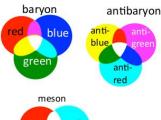


Search for hadron exotics in new decay modes of B⁰ meson at LHCb

Graduate physics seminar 2025

Salil Joshi


Supervisor: **Prof. Wojciech Wislicki**Auxiliary Supervisor: **Dr. Dmytro Melnychuk**

A brief history of Hadron spectrum

- Gell-Mann and Zweig (1964): hadrons described as composites of fractionally charged fermions, Quarks with baryon number $B = \frac{1}{3}$.
- **Original Quark Model**: u,d and s quarks and Baryons (qqq, B = 1) & Mesons ($q\bar{q}$, B = 0).
- **1965, Han and Nambu**: strong-interaction "charges"
- 3 color charges (r-b-g) & 3 anti color charges (y-m-c).
- Baryon and Meson: color neutral

Quantum Chromodynamics: Generalization to a gauge theory with quarks of fractional electric charge. (1973)

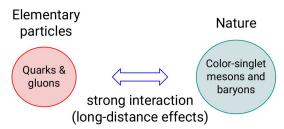


SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

CHERN - Ceneva

Received 4 January 1964


anti-triplet as anti-quarks q. Baryons can now be constructed from quarks by using the combinations (qqq), (qqqq), etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}q)$, etc. It is assuming that the lowes

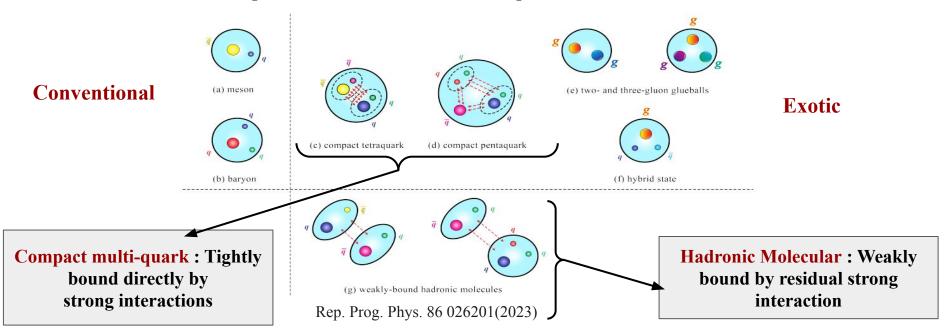
In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from AAAAA, AAAAAAA, etc., where A denotes an anti-ace. Similarly, mesons could be formed from AA, AAAA etc. For the low mass mesons and baryons we will assume the simplest possibilities. AA and AAA, that is, "deuces and trevs".

Why are multi-quark states important?

• X(3872), in 2003 accidental discovery by Belle as a narrow peak in the J/ $\psi \pi^+ \pi^-$ invariant mass distribution.

Asymptotic freedom
Perturbation theory
Not accessible experimentally

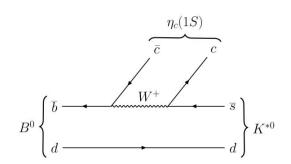
Confinement
Effective theories approximate QCD
Accessible to Experiment

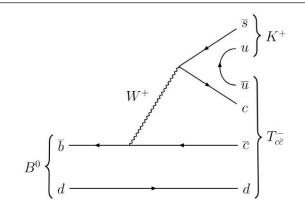

No rigorous description of hadrons and their spectrum, as bound-quark systems from the QCD Lagrangian

Muti-quark states are the bridge!!

- Exotic hadrons live exactly in the transition region: sensitive to multi-quark interactions, gluonic excitations, and strong-coupling dynamics, invisible in ordinary mesons/baryons.
- Involve diquarks, multi-body color structures, hadronic molecules, and gluonic degrees of freedom, can probe aspects of QCD that ordinary hadrons do not.
- Studying them tests how the same QCD Lagrangian produces both perturbative and non-perturbative behavior, helping build a more unified picture of hadronic structure.

Exotics

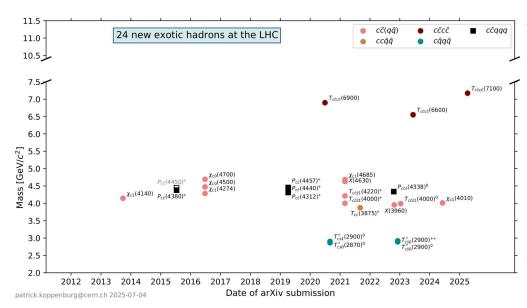

- Conventional States: states well understood phenomenologically in the Quark Model i.e. $q\bar{q}$ and qqq
- Exotic states: 4-5 quark states, unconventional quantum numbers,....

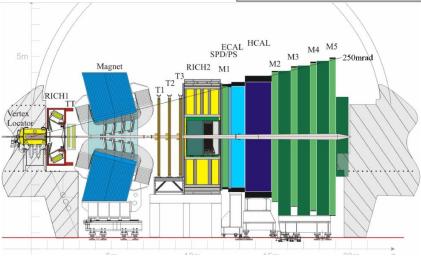

Exotics and B-decays

- bb pair produced in high-energy collisions, hadronizes separately.
- B meson are a $\overline{\mathbf{b}}$ and $\mathbf{u},\mathbf{d},\mathbf{s}$, or \mathbf{c} quark : \mathbf{B}^+ , \mathbf{B}^0 , $\mathbf{B}_{\mathbf{c}}$, and $\mathbf{B}_{\mathbf{s}}$
- Decay via generation-changing processes : $\mathbf{b} \rightarrow \mathbf{c} \mathbf{W}^-$
- Forms charmed mesons or **cc** (charmonium).

Conventional cc

Hidden charm: cc pairs, zero net charm




Open charm: Either only c or only c, non zero net charm

Exotics and LHCb

JINST 3 (2008) S08005, IJMPA 30:07 (2015) 1530022

- Largest data sample of b and c hadrons
- Excellent tracking → mass and lifetime resolutions
- **Particle Identification** → important to deal with charged hadrons in final states

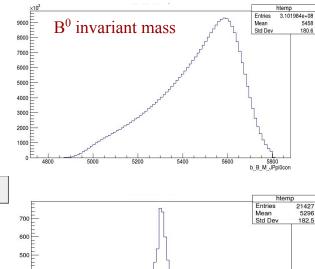
Run	Years	$\frac{\text{Lum.}}{[\text{fb}^{-1}]}$	$\frac{\sqrt{s}}{[\text{TeV}]}$	$\sigma_{bar{b}} \ [\mu { m b}]$	$\sigma_{car{c}}$ $[\mu { m b}]$
1	2011-12	3.0	7,8	70	1400
2	2015-17	3.8	13	150	2400
2	2018	2.2	13		

Methodology in brief

Optimized to reduce background

Reconstruction: B⁰ meson from final state particles in data and Monte-Carlo.

Cut based Selection: Appropriate range around many kinematical variables in order to increase signal(S) to


background(B) ratio.

Multivariate analysis:

- ML techniques separate S from B using "discriminating variables".
- Boosted decision trees (BDT)
- **Signal:** extracted from simulation
- **Background:** extracted from real data
- 2 Trainings:
 - Combinatorial background
 - Dedicated to neutral pion background
- Additional selections:
 - Mass Vetoes : ex $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
 - o Internal clone removal
 - Kinematical reweighting
 - Multiplicity correction

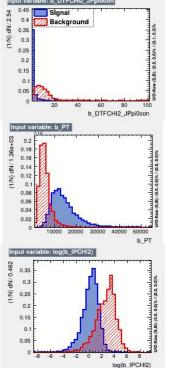
Perform Fits:

- Extended maximum likelihood fits using appropriate modelling of B⁰ meson invariant mass.
- Extract yields for branching fraction calculation and weights search for exotics.

- Several vector states observed in e⁺e⁻→charmonium+hadrons, cross sections near (4.2- 4.6) GeV
- $\psi(4230)$ exhibits non-conventional properties.

[Phys. Rev. Lett. 122 (2019) 232002]

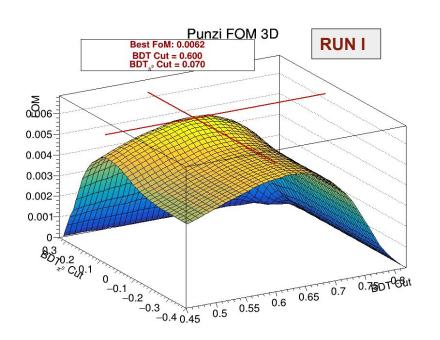
- Hadronic transitions to lower charmonia are sensitive probes to internal structure.

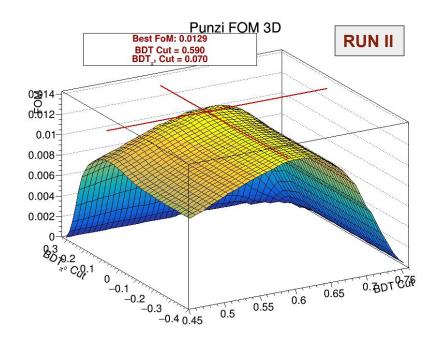

 BESIII results at DPF 2015 [arXiv:1509.08042]
- $\psi(4230) \rightarrow J/\psi \pi^+\pi^-\pi^0$ provides a direct test of the coupling of $\psi(4230)$ to the $J/\psi\omega$ system
- Measure branching fraction of a **new decay mode** of B⁰ meson.

Reconstruction:

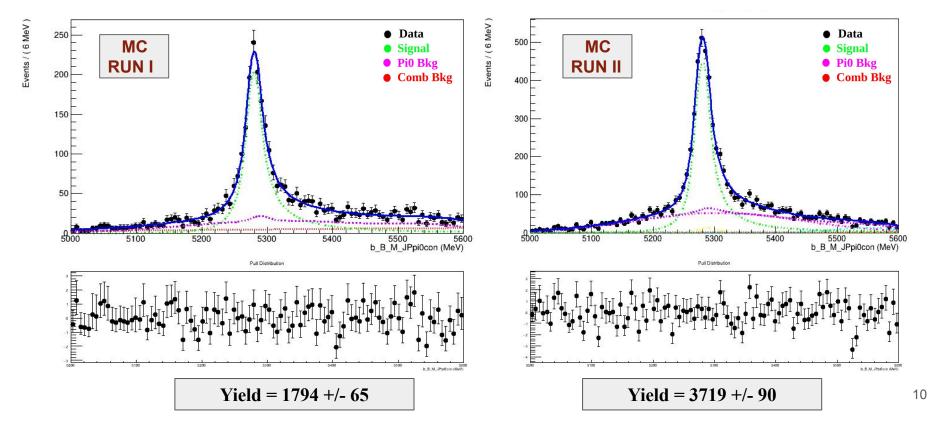
- $B^0 \rightarrow J/\psi \pi^+ \pi^- \pi^0 \pi^+ K^-$ full range of $m_{(\pi^+\pi^-\pi^0)}$
- $J/\psi \rightarrow \mu^+\mu^-$, $\pi^0 \rightarrow \gamma\gamma$
- MC: $B^0 \rightarrow J/\psi \pi^+\pi^-\pi^0\pi^+K^-$ (PHSP)

	Pi0 BDT Variables
π^0	P_T
	M
	CL
(γ_1, γ_2)	$min(P_T), max(P_T)$
	min(CL), max(CL)
	ΣP_T
	$ (P_{T1} - P_{T2})/(P_{T1} + P_{T2}) $

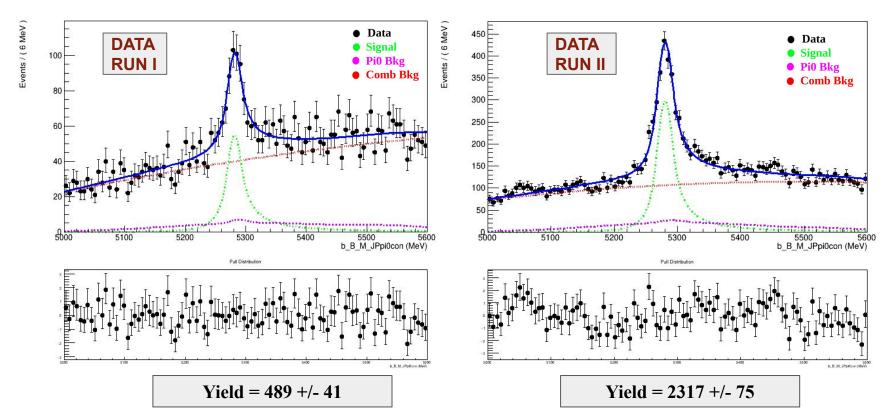

μ^{\pm}	ΣP_T
(γ_1,γ_2)	$min(P_T), max(P_T)$ min(CL), max(CL)
ζ^{\pm}, π^{\pm}	ΣP_T
B^0	$\log(\min(\chi_{IP}^2))$ $\chi^2 \text{DTF } (J\psi, \pi^0 \text{ constrained})$ $\log(\chi_{IP}^2)$
	P_T
	VCHI2NDOF

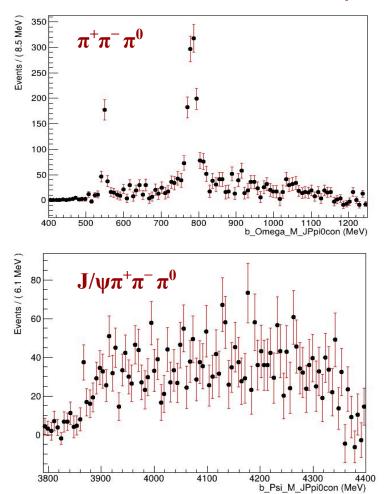


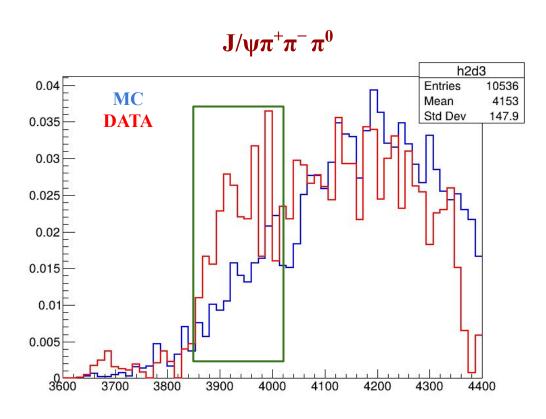
FoM:
$$\frac{\varepsilon_{s}}{5/2 + \sqrt{(S+B)}}$$


Scan on 2 BDT's simultaneously

- Efficiency (ε) for each pair (MC): (No. events pass cuts)/(Total events)
- S+B for each pair (Data): 5250 < count events in data < 5310



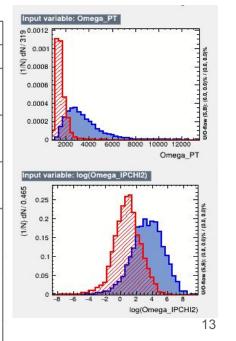


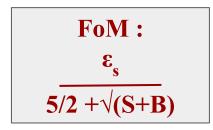

Extended likelihood fit: Signal: DSCB, Pi0 Bkg: 3 gaussians, Comb. Bkg: Chebyshev Polynomial

Extended likelihood fit: Signal: DSCB, Pi0 Bkg: 3 gaussians, Comb. Bkg: Chebyshev Polynomial

- $X(3940) \rightarrow J/\psi\omega(782)$ in $J/\psi X$ and $B \rightarrow K\omega J/\psi$ Phys. Rev. Lett. 94, 182002(Belle Collaboration),
- Decay to $J/\psi\omega => X(3940)$ is not a conventional state

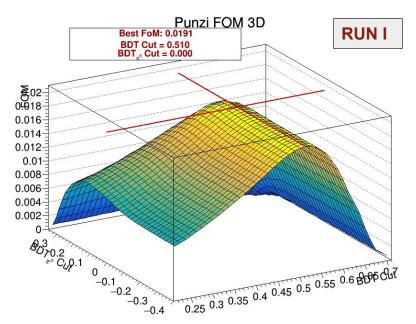
Phys. Rev. Lett. 101,082001(BABAR Collaboration)

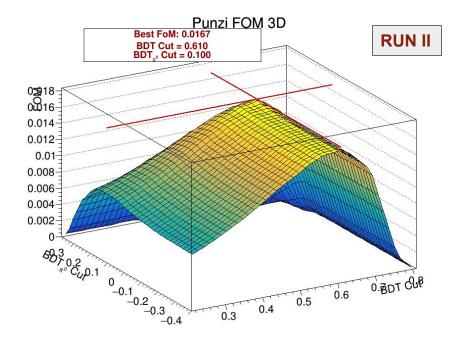

- Only open charm decays observed yet finding significant $J/\psi\omega =>$ Compact component
- This final state fixes C-parity and involves an isoscalar light meson : could determine J^{PC}
- Measure branching fraction of a **new decay mode** of B⁰ meson.

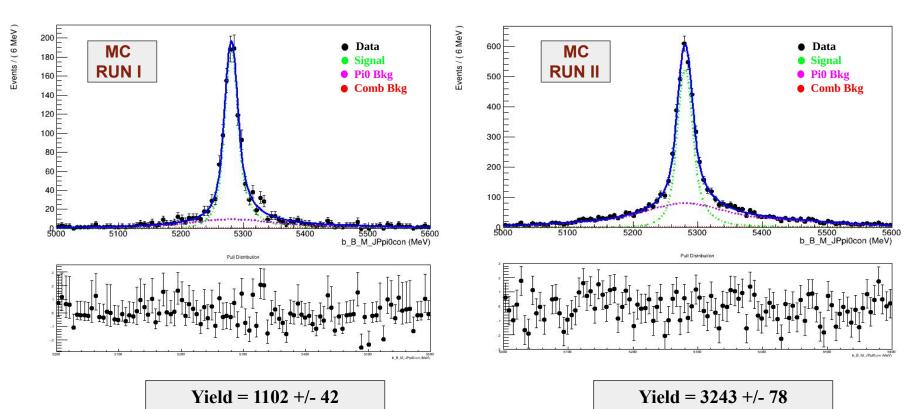

Reconstruction:

- $B^0 \rightarrow J/\psi \omega \pi^+ K^-$, $\omega \rightarrow \pi^+ \pi^- \pi^0$
- $J/\psi \rightarrow \mu^+\mu^-, \pi^0 \rightarrow \gamma \gamma$
- MC: $B^0 \rightarrow J/\psi \omega \pi^+ K^-$

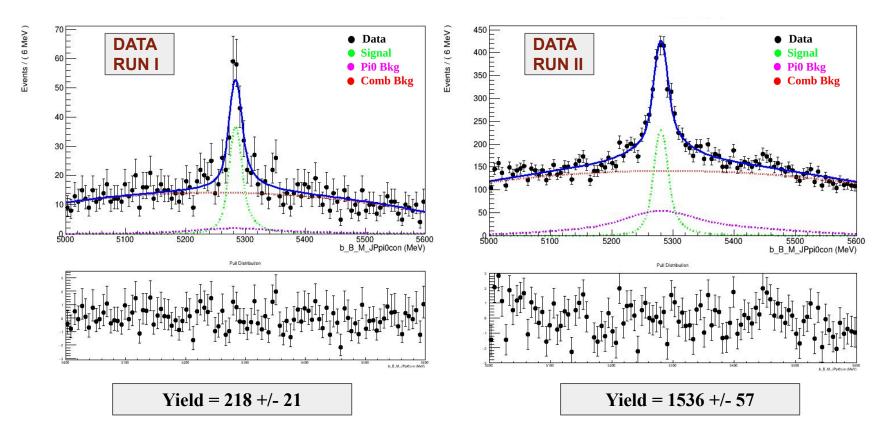
Pi0 BDT Variables		
π^0	P_T	
	M	
	CL	
(γ_1, γ_2)	$min(P_T), max(P_T)$	
	min(CL), max(CL)	
	ΣP_T	
	$ (P_{T1}-P_{T2})/(P_{T1}+P_{T2}) $	
π^0 , ω	$P_{T\omega}/P_{T\pi^0}$	
	$ (P_{T\pi^0} - P_{\omega})/(P_{T\pi^0} + P_{\omega}) $	

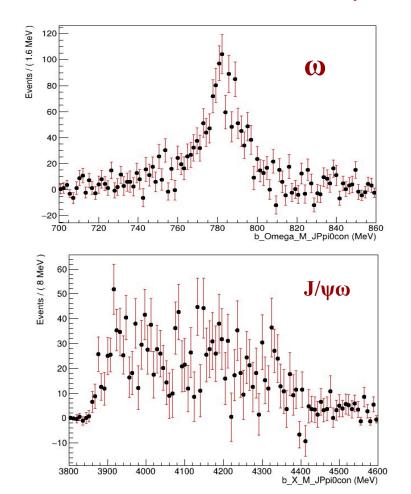

Co	ombinatorial BDT Variables
μ^\pm	ΣP_T
(γ_1, γ_2)	$min(P_T), max(P_T)$
	min(CL), max(CL)
K^{\pm},π^{\pm}	ΣP_T
	$log(min(\chi^2_{IP}))$
ω	P_T
	$log(\chi_{IP}^2)$
B^0	χ^2 DTF $(J\psi, \pi^0 \text{ constrained})$
	$log(\chi_{IP}^2)$
	P_T
	$(log\chi^2_{FD})$
	-log(DIRA)
	VCHI2NDOF

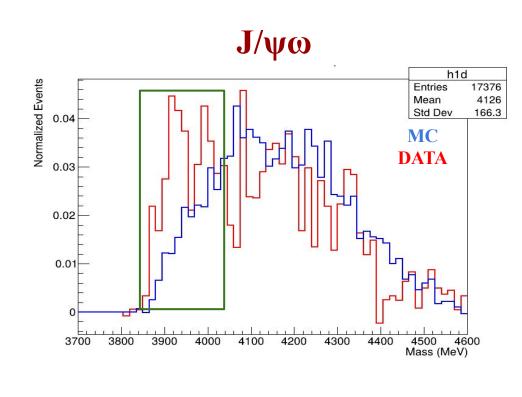



Scan on 2 BDT's simultaneously

- Efficiency (ε) for each pair (MC): (No. events pass cuts)/(Total events)
- S+B for each pair (Data): 5250 < count events in data < 5310






Extended likelihood fit: Signal: DSCB, Pi0 Bkg: 2 gaussians, Comb. Bkg: Chebyshev Polynomial

Extended likelihood fit: Signal: DSCB, Pi0 Bkg: 2 gaussians, Comb. Bkg: Chebyshev Polynomial

Branching fraction measurement

$$\frac{\text{Br}(B^{0} \to J/\psi \pi^{+} \pi^{-} \pi^{0} \pi^{+} K^{-})}{\text{Br}(B^{0} \to J/\psi \pi^{+} \pi^{-} \pi^{+} \pi^{-})} = \frac{\{N1 * E2\}}{\{E1 * N2\}}$$

$$\frac{\mathrm{Br}(\mathrm{B}^0 \to \mathrm{J/\psi}\omega\pi^+\mathrm{K}^-)}{\mathrm{Br}(\mathrm{B}^0 \to \mathrm{J/\psi}\pi^+\pi^-\pi^+\pi^-)} = \frac{\{\mathrm{N}1^*\mathrm{E}2\}}{\{\mathrm{E}1^*\mathrm{N}2\}\mathrm{Br}(\omega \to \pi^+\pi^-\pi^0)}$$

- N1 = Yield of Signal from data
- E1 = Efficiency for signal (Ratio of yield from MC to total MC events)
- N2 = Yield of Reference channel from data
- **E2** = Efficiency for reference channel
- Errors from all variables are added in quadrature.
- Separate calculation for run I and II and combination done by weights :

$$W_{RI} = (1/\sigma_{RI}^2) / (1/\sigma_{RII}^2 + 1/\sigma_{RI}^2)$$

$$W_{RII} = (1/\sigma_{RII}^2) / (1/\sigma_{RII}^2 + 1/\sigma_{RI}^2)$$

$$\mathbf{B.F}_{comb} = \mathbf{w}_{RI} \ \mathbf{B.F}_{RI} + \mathbf{w}_{RII} \ \mathbf{B.F}_{RII}$$

Results

BF(J/
$$\psi \pi^+ \pi^- \pi^0 \pi^+ K^-$$
): RUN I = 8.7 +/- 2.0
RUN II = 10.6 +/- 1.4

Combined: 10.0 +/- 1.1

BF(J/ψω
$$\pi^+$$
K⁻): RUN I = 6.7 +/- 1.0

RUN II = 7.4 + / - 0.4

Combined: 7.3 +/- 0.4

Conclusions

- We have made observation of 2 new decay modes of B0 meson along with presence of signatures from exotic tetraquarks as intermediate states.
- We measure their relative branching fraction.
- To do: For each decay mode, estimate systematic uncertainty