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Lensing Effects
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Lensing Effects in the Universe
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Lensing Effects in the Universe
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Lens:
 Lens redshift (z;)
* Velocity dispersion (04y)
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Observables
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Observables
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Strong Lensing Cosmology

Distance ratio
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Cosmology beyond ACDM
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Strong Lensing Cosmology

Distance ratio

Dpp = %LS [ HO-independent ]
S
Time-delay distance
DrD
Dar = (1 + 21) l; S [ o 1/HO ]
LS
Double source plane ratio
Drs, /Ds, [ .
DDSPDR _— HO—mdependent
D LS, / D So

17



Why strong lensing is important?
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Problems to solve

3.0
How does the mass distribution of lens galaxies evolve ; or
with redshift (cosmic time)? Q|
n 2.0 ™
o o h
E s 4 |
£ llustrisTNG (Wang+ 19)
@© 1.0l Magneticum (Remus+ 17)
S b  SLACS (Auger+ 10)
— o5 " SL2S(Sonnenfeld 13) Shajib+2023
0.0 0.2 0.4 0.6 0.8 1.0

Redshift

21



Problems to solve
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Problems to solve

How does the mass distribution of lens galaxies evolve
with redshift (cosmic time)?

How can we fully exploit distance-ratio measurements
from large galaxy-galaxy lens samples?

Can distance ratios provide robust constraints on
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My Contribution

How does the mass distribution of lens galaxies evolve
with redshift (cosmic time)?

I developed a dark-energy—model-independent approach to measure the redshift evolution of the
total mass-density slope in strong-lensing galaxies.
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My Contribution

How can we fully exploit distance-ratio measurements
from large galaxy-galaxy lens samples?

I built a hierarchical Bayesian framework that simultaneously constrains cosmological parameters
and self-calibrates the redshift evolution of lens density slopes.
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My Contribution

Can distance ratios provide robust constraints on
extensions to ACDM?
I applied this framework to a suite of beyond-ACDM models to assess the cosmological constraining

power of distance ratios.
26



2. Data and Methods
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Theoretical Sensitivity Analysis
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Theoretical Sensitivity Analysis
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Model-independent approach for redshift
evolution of the lens density slope
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Model-independent approach for redshift
evolution of the lens density slope
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Model-independent approach for redshift
evolution of the lens density slope
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Hierarchical Bayesian Framework for
Cosmology analysis
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3. Results
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Redshift Evolution
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Density slope
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What do we expect from LSST + Space Telescopes?
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Results

Geng+2026 in prep.
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wCDM

Geng+2026 in prep.

For the 161 strong lensing sample:

* Accounting for the redshift evolution of
the lens mass-density power law yields
competitive constraints on (2,, and w.
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wow,CDM
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For the 161 strong lensing sample:

* Accounting for the redshift evolution of the
lens mass-density power law  yields
competitive constraints on (2,,and w,, but
weak leverage on w .

* Joint analysis with Planck+BAO closely
reproduces DESI+CMB+DESY5 constraints.
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4. Summary and Outlooks
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Summary

Redshift evolution of the mass-density slope
I detect a negative redshift evolution in the total mass-density slope of lens galaxies using a model-
independent approach. This trend is consistent with expectations from gas-rich merger scenarios.

For an LSST-like sample of ~7,000 strong lenses, the expected precision on the evolution parameter
is A(0y/0z) = 0.021.

Hierarchical distance-ratio cosmography

I developed a hierarchical Bayesian framework that fully exploits lensing distance ratios for
cosmological inference. With this approach, distance-ratio measurements can achieve {2m constraints
comparable in precision to those from time-delay distances, reaching the same order of
magnitude.

Beyond-ACDM constraints from distance ratios

The hierarchical framework enables distance-ratio tests of cosmological models beyond standard
ACDM. In particular, the inferred constraints on wOwaCDM closely reproduce the results from
DESI + CMB + DES Y5 joint analyses, indicating a possible evolution of dark energy.
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Outlooks

Advancing the hierarchical framework

I will refine the ANN-based distance-ratio reconstruction by incorporating the full SN Ia covariance
to reduce reconstruction uncertainties. I will also quantify how lens sub-population hyperparameters
(e.g., environmental components) propagate into cosmological constraints.

High-precision photometric redshifts for lenses and sources

I will develop a high-precision photo-z pipeline for strong-lensing systems by combining PAUS
narrow-band 1maging with public broad-band photometry, enabling more accurate redshift estimates
for both lenses and sources and improving downstream lensing inference.

Probing the graviton mass with lensed gravitational waves

I will assess the prospects for constraining the graviton mass using inspiral signals from binary white
dwarfs gravitationally lensed by the Milky Way central supermassive black hole, forecasting the
achievable sensitivity under realistic detector and lensing configurations.
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