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Multi-object tracking 3

Multi-object tracking (MOT): 
❖ identifying objects in video frames
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Multi-object tracking (MOT): 
❖ identifying objects in video frames

❖ maintaining a unique ID for each detected

object across video frames.



Multi-object tracking 5

Multi-object tracking (MOT): 
❖ identifying objects in video frames

❖ maintaining a unique ID for each detected

object across video frames.

Applications:
❖ video surveilance

❖ sports analytics

❖ robotics

❖ retail analytics

❖ autonomous driving ← this talk
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The KITTI Vision Benchmark Suite: 
❖ Project of Karlsruhe Institute of Technology (KIT) & Toyota Technological Institute at Chicago (TTIC)

❖ Annotated automotive datasets recorded in and around Karlsruhe, Germany

❖ Well-established benchmarks for:

▪ Stereo

▪ Scene flow

▪ Odometry

▪ Image depth completion and prediction

▪ Object detection: 2D and 3D

▪ Multi-object tracking

▪ Road/Lane Detection

▪ Semantic segmentation

❖ Widely used by the computer vision community



KITTI datasets: sensors 8

The KITTI dataset has data from:
❖ 2 grayscale cameras: Point Grey Flea 2 (FL2-14S3M-C), 1.4Mpix each

❖ 2 color cameras: Point Grey Flea 2 (FL2-14S3C-C), 1.4Mpix each

❖ 1 lidar: Velodyne HDL-64E (laser scanner)

❖ 1 GPS/IMU: OXTS RT 3003 (used indirectly, for calibration)

A. Geiger et al., Vision meets robotics: The KITTI dataset, https://doi.org/10.1177/0278364913491297

http://www.ptgrey.com/products/flea2/flea2_firewire_camera.asp
http://www.ptgrey.com/products/flea2/flea2_firewire_camera.asp
http://www.ptgrey.com/products/flea2/flea2_firewire_camera.asp
http://www.ptgrey.com/products/flea2/flea2_firewire_camera.asp
http://www.ptgrey.com/products/flea2/flea2_firewire_camera.asp
http://www.ptgrey.com/products/flea2/flea2_firewire_camera.asp
http://www.ptgrey.com/products/flea2/flea2_firewire_camera.asp
http://www.ptgrey.com/products/flea2/flea2_firewire_camera.asp
http://www.ptgrey.com/products/flea2/flea2_firewire_camera.asp
http://www.ptgrey.com/products/flea2/flea2_firewire_camera.asp
http://velodynelidar.com/lidar/hdlproducts/hdl64e.aspx
http://velodynelidar.com/lidar/hdlproducts/hdl64e.aspx
http://velodynelidar.com/lidar/hdlproducts/hdl64e.aspx
http://www.oxts.com/default.asp?pageRef=21
https://doi.org/10.1177/0278364913491297
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Object detection: 
❖ In our context: 2D bounding boxes: (x, y, height, width)

❖ Each box gets: id, detected class, classification confidence score

❖ Done individually for each video frame

❖ Separately for camera and lidar

❖ Can be done out-of-the-box with pre-trained models

❖ Better results after training on KITTI itself

❖ Used model: You Only Look Once (YOLO) v8

Our code: 

github.com/AGH-CEAI/automotive-tracking/

https://github.com/AGH-CEAI/automotive-tracking/
https://github.com/AGH-CEAI/automotive-tracking/
https://github.com/AGH-CEAI/automotive-tracking/
https://github.com/AGH-CEAI/automotive-tracking/
https://github.com/AGH-CEAI/automotive-tracking/
https://github.com/AGH-CEAI/automotive-tracking/
https://github.com/AGH-CEAI/automotive-tracking/
https://github.com/AGH-CEAI/automotive-tracking/


Object detection: YOLO training 12

Data preprocessing:
❖ Data: tracking dataset from KITTI

❖ Train & test split:

❖ 17:4

❖ by scenes, not by frames

(otherwise tracking would be meaningless)

❖ KITTI labels → format (we use their YOLO model) 

❖ Lidar data: pointcloud → 2D projection (data shape & FoV coverage)



Object detection: YOLO training 13

Why not just merge camera and lidar data into a single image like that?  

Well, you can but the performance is terrible:



Object detection: YOLO training (camera images) 14

What the acutal training batches look like:
❖ Labels are encoded to ints

❖ Frames are shrinked, enlarged and moved for a more

robust detection



Object detection: YOLO training (lidar projection images) 15

What the acutal training batches look like:
❖ Labels are encoded to ints

❖ Frames are shrinked, enlarged and moved for a more

robust detection



Object detection: YOLO validation (camera images) 16

1st validation batch

Predicted labels:

Annotated labels:

(~true)



Object detection: YOLO validation (lidar images) 17

1st validation batch

Predicted labels:

Annotated labels:

(~true)



Object detection: YOLO validation (camera & lidar on same frame) 18

Camera:
❖ Slightly better

confidence for 

pedestrian, could

be just by chance

Lidar:
❖ Seems overall better

❖ not fooled by reflection

Combined

even better?

Those are with tracking switched on (in red), but let’s pretend it’s not there ;)



Object detection: bounding boxes correlograms 19

Normalized confusion matrices: 

camera lidar

Rather consistent distributions



Object detection: multiclass classification performance 20

Confusion matrices: 

camera lidar



Object detection: multiclass classification performance 21

Normalized confusion matrices: 

camera lidar



Object detection: numer of detections per class 22

Normalized confusion matrices:
❖ Clearly not a balanced dataset

❖ Did not attempt to mitigate it (yet)

camera lidar



Object detection: multiclass classification performance 23

Precision-confidence curves:
❖ For camera total ~ok, but class-wise mostly terrible

❖ For lidar we’re underconfident: room for better calibration

(ideally diagonal)camera lidar 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝐶 = likelihood that a prediction is correct



Object detection: multiclass classification performance 24

Recall-confidence curves:
❖ Ideally: AUC=1

❖ Both with room for improvement, lidear clearly better

camera lidar

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=
𝑇𝑃

𝑃



Object detection: multiclass classification performance 25

Precision-recall curves:
❖ Lidar close to ideal, camera poor performance

❖ Interesting case: Truck 

(rare but very well detected by lidar, better than cars → big size effect?)

camera lidar



Object detection: multiclass classification performance 26

F1-confidence curves:
❖ curious case: cyclist opposite trend to all other classes for camera

❖ lidar again superior to camera

camera lidar

𝐹1 = 2 ⋅
𝑃 ⋅ 𝑅

𝑃 + 𝑅
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First some definitions:

❖ Localization Intersection over Union (IoU)

(How closely the boxes overlap)

▪ used for thresholding (match/mismatch)

❖ Detection Accuracy (DetA):

(How well tracker localises objects

in each frame)

DetA =
TP

TP + FP + FN

1 – ideal

0 – bad



Object tracking 29

(some) standard metrics for tracking:

❖ Multiple Object Tracking Accuracy (MOTA):

(basically error counting over ground truth)

▪ each switch penalized only once for IDSW

▪ FN & FP might dominate in crowded scenes

▪ insensitive to detection accuracy changes

(IoU threshold is fixed)

❖ IDF1

(focused on persistent correct identification)

▪ More sensitive to tracking consistency

▪ Balances precision and recall

▪ Less affected by the total numer of objects than MOTA

▪ can decrease when improving detection

▪ insensitive to detection accuracy changes

There’s also e.g. more robust Higher Order Tracking Accuracy (HOTA), but we don’t need it for this talk

MOTA = 1 −
∑ FN𝑡 + FP𝑡 + IDSW𝑡

∑GT𝑡

GT𝑡 − total ground truth objects in frame 𝑡
IDSW − identity switches ()

1 – ideal

0 or negative – bad

IDF1 =
2 ⋅ IDTP

2 ⋅ IDTP + IDFP + IDFN

IDTP − correct trajectories

IDFP − fake trajectories

IDFP − untracked ground truth trajectories



Object tracking 30

2 supported tracking algorithms in Ultralytics:

❖ BoT-SORT

❖ ByteTrack

(for now we 

actually use

this one)

N. Aharon et al., BoT-SORT: Robust Associations Multi-Pedestrian Tracking, arXiv:2206.14651

Y. Zhang et al., 

ByteTrack: Multi-Object Tracking by Associating Every Detection Box, arXiv:2110.06864

https://arxiv.org/abs/2206.14651
https://arxiv.org/abs/2110.06864


Object tracking 31

Tracking seems to work quite ok:
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Label Fusion: 
❖ can be represented as such a graph

❖ performed for each pair of subsequent

video frames

❖ 𝑤𝑖𝑗 measures similarity between 𝑢𝑖 and 𝑣𝑗
❖ goal: maximize ∑𝑤𝑖𝑗

❖ combinatorial optimisation problem

minimization problem with cost function

𝐸 in the form of the Ising model of a 

system of spins with values 𝜎 = ±1 :

Ԧ𝜎∗ = argmin
𝜎

𝐸 Ԧ𝜎

𝐸 Ԧ𝜎 = −෍

𝑖≠𝑗

𝐽𝑖𝑗 𝜎𝑖𝜎𝑗 +෍

𝑖

ℎ𝑖𝜎𝑖



QUBO 34

Quadratic unconstrained binary optimization (QUBO) formulation:

we transform to binary variables:

Ԧ𝑞∗ = argmin
𝑞

𝐸′ Ԧ𝑞

𝐸′ 𝑞 = −෍

𝑖≠𝑗

𝑎𝑖𝑗 𝑞𝑖𝑞𝑗 −෍

𝑖

𝑏𝑖𝑞𝑖
and get:

Y. Ihara, Enhancing multiple object tracking accuracy via quantum annealing, doi:10.1038/s41598-025-07492-7

Our case (MOT) needs a bit more effort than Ising model: 𝑀∗ = argmax
𝑀

෍

𝑖,𝑗

𝑤𝑖𝑗(𝑚)

But after some rewriting we get QUBO formulation:

Ԧ𝑥∗ = argmin
Ԧ𝑥∈ 𝑥𝑢,𝑣| 𝑢,𝑣 ∈𝐸

𝐹 Ԧ𝑥

𝐹 Ԧ𝑥 = 𝐹𝑤 Ԧ𝑥 + 𝜆𝐹𝑈 Ԧ𝑥 + 𝜆𝐹𝑉 Ԧ𝑥

where:

𝑥𝑢,𝑣 = ቊ
1 for 𝑢, 𝑣 ∈ 𝑀
0 for 𝑢, 𝑣 ∉ 𝑀

𝐹𝑈 Ԧ𝑥 = ෍

𝑢∈𝑈

෍

𝑖<𝑗

𝑥𝑢,𝑣 𝑖 𝑥𝑢,𝑣 𝑗

𝐹𝑤 Ԧ𝑥 = −෍

𝑢∈𝑈

𝑤 𝑢, 𝑣 𝑥𝑢,𝑣

𝐹𝑉 Ԧ𝑥 = ෍

𝑣∈𝑉

෍

𝑖<𝑗

𝑥𝑢 𝑖 ,𝑣 𝑥𝑢 𝑗 ,𝑣

𝑞𝑖 =
𝜎𝑖 + 1

2

https://doi.org/10.1038/s41598-025-07492-7
https://doi.org/10.1038/s41598-025-07492-7
https://doi.org/10.1038/s41598-025-07492-7
https://doi.org/10.1038/s41598-025-07492-7
https://doi.org/10.1038/s41598-025-07492-7
https://doi.org/10.1038/s41598-025-07492-7
https://doi.org/10.1038/s41598-025-07492-7


Little detour: QUBO for particle physics ☺ 35

QUBO can be useful outside of automotive context: 
❖ anywhere, where there’s combinatorics involved

❖ e.g. … in collisions at LHC

A. Zlokapa et al., Charged particle tracking with quantum annealing optimization, doi.org/10.1007/s42484-021-00054-w

https://doi.org/10.1007/s42484-021-00054-w
https://doi.org/10.1007/s42484-021-00054-w
https://doi.org/10.1007/s42484-021-00054-w
https://doi.org/10.1007/s42484-021-00054-w
https://doi.org/10.1007/s42484-021-00054-w
https://doi.org/10.1007/s42484-021-00054-w
https://doi.org/10.1007/s42484-021-00054-w


Quantum annealing 36

Efficient way to solve QUBO problems: Quantum Annealing (QA) 

Adiabatic Model of Quantum Computation (AQC):
1. Prepare the system in the ground state of a simple 𝐻0
2. Adiabatically (slowly) evolve towards 𝐻𝑝
3. Measure the qubits, they should be in the ground state of 𝐻𝑝

(the adiabatic theorem) 

Time-dependent quantum Ising Hamiltonian: ෡𝐻 𝑡 = 1 −
𝑡

𝜏
෡𝐻0 +

𝑡

𝜏
෡𝐻𝑝

for 𝜏 ≫ 𝑡, the final state will satisfy: ෡𝐻𝑝| ൿ𝜓 𝑝
0
= 𝐸0| ൿ𝜓 𝑝

0

How slow is slow enough? The evolution time must be roughly 𝑇 ≫
1

Δ𝐸min
2 , 

where Δ𝐸min
2 is the energy difference between 𝐸0 and 1st excited state



Quantum annealing 37

Quantum Annealing can be simulated or ran on real hardware. 

There are a few companies on the market:
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Summary 39

To sum up:
❖ We could succesfully detect and track multiple objects with KITTI + YOLO

❖ Lidar data clearly superior

❖ Hopefully there’s still gain from complementary camera data

❖ Currently trying to settle for a particular option for 𝑤𝑖𝑗

Outlook:
❖ Implement the complete QUBO formulation

❖ Test solving the QUBO with simulated annealing

❖ Test on real hardware (D-wave?)
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Backup



Learning curves 41

camera

lidar
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