From imaging algorithms to quantum

37 CEAI

/} Center of Excellence in Artificial Intelligence

AGH UNIVERSITY
OF KRAKOW

AGH

methods Seminar, 12.01.2026

Multi-Object Tracking and Label Fusion
In Automotive Sensor Data

Piotr Kalaczynski, Tomasz Rybotycki, Piotr Gawron

We gratefully acknowledge the funding support by program “Excellence initiative—research university” for the AGH University
in Krakow as well as the ARTIQ project: UM0-2021/01/2/ST6/00004 and ARTIQ/0004/2021.



Outline




Multi-object tracking (MOT):

¢ identifying objects in video frames
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Multi-object tracking l.

Multi-object tracking (MOT):

+* identifying objects in video frames

“* maintaining a unique ID for each detected
object across video frames.




Multi-object tracking (MOT):

+* identifying objects in video frames

% maintaining a unique ID for each detected
object across video frames.

Appllcatlons

% video surveilance

sports analytics

robotics

retail analytics

autonomous driving « this talk
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KITTI 7

The KITTI Vision Benchmark Suite:

* Project of Karlsruhe Institute of Technology (KIT) & Toyota Technological Institute at Chicago (TTIC)
s Annotated automotive datasets recorded in and around Karlsruhe, Germany
s Well-established benchmarks for:
= Stereo
= Scene flow
= Odometry
» Image depth completion and prediction
= Object detection: 2D and 3D
= Multi-object tracking
» Road/Lane Detection
= Semantic segmentation
* Widely used by the computer vision community
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KITT| datasets: sensors 8

The KITTI dataset has data from:

% 2 grayscale cameras: Point Grey Flea 2 (FL2-14S3M-C), 1.4Mpix each
¢ 2 color cameras: Point Grey Flea 2 (FL2-14S3C-C), 1.4Mpix each
1 lidar: Velodyne HDL-64E (laser scanner)

1 GPS/IMU: OXTS RT 3003 (used indirectly, for calibration)

Velodyne HDL-64E Laserscanner

A. Geiger et al., Vision meets robotics: The KITTI dataset, https://doi.org/10.1177/0278364913491297
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Object detection 11
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Our code: e\v » Al
github.com/AGH-CEAl/automotive-tracking/ 3 3//'§ £

Object detection:

** In our context: 2D bounding boxes: (X, y, height, width)

% Each box gets: id, detected class, classification confidence score
% Done individually for each video frame

% Separately for camera and lidar

¢ Can be done out-of-the-box with pre-trained models

s Better results after training on KITTI itself

¢ Used model: You Only Look Once (YOLO) v8

id:1 car 0.74 T O s
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number of frames

T 10
Data preprocessing: e
% Data: tracking dataset from KITTI 11 : 2
% Train & test spilit: [ n
o 174 [ *
|

*» by scenes, not by frames

% KITTI labels — @f) ultralytics format (we use their YOLO model)
¢ Lidar data: pointcloud — 2D projection (data shape & FoV coverage)
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Object detection: YOLO training

Why not just merge camera and lidar data into a single image like that?
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Object detection: YOLO training (camera images)

scene_0015_frame 000234

What the acutal training batches look like:

+» Labels are encoded to ints

+ Frames are shrinked, enlarged and moved for a more

robust detection
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Object detection: YOLO training (lidar projection images)

What the acutal training batches look like:

s Labels are encoded to ints

% Frames are shrinked, enlarged and moved for a more

robust detection
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Object detection: YOLO validation (camera images)

1st validation batch
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1st validation batch

Predicted labels:

Annotated labels:
(~true)

scene_0020_frame_000817.jpg
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Camera: id:1 Car 0.26
Slightly better
confidence for
pedestrian, could
be just by chance

Combined
even better?
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Lidar:

Seems overall better
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% not fooled by reflection
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Object detection: bounding boxes correlograms

Rather consistent distributions

camera lidar
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height
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height




Object detection: multiclass classification performance

Confusion matrices:

camera lidar

Confusion Matrix
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Object detection: multiclass classification performance

Normalized confusion matrices:

camera

Confusion Matrix Normalized
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Object detection: numer of detections per class

Normalized confusion matrices:
% Clearly not a balanced dataset
+» Did not attempt to mitigate it (yet)

camera lidar
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Object detection: multiclass classification performance

Precision-confidence curves:

o

e

camera

Precision-Confidence Curve

% For camera total ~ok, but class-wise mostly terrible
% For lidar we’re underconfident: room for better calibration
(ideally diagonal)
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Object detection: multiclass classification performance

Recall-confidence curves:
% ldeally: AUC=1
s Both with room for improvement, lidear clearly better
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Object detection: multiclass classification performance

Precision

Precision-recall curves:

/

J/

¢ Interesting case: Truck

+» Lidar close to ideal, camera poor performance

(rare but very well detected by lidar, better than cars — big size effect?)
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Object detection: multiclass classification performance

F1-confidence curves:

curious case: cyclist opposite trend to all other classes for camera
lidar again superior to camera
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Object tracking 28

First some definitions:

Ground Truth Detection

. Predicted Detection

. (Intersection)
. + r - ‘ (Union)

¢ Localization Intersection over Union (loU)

Loc-loU =

» used for thresholding (match/mismatch)

< Detection Accuracy (DetA): > TP 1 —ideal
Deth = o T FP + FN 0 — bad




Object tracking 29

standard metrics for tracking:

Y.,(FN; + FP, + IDSW,) 1 —ideal
% Multiple Object Tracking Accuracy (MOTA): MOTA =1 — — scr, 0 or negative — bad

= each switch penalized only once for IDSW

= FN & FP might dominate in crowded scenes

» insensitive to detection accuracy changes
(loU threshold is fixed)

GT; — total ground truth objects in frame ¢t
IDSW — identity switches ()

 |DF1
IDF1 = 2 - IDTP
= More sensitive to tracking consistency 2 -IDTP + IDFP + IDFN
= Balances precision and recall
= Less affected by the total numer of objects than MOTA IDTP — correct trajectories
= can decrease when improving detection IDFP — fake trajectories

insensitive to detection accuracy changes IDFP — untracked ground truth trajectories



Object tracking

2 supported tracking algorithms in Ultralytics:
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Y. Zhang et al.,

ByteTrack: Multi-Object Tracking by Associating Every Detection Box, arXiv:2110.06864
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https://arxiv.org/abs/2206.14651
https://arxiv.org/abs/2110.06864

Object tracking

Tracking seems to work quite ok:




Introduction

Data used

Object detection & tracking

Label fusion




Label fusion

Label Fusion:

¢ can be represented as such a graph

s performed for each pair of subsequent
video frames

< w;; measures similarity between u; and v;

< goal: maximize }w;;

s combinatorial optimisation problem

minimization problem with cost function
E in the form of the Ising model of a
system of spins with values 0 = +1 :

o = argmin E (o)

o
E@ == Jyo+ ) ho

£ i




QUBO

Quadratic unconstrained binary optimization (QUBOQO) formulation:

q* = argmin E'(q)

we transform to binary variables: q; =

g
E'@D = —2 aij q:q; — z b;q;
i

i#]j

Our case (MOT) needs a bit more effort than Ising model:

But after some rewriting we get QUBO formulation:

R == ) wlu, ),

ueu

argmin  F(x)

X€{xy,|(u,v)EE} where:

X X X X FU(£)=Z Zx»(')x,(')
F(x) = FW(X) + AFU(X) + )[FV(x) | for (v) €M L (i<j u,v(i) *u,v(j
xu,v = {0 for (u’ v) ¢ M )
FV(x) — z Z Xu(d),v xu(j)’v
vEV \i<j

Y. Ihara, Enhancing multiple object tracking accuracy via quantum annealing, doi:10.1038/s41598-025-07492-7



https://doi.org/10.1038/s41598-025-07492-7
https://doi.org/10.1038/s41598-025-07492-7
https://doi.org/10.1038/s41598-025-07492-7
https://doi.org/10.1038/s41598-025-07492-7
https://doi.org/10.1038/s41598-025-07492-7
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https://doi.org/10.1038/s41598-025-07492-7

Little detour: QUBO for particle physics ©

T
QUBO can be useful outside of automotive context: 1074
s anywhere, where there’s combinatorics involved £ I k ] i 1 i
% e.g. ... in collisions at LHC 0 i | l
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A. Zlokapa et al., Charged particle tracking with quantum annealing optimization, doi.org/10.1007/s42484-021-00054-w ¥ oA 1 SA ®& Random



https://doi.org/10.1007/s42484-021-00054-w
https://doi.org/10.1007/s42484-021-00054-w
https://doi.org/10.1007/s42484-021-00054-w
https://doi.org/10.1007/s42484-021-00054-w
https://doi.org/10.1007/s42484-021-00054-w
https://doi.org/10.1007/s42484-021-00054-w
https://doi.org/10.1007/s42484-021-00054-w

Quantum annealing 36

Efficient way to solve QUBO problems: Quantum Annealing (QA)

Adiabatic Model of Quantum Computation (AQC):
1.  Prepare the system in the ground state of a simple H,

2. Adiabatically (slowly) evolve towards H,,

3. Measure the qubits, they should be in the ground state of H,,

Time-dependent quantum Ising Hamiltonian:  H(t) = (1 — %) H, + %ﬁp

for T > t, the final state will satisfy: ﬁp|¢(p))0 = EO|1/J(P))O

1
2 ]
AEmin

where AEZ;, is the energy difference between E, and 1st excited state

How slow is slow enough? The evolution time must be roughly T >



Quantum annealing 37

Quantum Annealing can be simulated or ran on real hardware.

There are a few companies on the market:

NEC QILMAUMRO

Q U A NTWUMS- - TE CH

D \JaAIVUCE

The Quantum Computing Company™
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Data used

Object detection & tracking

Label fusion




Summary |

To sum up:

“* We could succesfully detect and track multiple objects with KITTI + YOLO
+» Lidar data clearly superior

X/

s Hopefully there’s still gain from complementary camera data
< Currently trying to settle for a particular option for w;;

\
o “'
Outlook: te““o
s Implement the complete QUBO formulation ot 3“
% Test solving the QUBO with simulated annealing ‘0‘ qo ) O“ q.
% Test on real hardware (D-wave?) o“ est‘
no sl
3 Y o™
o
veS






Learning curves
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Cal I I e ra val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
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0.30
1.78 - 1.725 A . 1.52 4 0.16
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1.700 - ]
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1.675 1509 |
0727 ’ i 0.14 4
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3.54
—e— results
304y 0 smooth

T T T T T T — 11 T T T T T T T T T T T T
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I I d a r val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
1.8

1.7 1
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1.5 .
1.44
1.3
1.2
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