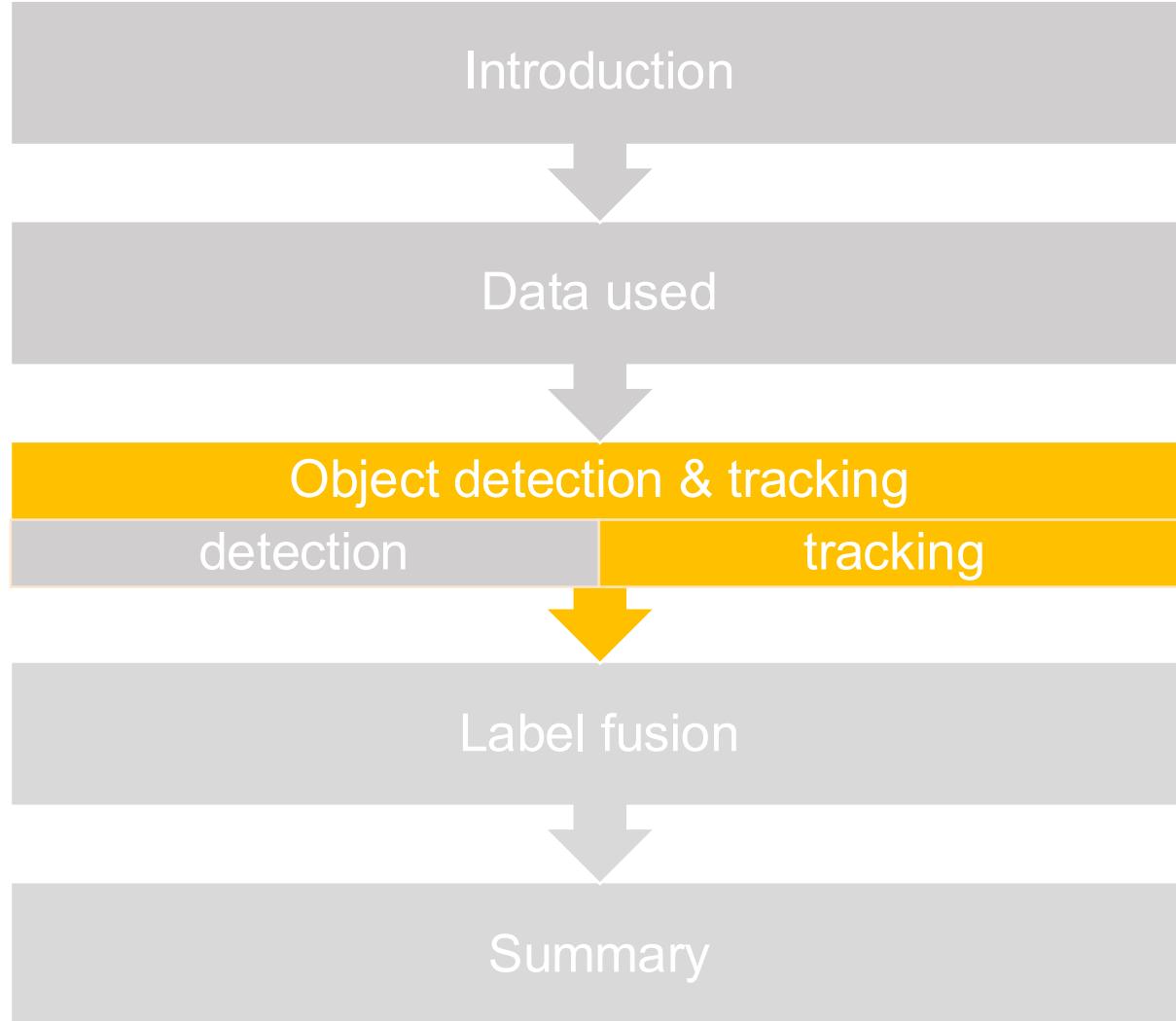
camera



lidar

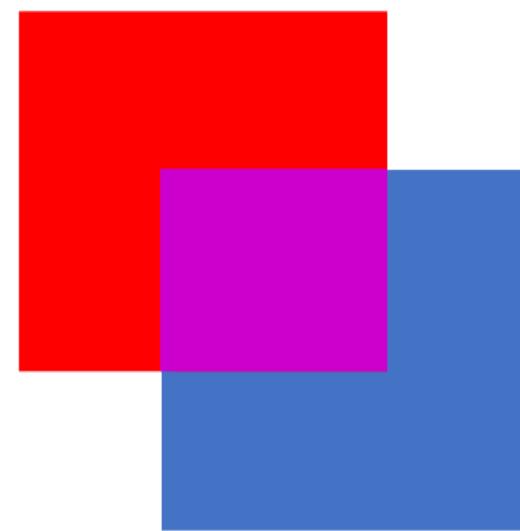


Outline



First some definitions:

- ❖ Localization Intersection over Union (IoU)
(How closely the boxes overlap)
 - used for thresholding (match/mismatch)



Legend:

- Red box: Ground Truth Detection
- Blue box: Predicted Detection

$$\text{Loc-IoU} = \frac{\text{Intersection}}{\text{Union}}$$

Where:

- Intersection: The magenta area where the two boxes overlap.
- Union: The total area covered by both boxes, represented by the red, magenta, and blue areas combined.

- ❖ Detection Accuracy (DetA):
(How well tracker localises objects
in each frame)

$$\text{DetA} = \frac{\text{TP}}{\text{TP} + \text{FP} + \text{FN}}$$

1 – ideal
0 – bad

(some) standard metrics for tracking:

- ❖ **Multiple Object Tracking Accuracy (MOTA):**
(basically error counting over ground truth)
 - each switch penalized only once for IDSW
 - FN & FP might dominate in crowded scenes
 - insensitive to detection accuracy changes
(IoU threshold is fixed)

$$\text{MOTA} = 1 - \frac{\sum(\text{FN}_t + \text{FP}_t + \text{IDSW}_t)}{\sum \text{GT}_t}$$

1 – ideal
0 or negative – bad

GT_t – total ground truth objects in frame t
IDSW – identity switches ()

- ❖ **IDF1**
(focused on persistent correct identification)

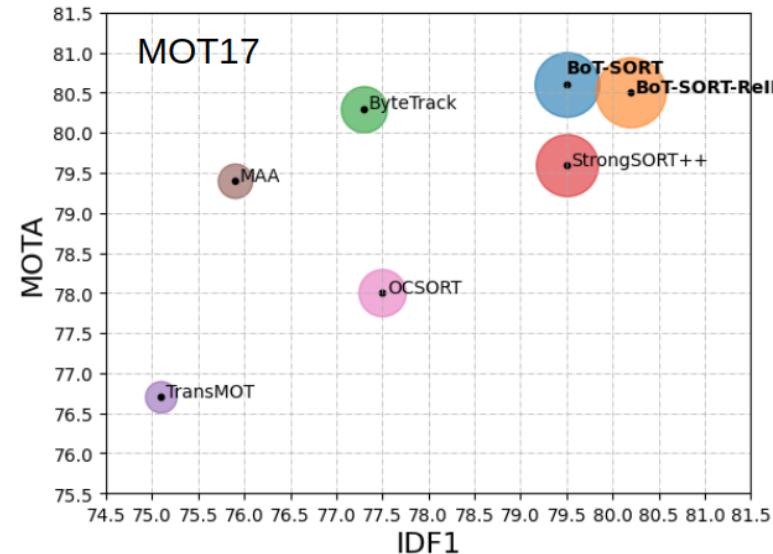
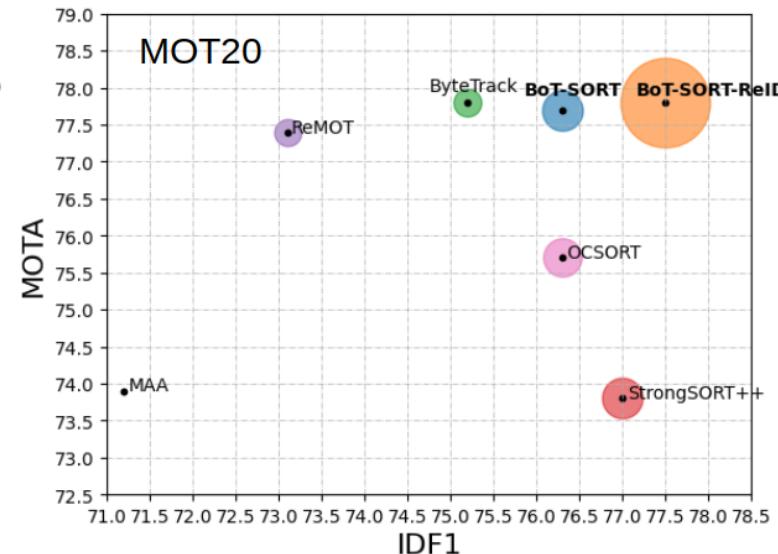
- More sensitive to tracking consistency
- Balances precision and recall
- Less affected by the total number of objects than MOTA
- can decrease when improving detection
- insensitive to detection accuracy changes

$$\text{IDF1} = \frac{2 \cdot \text{IDTP}}{2 \cdot \text{IDTP} + \text{IDFP} + \text{IDFN}}$$

IDTP – correct trajectories
IDFP – fake trajectories
IDFN – untracked ground truth trajectories

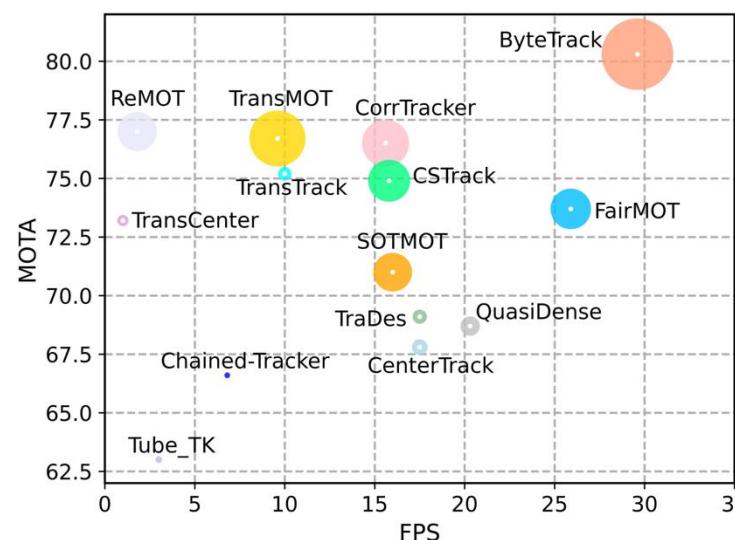
2 supported tracking algorithms in Ultralytics:

❖ BoT-SORT

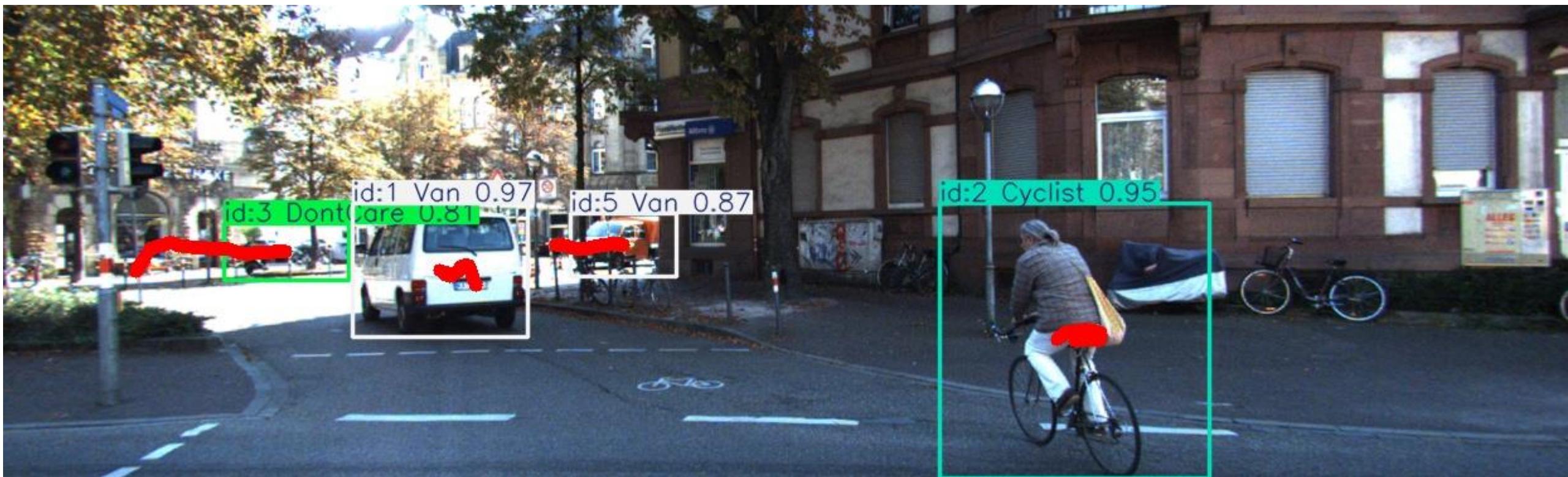
N. Aharon et al., BoT-SORT: Robust Associations Multi-Pedestrian Tracking, [arXiv:2206.14651](https://arxiv.org/abs/2206.14651)

❖ ByteTrack

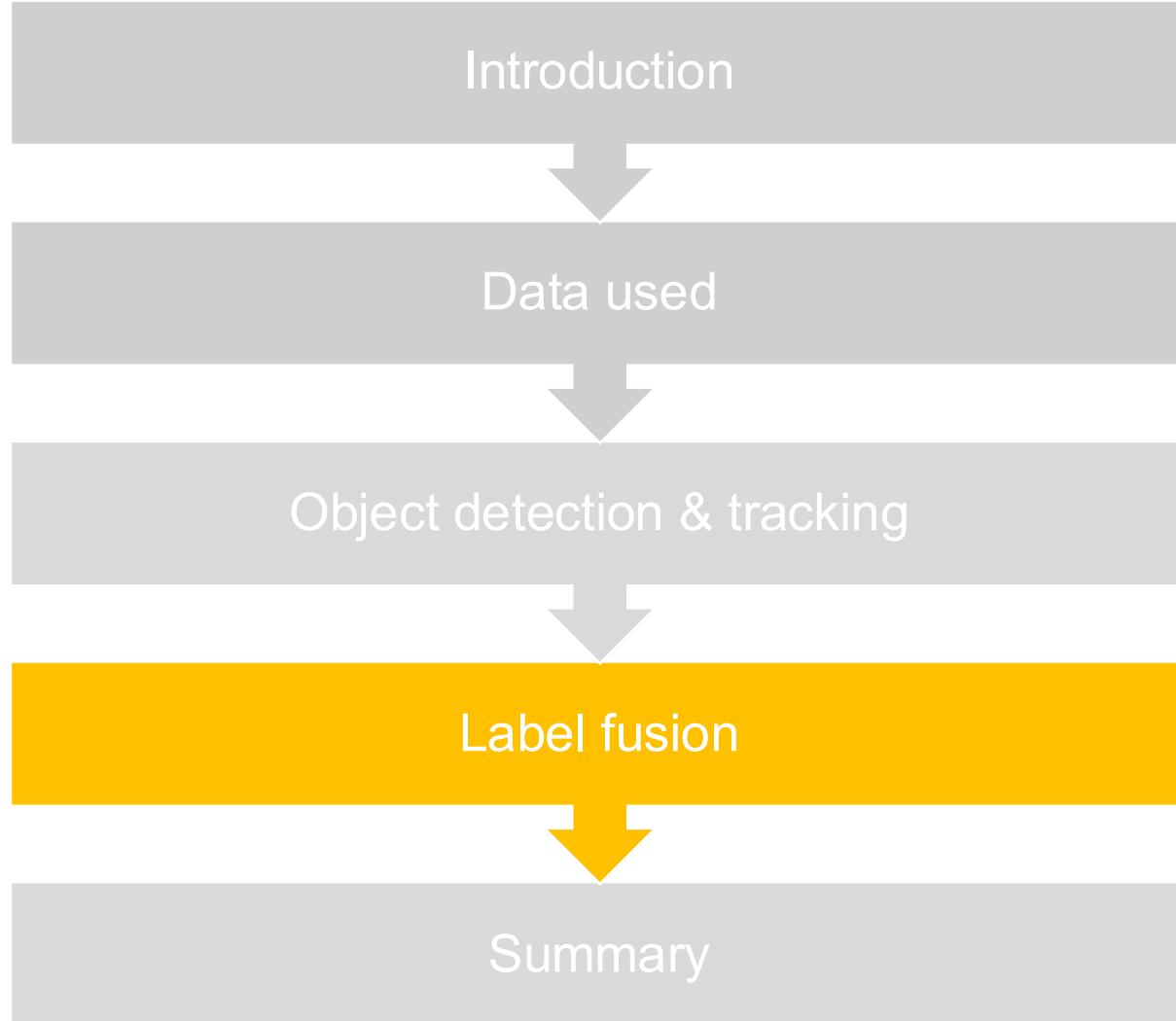
(for now we actually use this one)

Y. Zhang et al., ByteTrack: Multi-Object Tracking by Associating Every Detection Box, [arXiv:2110.06864](https://arxiv.org/abs/2110.06864)

Tracking seems to work quite ok:



Outline



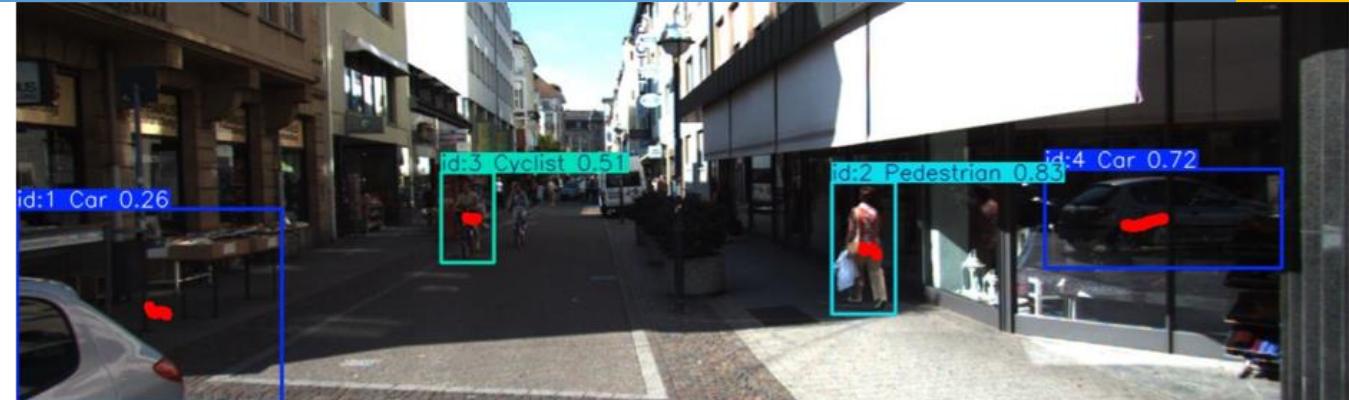
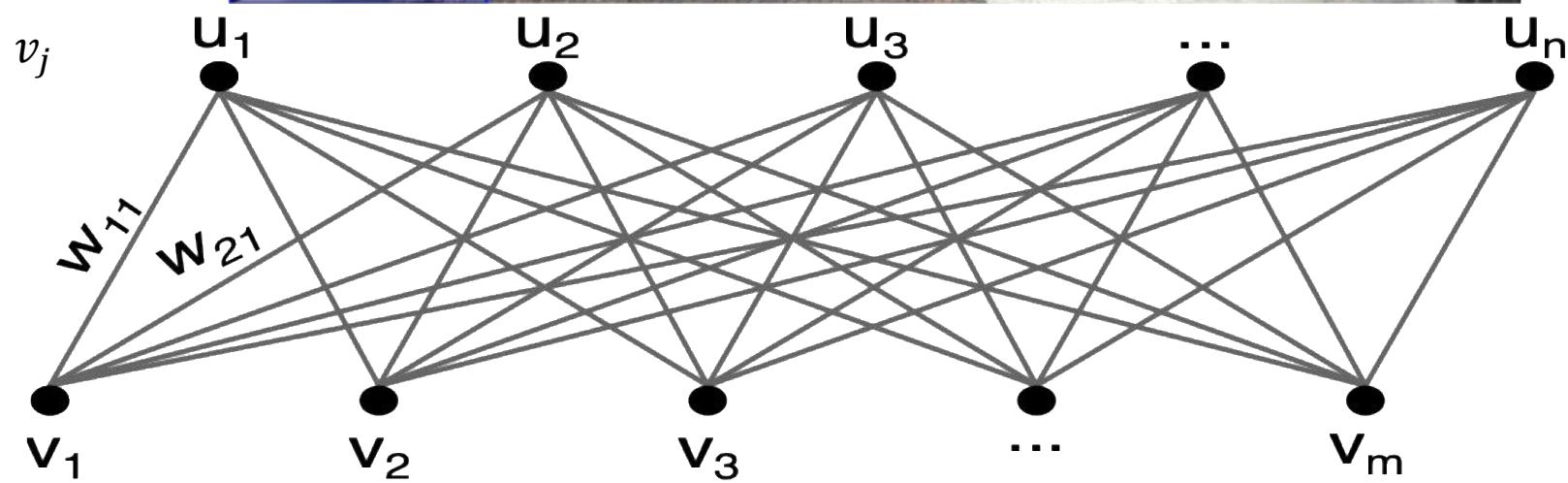
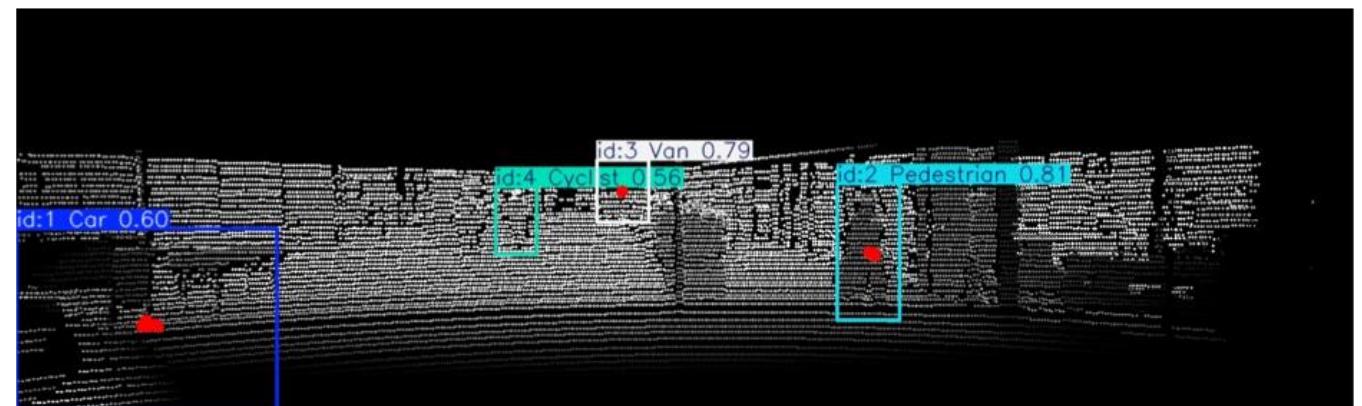
Label Fusion:

- ❖ can be represented as such a graph
- ❖ performed for each pair of subsequent video frames
- ❖ w_{ij} measures similarity between u_i and v_j
- ❖ goal: maximize $\sum w_{ij}$
- ❖ combinatorial optimisation problem

minimization problem with cost function E in the form of the Ising model of a system of spins with values $\sigma = \pm 1$:

$$\vec{\sigma}^* = \operatorname{argmin}_{\vec{\sigma}} E(\vec{\sigma})$$

$$E(\vec{\sigma}) = - \sum_{i \neq j} J_{ij} \sigma_i \sigma_j + \sum_i h_i \sigma_i$$



Quadratic unconstrained binary optimization (QUBO) formulation:

we transform to binary variables: $q_i = \frac{\sigma_i + 1}{2}$ and get:

$$\vec{q}^* = \operatorname{argmin}_{\vec{q}} E'(\vec{q})$$

$$E'(\vec{q}) = - \sum_{i \neq j} a_{ij} q_i q_j - \sum_i b_i q_i$$

Our case (MOT) needs a bit more effort than Ising model:

$$M^* = \operatorname{argmax}_M \sum_{i,j} w_{ij}(m)$$

But after some rewriting we get QUBO formulation:

$$\vec{x}^* = \operatorname{argmin}_{\vec{x} \in \{x_{u,v} | (u,v) \in E\}} F(\vec{x})$$

$$F(\vec{x}) = F_w(\vec{x}) + \lambda F_U(\vec{x}) + \lambda F_V(\vec{x})$$

where:

$$x_{u,v} = \begin{cases} 1 & \text{for } (u,v) \in M \\ 0 & \text{for } (u,v) \notin M \end{cases}$$

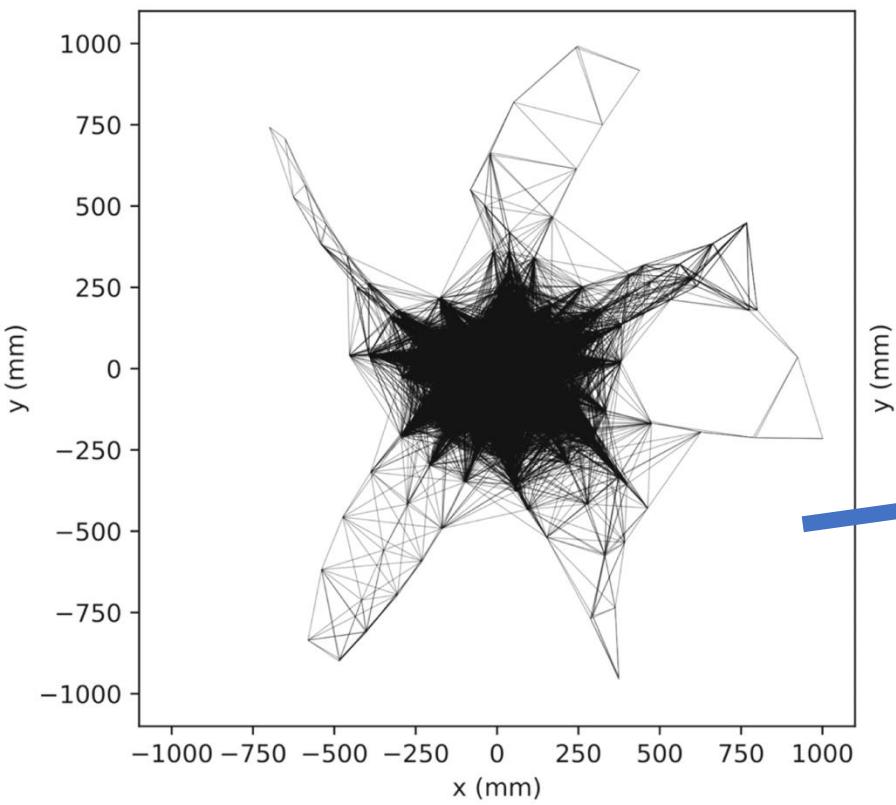
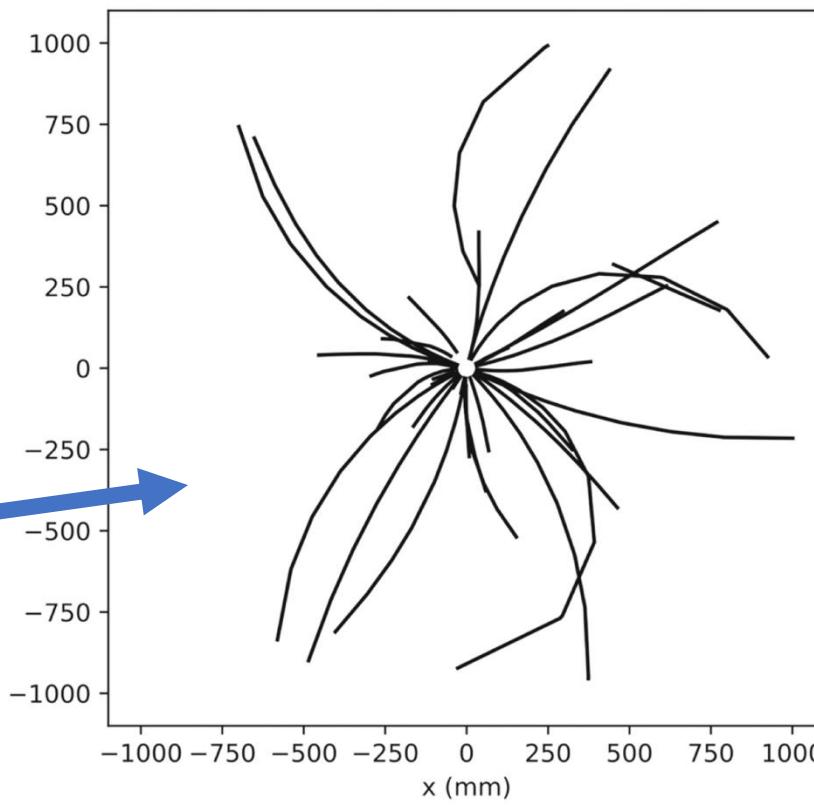
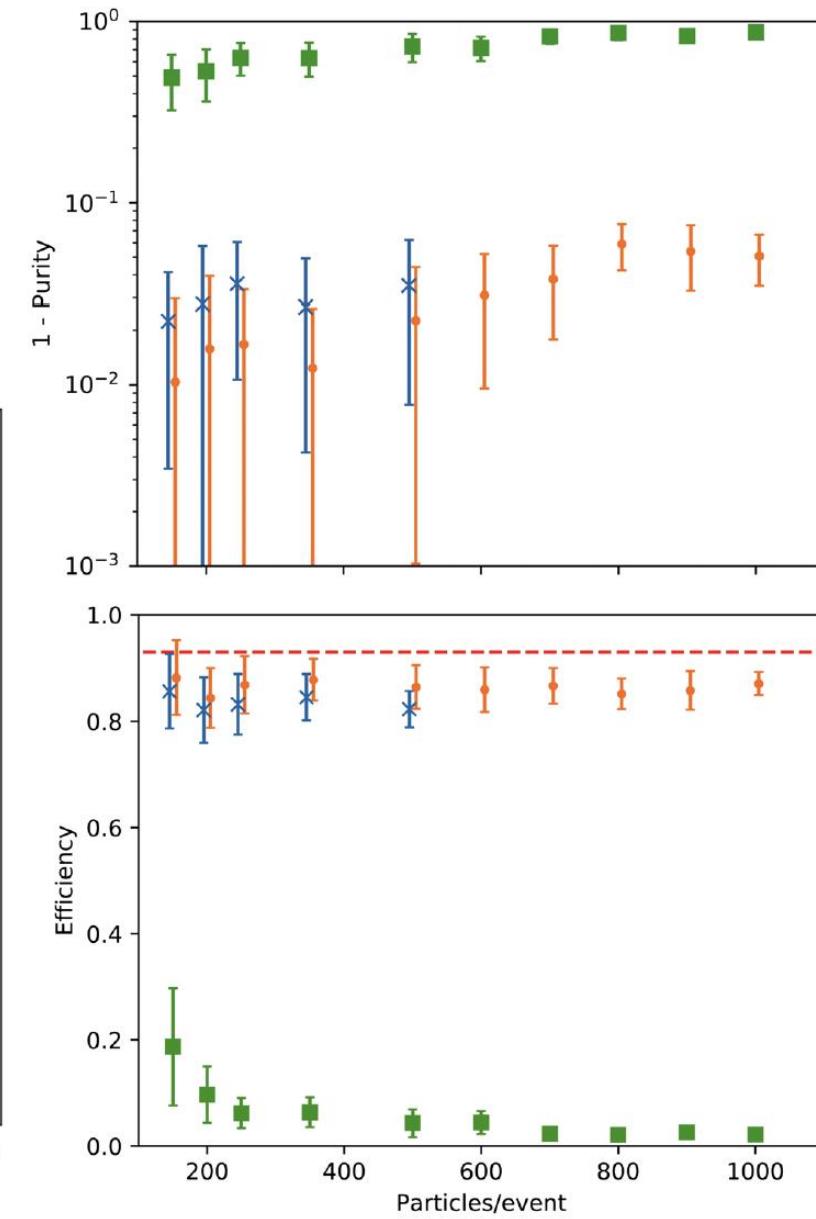
$$F_w(\vec{x}) = - \sum_{u \in U} w(u, v) x_{u,v}$$

$$F_U(\vec{x}) = \sum_{u \in U} \left(\sum_{i < j} x_{u,v(i)} x_{u,v(j)} \right)$$

$$F_V(\vec{x}) = \sum_{v \in V} \left(\sum_{i < j} x_{u(i),v} x_{u(j),v} \right)$$

QUBO can be useful outside of automotive context:

- ❖ anywhere, where there's combinatorics involved
- ❖ e.g. ... in collisions at LHC



Efficient way to solve QUBO problems: Quantum Annealing (QA)

Adiabatic Model of Quantum Computation (AQC):

1. Prepare the system in the ground state of a simple H_0
2. Adiabatically (slowly) evolve towards H_p
3. Measure the qubits, they should be in the ground state of H_p

(the adiabatic theorem)

Time-dependent quantum Ising Hamiltonian: $\hat{H}(t) = \left(1 - \frac{t}{\tau}\right) \hat{H}_0 + \frac{t}{\tau} \hat{H}_p$

for $\tau \gg t$, the final state will satisfy: $\hat{H}_p |\psi^{(p)}\rangle_0 = E_0 |\psi^{(p)}\rangle_0$

How slow is slow enough? The evolution time must be roughly $T \gg \frac{1}{\Delta E_{\min}^2}$,
where ΔE_{\min}^2 is the energy difference between E_0 and 1st excited state

Quantum Annealing can be simulated or ran on real hardware.

There are a few companies on the market:

NEC

 QILMANJARO
QUANTUM · TECH

The Quantum Computing Company™

Outline

To sum up:

- ❖ We could successfully detect and track multiple objects with KITTI + YOLO
- ❖ Lidar data clearly superior
- ❖ Hopefully there's still gain from complementary camera data
- ❖ Currently trying to settle for a particular option for w_{ij}

Outlook:

- ❖ Implement the complete QUBO formulation
- ❖ Test solving the QUBO with simulated annealing
- ❖ Test on real hardware (D-wave?)

Thank you for your attention!
Any questions / suggestions?

Backup

camera

lidar

