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Why Quantum Field Theory?

The Standard Model
• Describes fundamental particles and
interactions via QFT

• Combines quantum mechanics with
special relativity

• Framework for all particle physics

Why precise calculations?
• LHC measures observables with high
precision

• Need equally precise theory
predictions

• QFT: systematic perturbative
calculations
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How to read Feynman Diagrams



Feynman Diagrams

Figure take from [1]

• Standard Tool in High Energy Physics
• Used to calculate cross-sections and
decay widths

• But also the abundance of Dark Matter
in the early universe

• Visual representation of formulas
describing interactions of elementary
particles
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Incredients

k

p1p2

Internal Particles

External particles
Loops

Vertices
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Return of the Math Side

LSM =− 1
4
GaµνGaµν −

1
4
Wi
µνWiµν − 1

4
BµνBµν + (DµΦ)†(DµΦ)− V(Φ)

+
∑
f

ψ̄f iγµDµψf −
∑
f

Yf
(
ψ̄fLΦψfR + ψ̄fRΦ

†ψfL
)

Spontaneous Symmetry Breaking

Φ =

(
φ±

1√
2 (v + H+ iφZ)

)
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How to unite theory and experiment?

• Goal: compare predictions with measurements to test the theory and search for new
physics

• Experiments like the LHC collide particles at high energies
• Detectors measure: production cross sections, decay rates, branching ratios,
scattering amplitudes

〈T (O(xa)O(xb) . . . )〉 ∝
∫

D[Φ(x)]eiS[Φ(x),α]O(xa)O(xb) . . .

This is a weirdly written Gaussian integral

• where the free theory can be solved exactly,
• the addition of interactions requires a pertubative expansion in coupling constants

The calculation of such Greens functions is done through Feynman diagrams
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From Math to Pictures

Lets look at an example of a Higgs particle decaying to Leptons

〈T
(
Hψψ

)
〉 ∝

∫
D[H, ψ, ψ]eiSfree[H,ψ,ψ;λ,Yf ]

(
−
iyf√
2
ψHψ−3iλ vH3− iλ

4
H4
)(

Hψψ
)

The Greens functions are calculated using
Wicks theorem: result is the sum of all pair-
wise, connected contractions

H − iyf√
2

ψ

ψ

Propagators

HH =

ψ(x)ψ(y) = y x

Vertices
Fermion-Higgs: − iyf√

2
Triple Higgs: −3iλv
Quartic Higgs: − iλ

4
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Feynman Rules

1. Determine all non-vanishing and connected contractions and vertex factors
2. Each line gets an corresponding Propagator
3. Each vertex gets its appropriate factor
4. Momentum is conserved in each vertex
5. Undetermined momenta are integrated over
6. Don’t forget statistical factors
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Higher Order Correction



What are Loops?

In the last example we constructed the
tree-level contribution of the Higgs decay to
leptons. Expanding the Path integral further
results in more possibilites to internal
contractions
⇒we get loops in diagrams

Loop diagrams are corrections to processes,
and improve the result!

H

ψ

ψ

H

ψ

ψ
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Why we deal with infinities?

p1

k+ k1
m2

p2

pN

m1k

mN

k+ kN−1 pN−1

∼
∫

d4k
(2π)4

A(k, ki,mi)

(k2 −m2
1)((k+ k1)2 −m2

2) · · · ((k+ kN−1)2 −m2
N)

∼
∫

d4k
(2π)4

A(k, ki,mi)

k2N

There are two observations
• if A = 1, the tadpole and bubble diagrams
diverge but triangle, box and diagrams with more
external legs converge, and

• if A = A(k, ki,mi), the last condition worsens!
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How do we get reliable predictions?

This is a two step process

1. Regularization: extracting the divergence from the expressions
• Cut-off regularization
• Dimensional regularization

2. Renormalization: redefining theory parameters

Renormalization is fundamentally more important and is generally done in renormalized
pertubation theory

φ0 =
√
Zφφ

m2
0 = m2 + δm2

λ0 = λ+ δλ

 L = LR + LCT
• we need to calculate counter terms, and
• we need to give a presecripton to fix the
counter terms

The counter terms absorb the divergent terms we isolated during regularization!!!
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How does a simplified calculation look like?

−iΠ =
iλ
32π2

m2
(
1
ε
− log

(
m2

µ2

)
+ 1
)

︸ ︷︷ ︸
h h

−i
(
(Z − 1)p2 + (Z − 1)m2 + Zδm2)︸ ︷︷ ︸

h h

We can define different renormalization condiditions/schemes to fix the counter terms

On-Shell Scheme

∂Π(p2)
∂p2

∣∣∣∣
p2=m2

= 0

Π(p2)|p2=m2 = 0

MS− Scheme

Define the counter terms such that it
absorbes only the divergent terms
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From Textbook to Research



Why to care about renormalization schemes and more?

The OS- and MS-scheme are so far standard
in higher order loop calculations

The most common scheme (MS) suffers from
large contributions due to the presence of
unknown BSM particles, which
• introduces large uncertainties,
• and makes the calculation problematic

The Higgs sector became more and more
interesting
• measurement became increasingly
more precise,

• many unsolved problems can be
described by an extension of the scalar
sector
⇒flavour problems,…, baryogenesis

There is great potential in tightly constraining BSM models through the Higgs sector
• experimental precision must be matched by theory
• large variety of models must be worked through
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Why using the decoupling scheme?

Physical Intuition: We do not expect that
quantum corrections including heavy BSM
particles influence SM observables
(Applequist-Carazzone Theorem)

Theoretically: We want to construct a
renormalization scheme that differentiates
between BSM and SM parameters and,
especially for low-energy observables, do
not mix them!

Figure take from [2]
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How to setup the Decoupling Scheme?

We separate SM-like, PSM, and BSM, PBSM, parameters

SM-like parameters are fixed with the
renormalization condition

PdecBSM = PMSSM

How can we get it in a more usable way?

P0 = PdecBSM + δPdecBSM = POSBSM + δPOSBSM
P0 = PMSSM + δPMSSM = POSSM + δPOSSM

Expression in terms of renromalization con-
stants

δPdecBSM = δPMSSM + δPOSBSM − δPOSSM
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A very short recap

We had one Leptoquark with an arbitrary mass mLQ.
Non decoupling effects are introduced through the
first diagram. We also had the set of lepton
renormaliztion constants

δZL, δZl, δZm
that removed the decoupling effect!

There are also non-decoupling contributions that can-
cel within the renormaliztion constants

t

φ

t

h

µ+

µ−

φ

t

φ

h

µ+

µ−
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Why the THDM? Problems with the Standard Model

The Standard Model is remarkably successful, but...

Open questions the THDM can address:

• Flavor structure and mass hierarchy: Why do fermions have such different masses?
• SM provides no explanation for the pattern of Yukawa couplings
• THDM allows different Higgs doublets to couple to different fermion sectors
• Can provide texture for understanding flavor physics and CP violation

• Matter-antimatter asymmetry: Why is there more matter than antimatter?
• SM CP violation is too weak to explain the observed asymmetry
• THDM provides additional sources of CP violation needed for baryogenesis

• Dark matter: What is the 85% of matter we cannot see?
• SM has no dark matter candidate
• THDM can provide stable dark matter candidates (e.g., inert doublet model)
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A phenomenological interesting model

We extend the SM with a second doublet Φ2 with the
same quantum numbers

V2HDM = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 + λ1

(
Φ†
1Φ1

)2
+ λ2

(
Φ†
2Φ2

)2
−

(
m2
12Φ

†
1Φ2 + h.c.

)
+ λ3

(
Φ†
1Φ1

)(
Φ†
2Φ2

)
+ λ4

(
Φ†
1Φ2

)(
Φ†
2Φ1

)
+

(
λ5
2

(
Φ†
1Φ2

)2
+ h.c.

)

If the mass matrix has a negative
Eigenvalue both scalars develop a
vacuum expectation value

〈Φ1〉0 =

(
0
v1√
2

)
〈Φ2〉0 =

(
0
v2√
2

)

The parametrization of the field is
therefore:

Φi =

(
φ+i

1√
2 (vi + ρi + iϕi)

)
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What is the spectrum of the THDM?

We plug in the parametrization and extract the quadratic terms of the potential:

V22HDM =
1
2

(
ρ1 ρ2

)
M2
ρ

(
ρ1
ρ2

)
+
1
2

(
ϕ1 ϕ2

)
M2
ϕ

(
ϕ1
ϕ2

)
+
(
φ+1 φ+2

)
M2
φ±

(
φ−1
φ−2

)

Two CP-even fields with
masses Mh and MH(

ρ1
ρ2

)
= Rα

(
H0

h0

)
A Nabu-Goldstone field
and a CP-odd field with
mass MA0(

ϕ1
ϕ2

)
= Rβ

(
G0

A0

)
A Nabu-Goldstone field
and a charged field with
mass MH±(

φ±1
φ±2

)
= Rβ

(
G±

H±

)
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What about interactions with fermions

LYukawa = −Q
(
YU,1(iσ2Φ1) + YU,2(iσ2Φ2)

)
u− Q(YD,1Φ1 + YD,2Φ2)d− L(YL,1Φ1 + YL,2Φ2)l+ h.c.

Classification of the THDM in terms of is lepton interactions:
ui di li

Type I Φ2 Φ2 Φ2

Type II Φ2 Φ1 Φ1

lepton-specific Φ2 Φ2 Φ1

flipped Φ2 Φ1 Φ2
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Is there a decoupling Limit?

What to expect?

• one Higgs like state Mh ∼ O(v)
• heavy other scalars MH,MA0 ,MH± � O(v)

To see that we first realize there is only one dimensionful parameter we can change! We
define

mD,mL,mA and m2
S ∼ m2

12

The masses of the CP-even scalars become

M2
H,h =

1
2

[
m2
S ±

√
m4
S − 4m2

Am2
L − 4m4

D

]
cos2(β − α) =

m2
L −M2

h
M2
H −M2

h

The trajectory towards decoupling is very much convoluted
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How do we finally parametrize the THDM?

Originally we describe the THDM with the 8 scalar, 9 fermion (and 2 gauge) parameters

m2
11,m2

22,m2
12, λ1, λ2, λ3, λ4, λ5, v1, v2

YU, YD, YL
g1,g2

In principle we can choose any convenient set of parameters.
My personal favourite choice:

t1, t2,m2
12,Mh,MH, λ3, λ4, λ5, v, tan(β)

mU,mD,mL

e,mw
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Why not use the mixing angle?

For general calculations having the mixing angle α instead of λ3 is benefitial because

• expressions get simple,
• renormaliztion become easier to order, and
• numerical calulations become more stable.

BUT, our consideration of the decoupling limit suggests to choose a set with minimal pa-
rameters that vary in the decoupling limit.
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What do we require for a one-loop calculation?

For observables we calculate the diagrams on the
right

The first two diagrams behave in a non-decoupling way
and diverge logarithmically with increasing scalar par-
ticle mass
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What happens with the divergencies?

iA = h

µ−

µ+

+ h

µ−

µ+

+ h

µ−

µ+

Luckily we setup the renormaliztion scheme that the divergencies are taken care of!
Exactly the same as in the Leptoquark model!

Amazing, the renormaliztion scheme works in the same way as explored for an easier
model. But it is dangerous to think that this is the end!!!
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Lets have a better look at the Yukawa Lagrangian!

LYukawa ⊃ − mµ

v cos(β)
(
cos(α)H0 − sin(α)h0

)
ll

h

µ−

µ+

⊃ Lepton Stuff+
mµ sin(β)

v cos(β)

(
1
2
δZHh − δα

)
cot(α)

The mixing field renormaliztion constant
captures the initial change to the other
scalar and subsequent decay

δZHh =
2ΣHh(M2

h)

M2
H −M2

h

The mixing angle renormaliztion constant
has an similar effect. But this is just a
dummy parameter and must be expressed
through the input parameters!
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Where do we get the mixing angle from?

After rotating to the physical basis the off-diagonal part of the mass matrix satisfies

0 =
m2
12 sin(2(α− β))

sin(2β)
+ λ1v2 sin(2α) cos(β)2 − λ2v2 sin(2α) sin(β)2

− 1
2
λ345v2 cos(2α) sin(2β) +

th sin(2α) cos(α− β)

v sin(2β)
+
tH sin(2α) sin(α− β)

v sin(2β)

=⇒ δα ⊃ δth sin(2α) cos(α− β)

v sin(2β)
+
δtH sin(2α) sin(α− β)

v sin(2β)
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What might happen?

δth → δtH →

δZHh →

I hope/expect that the tadpole renormaliztion constants combine to remove the non-
decoupling terms from the mixing field renormaliztion constant such that the total am-
plitude decouples!
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There are many tools to automatize calculations, that is evaluating Feynman diagrams
and calculating observables

• SARAH, FeynArts, FormCalc, LoopTools
• HDECAY, 2HDECAY, FeynHiggs,…

Problem: These tools are very model dependent

Develop FlexibleSUSY and the extention FlexibleDecay to extend the available models for
automatized high-precision calculation of model properties!
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FlexibleSUSY and FlexibleDecay

We have seen a nice example of the tedious math to show one simple result
No one wants to do these calculation by hand!

We want to develop FlexibleSUSY and FlexibleDecay to make the automatic high-precision
calculation of SM parameters and observables easily available to anyone.

FlexibleSUSY is a spectrum-generator
generator:
→ it generates codes for a large models
→ state-of-the-art Higgs mass prediction

FlexibleDecay adds the ability to calculate
Higgs decays:
→ higher order SM effects are taken into

account
→ the BSM effects are renormalized in the

decoupling renormalization scheme
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Conclusion



Summary and Outlook

• For precise prediction of observables we need regularization and renormalization
1. isolate the divergence in loop diagrams⇒Regularization
2. systematically define new parameters to absorb divergencies⇒Renormalization

• The Higgs Boson is important to constrain BSM models
• The decoupling renormalization scheme does not spoil higher order corrections with
large BSM contributions

• FlexibleSUSY provides a framework to automatize the analyzis of many BSM models
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How to deal with integrals?

We first need to get a grip on the divergent integrals, this process is called Regularization.

A(a,∆) =

∫
d4k
(2π)4

1
(k2 −∆+ iε)a

= i (−1)a
∫

d4k
(2π)4

1
(k2 +∆)a

Cut-off Regularization:
We impose an upper limit to the Momentum
Integral

A(a,∆) =
i (−1)a

16π2

∫ Λ2

0
dk2 k2

(k2 +∆)a

• cut-off breaks momentum translation
invariance

• there could be problems with gauge
invariance of the final result

Dimensional Regularization:
We assume that the space-time dimension
is d. We solve the integral in for d < 2a and
then analytically continue the result to d = 4∫

d4k
(2π)2

−→ µ̃4−d
∫

ddk
(2π)d

• a non-integer space-time dimension
seems artificial, and

• its non-trivial to extend the γ-matrices
(γ5-Problem)



How to take the limit?

A(a,∆) =
i

16π2
Γ(a− d

2 )

Γ(a)

(
∆

4πµ̃2

) d
2−2

(−∆)2−a
-4 -2 2 4

-10

-5

5

10

The Gamma function is a analytic function with simple poles at negative integers. In the
case a− d

2 ≤ 0 we expand Γ(a− d
2 )

A(1,∆) =
i

16π2
∆

(
1
ε
− log

(
∆

µ2

)
+ 1
)

A(2,∆) =
i

16π2

(
1
ε
− log

(
∆

µ2

))
We encapsuled the divergence in the term 1

ε



How to remove the infinity?

Experimentally: Fundamental processes are local and relativistic invariant up to some
energy Emax and relations between parameters and observables cannot depend on
physics at much higher scales!

Theoretically this means that relations between physical quantites as well as observables
in a theory described by L(φ0;m0, λ0), CAN NOT depend on the regularization

The following procedure should result in a unambiguous and testable predictions of the
theory:

1. replace auxiliary parameters m0, λ0 by renormalized quantities m, λ
2. observables f expressed through physical quantities m, λ are independent of
regularization
f = f (m, λ) = f (m0(m, λ), λ0(m, λ)) ⇒Regularization independent



A Model to test the Decoupling scheme

We investigate the S1-Leptoquark model to see the
Decoupling scheme in action! We need only one
additional field, the Leptoquark φ which transforms
as
(
3, 1,− 1

3
)

We focus on the decay of a Higgs Boson into Leptons.

LYφ = YLLij (QC
T
i iσ2Lj)φ† + YRRij qCuiljφ

† + h.c.

LHφ = −gHφ(Φ†Φ)Tr
{
φ†φ

}

φ† i
{
YLLij PL + YRRij PR

}
lj

uCi

φ i
{
(YLL†)ijPR + (YRR†)ijPL

}
uCj

li

h −igHφ v

φ

φ†



How to calculate one-loop diagrams effectively?

For one-loop preocesses the general structure of loop integrals can be expressed in
terms of Passarino-Veltman functions

B0;µ;µν =
µ̃4−D

iπ D
2

∫
dDk 1; kµ; kµkν

(k2 −m2
1)((k+ k1)2 −m2

2)

C0;µ;µν =
µ̃4−D

iπ D
2

∫
dDk 1; kµ; kµkν

(k2 −m2
1)((k+ k1)2 −m2

2)((k+ k2)2 −m2
3)

The tensor structure can be used to reduce difficulty of Integrals to scalar integrals

Bµ = kµ1 B1
Bµν = ηµνB00 + kµ1 k

ν
1 B11

Cµ = kµ1 C1 + kµ2 C2
Cµν = ηµνC00 + (kµ1 k

ν
2 + kµ2 k

ν
1 )C12 + kµ1 k

ν
1 C11 + kµ2 k

ν
2C22

B0(p,m1,m2) =
1
ε
− log

(
m2
1

µ2

)
+ 1−

∫ 1

0
dx log

(
1+ x

x
α1 − xβ1

)
, α1 =

m2
2

m2
1
,β =

p2

m2
1



What do we have to calculate?

We need to calculate the Amplitude A for the process H→ l+i l
−
j

iA = h

µ−

µ+︸ ︷︷ ︸
Tree Diagram

+

t

φ

t

h

µ+

µ−

+

φ

t

φ

h

µ+

µ−

︸ ︷︷ ︸
One-Loop Diagrams

+ h

µ−

µ+︸ ︷︷ ︸
Counter Term



∼ FL PL + FR PR

In order to see the effects of the Decoupling scheme we need to analyze the form factors

F1L =
3mt

16π2v
{[
B0 (mµ,mφ,mt) + 2m2

tC0(a) +m2
µC1(a) +m2

HC0(a)
](
YRR†

)
23Y

LL
32 + · · ·

}
F2L =

3gHφv
16π2

{
mµ[C0(b) + C1(b) + C2(b)]

(
YLL†

)
23Y

LL
32 −mµC2(b)

(
YRR†

)
23Y

RR
32 +mtC0(b)

(
YLL†

)
23Y

RR
32
}

1. due to dimensional regularization
⇒ solved by choosing an appropriate renormalization scheme

2. due to large leptoquark mass
⇒ solved by the decoupling scheme



How to calculate renormalization constants?
Generally one can write self-energies as

Π(p2) = ΠBSM(p2) + ΠSM(p2) −→ δPdecBSM = δPMSSM + δPOSBSM − δPOSSM

Beauty of this model: the SM constribution in the OS difference cancel,
leaving only the BSM contributions to consider

δZdecL = δZMSL +
3

16π2
{(
YLL†

)
23Y

LL
32 B1(mµ,mt,mφ) + . . .

}
δZdecl = δZMSl +

3
16π2

{(
YRR†

)
23Y

RR
32 B1(mµ,mt,mφ) + . . .

}
δZdecm = δZMSm +

3mt

16π2
(
YRR†

)
23Y

LL
32 B0(mµ,mt,mφ)

− 3
32π2

((
YLL†

)
23Y

LL
32 +

(
YRR†

)
23Y

RR
32
)
B1(mµ,mt,mφ)

φ

h h

φ

φ

h h

uk

φ

i j



Putting everything together

First we need the expression for the counter term

h

µ−

µ+

⊃ − imµ

v

{
1
2

(
δZdecL + δZdec†l

)
PL + δZdecm PL + . . .

}

= −mµ

2v

(
δZMSL + δZMSl

)
− mµ

2
δZMSm − 3mt

16π2v
(
YRR†

)
23Y

LL
32 B0(mµ,mt,mφ) + . . .

• by construction the loop divergencies are removed
• and the logarithms with the BSM mass are removed



What happens at different BSM masses?
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