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•All required numerical implementations.


•All parametric scans.


•Results (relic abundance, bounds, etc).


•Analysis and paper writing.

• Deriving the correct equations to solve.


• All required numerical implementations.


• Analysis.


• Results (bubble profile, etc).

Same as above
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The study of Dark Matter

Experiments
(In)Direct Detection

Model building

String theory (SUSY) Bottom-up

Astrophysics
Large structures

Distribution of DM

Early Universe dynamics
freeze-out, freeze-in, Phase Transitions
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times-for-strings/

+DS

https://nhsjs.com/2024/the-holes-in-our-universe-
beyond-the-standard-model/

https://nhsjs.com/2024/the-holes-in-our-universe-beyond-the-
standard-model/



Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

Early Universe dynamics 
of Cannibal DMDOI:10.1007/JHEP09(2025)083

DOI:10.1007/JHEP11(2024)050

standard cosmology

non-standard cosmology



Cannibal Dark Matter

Simple realisation with a scalar 
field: 

g
3!

ϕ3 +
λ
4!

ϕ4

If DM is non-relativstic, . The DM fluid exchanges particle 
number for kinetic energy!

Γ3→2 > Γ2→3

ϕ

ϕ

ϕ

Self interaction
ϕ

ϕ



Evolution of Cannibal DM
Absence of portals leads to . Temperature evolution 
becomes relevant:

TDM ≠ TSM
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•DM is initially relativistic;


•as the DM fluid cools down, the dark sector exchanges number of particles for kinetic 
energy;


•all interactions decouple and the system behaves as a non-relativistic gas.

See also Hufnagel, Tygat 22 and Arcadi, Lebedev 19

Evolution of Cannibal DM
Absence of portals leads to . Temperature evolution 
becomes relevant:

TDM ≠ TSM
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Cannibals produced via freeze-in
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Consider , ,  and initially cold 
DM; :

ℒ ⊃ − λhφφ2H†H λhφ ≪ 1 λφ ≥ 10−4

TDM /TSM = 10−2

See EC, A. Hryczuk 24
and also Bernal, Chu 15 (SIMP  DM)ℤ2
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Cannibals produced via freeze-in
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Detectability 
prospects if the 
reheating temperature 
is low

PortalDM self interactions (cannibal) 

Toy model: 

2 → 3
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Inflaton decay and reheating
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Transition between non-standard and standard cosmology is due 
to a scalar (inflaton) field that rolls ( ) in a potential and 
subsequently oscillates in the minimum decaying into SM states. 

a ∝ eHt

dρϕ

dt
+ 3Hρϕ = − Γρϕ ,

dρR

dt
+ 4HρR = + Γρϕ ,

Cicoli, String Cosmology



Inflaton decay and reheating

Γ3→2 = Γ2→3 > H 1
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During reheating   (matter domination), and , i.e., 
rapid expansion of the universe

T ∝ a−3/8 H ∝ T4

Freeze-in initial condition ( )nDM
i = 0
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Production during reheating

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

Production rate from SM has to catch up with , and  
dilutes during reheating.

H ∝ T4 ρDM
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Impact on collider phenomenology
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•Low  leads to 
detectability; 


•The case of instantaneous 
reheating is studied in 
Lebedev, Morais, Oliveira, 
Pasechnik 24.

Trh
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Thermal corrections

Γ3→2 = Γ2→3 > H 1
T
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When the temperature 
drops, the system will 
roll to the true 
minimum in a smooth 
transition.

In the early universe there is a thermal (ensemble) background of 
states . This ensemble leads to thermal corrections:ϕ

VT(ϕb) =
T4

2π2
gϕ ∫ dy y2 ln (1 − e− y2 + (m(ϕb)/T)4)

ϕ ϕ
ϕ

ϕ

ϕ ϕ
Veff(ϕb) = Vcl(ϕb) + Vcw(ϕb) + Vct(ϕb)+VT(ϕb)



U(1) theory
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If the transition is more abrupt, it can leave imprints in the early 
universe. Simple realization: complex scalar field  charged under a 
U(1) gauge symmetry

Φ

ℒ = | (∂μ − igA′￼μ)Φ |2 −
1
4

F′￼μνF′￼μν + μ2Φ*Φ − λ(Φ*Φ)2 +
ϵ

2 cos θw
BμνF′￼μν .
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U(1) theory
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Kinetic mixing

And we expand the scalar as Φ → (ϕ + ϕb + iφ)

 ϕb = ⟨ϕ⟩ ≠ 0

Goldstone boson

Dark gauge boson (dark photon)

If the transition is more abrupt, it can leave imprints in the early 
universe. Simple realization: complex scalar field  charged under a 
U(1) gauge symmetry

Φ

ℒ = | (∂μ − igA′￼μ)Φ |2 −
1
4

F′￼μνF′￼μν + μ2Φ*Φ − λ(Φ*Φ)2 +
ϵ

2 cos θw
BμνF′￼μν .
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ΔVeff

interactions 
with  A′￼

Formation of ‘true vacuum bubbles’

First order phase transition
The appealing of this theory results in the interactions with the 
gauge boson, they can induce first order phase transitions:

See e.g. Ertas, 
Kahlhöfer, 
Tasillo 21

and Bringmann, 
et.al 24 Thermal fluctuations 

trigger a transition



Vacuum bubbles

Γ3→2 = Γ2→3 > H 1
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Vacuum bubbles nucleate and percolate (they form, grow, collide 
and merge)

Nucleation and percolation on the lattice. Image courtesy of Henda Mansour
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Space-time feels the percolation: energy and momentum determine 
the curvature of space-time. If energy moves or oscillates 
unevenly, it disturbs the space-time fabric.

Possible observable GW 
background with the 
Laser Interferometer 
Space Antenna (LISA)

Nucleation Expansion Percolation

Wikipedia

Balasz, et.al. Gravitational waves from cosmological first-order 
phase transitions with precise hydrodynamics

Vacuum bubbles and GWs
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There are different scenarios leading to FOPTs. The system can go 
from a broken to a symmetric phase:

Inverse First order phase transition

Standard assumption: symmetric to broken phase

Initial 
(hot) state

Final (cold) state

Inverse transition: broken to symmetric phase

  drops 
over time
T

Initial (cold) state

Intermediate state

Final state

Time

Time

See e.g. Dent, Duttas, Rai 21
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•Zero or negligible initial population of  and  ( ).


•Inverse decays from the SM:  populate the DS.


•Strong self and gauge interactions thermalize the system instantly.
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Inverse phase transition

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

•Zero or negligible initial population of  and  ( ).


•Inverse decays from the SM:  populate the DS.


•Strong self and gauge interactions thermalize the system instantly.


•The system is dilute ( ).

ϕ A′￼ ni = 0

f f̄ → A′￼

z = eμ/T ≪ 1

f f̄ → A′￼ ϕA′￼

A′￼ ϕ ϕ

A′￼

ϕ

ϕϕ → ϕϕ
A′￼ϕ → A′￼ϕ

(e(E−μ)/T − 1)−1

A′￼
A′￼

ϕϕ

A′￼

(e(E−μ)/T − 1)−1 ≪ (eE/T − 1)−1

Realizable with injection of entropy from the SM plasma as in the 
freeze-in mechanism:
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T
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In the previous discussion we implicitely assumed two things:


•Local thermal equilibrium (Bose-Einstein);


•Chemical equilibrium ( ).μ = 0

VT,μ(ϕb) =
T4

2π2 ∑
a=ϕ,φ,A′￼

ga ∫ dy y2 ln (1 − eμ/Te− y2 + (ma(ϕb)/T)4)z

In fact 

T2

2π2 ∫ dy y2 ln (1 − eμ/Te− y2 + (m/T)4) = − ∫
d3p

(2π)3

p2

3E
(e(E−μ)/T − 1)−1 = − p

What about a chemical potential?

Are there modifications to the effective potential when ? μ ≠ 0

z

Free energy density



Dynamics

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

Evolution of  and  with  and  at .Tds z mϕ = few MeV mA′￼ = 1 GeV T = 0
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Bubble profile

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

The shape of the vacuum bubbles is given by the bounce 
equation (Klein Gordon equation)

Bubble profile

(∂rr +
2
r

∂r)ϕb(r) = ∂ϕb
Veff , ∂rϕb(r = 0) = 0
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Conclusions

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

•SIDM produced via the freeze-in mechanism has a unique 
evolution in the Early Universe;


•Temperature can have a non-trivial impact in such scenarios 
and need to be studied carefully;


•The impact of self-interactions in an inverse PT requires a 
careful treatment of the Boltzmann equation coupled with 
the effective potential;


•Possible gravitational waves signatures might arise from such 
scenario (under current investigation).



Backup slides
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T

∼ t1/2 ∝ a



Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

Consider a simple QFT model with a real scalar field :ϕ

ℒ[ϕ] =
1
2

(∂μϕ)2 −
1
2

μ2ϕ2 −
λ
4!

ϕ4 .

Effective potential

Using the Feynman path integral definition:

Z[J] = e−iE[J] = ∫ 𝒟ϕ exp [i∫ d4x(ℒ[ϕ] + Jϕ)] .

We define a background field and effective potential

ϕb ≡ ⟨ϕ⟩ = −
δ
δJ

E[J] =
∫ 𝒟ϕ exp [i ∫ d4x(ℒ[ϕ] + Jϕ)] ϕ

∫ 𝒟ϕ exp [i ∫ d4x(ℒ[ϕ] + Jϕ)]

Veff(ϕb) ≡
E[J] + ∫ d4y J(y)ϕb(y)

Volume
a.k.a. free energy density

i.e., averaged/
macroscopic 
behaviour of ϕ



Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

Consider a classical theory:

Classical potential

Vcl(ϕb) =
1
2

μ2ϕ2
b +

λ
4!

ϕ4
b , ϕb = ⟨ϕ⟩
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Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

Classical potential
Consider a classical theory:

Vcl(ϕb) =
1
2

μ2ϕ2
b +

λ
4!

ϕ4
b , ϕb = ⟨ϕ⟩



Classical potential

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

The theory has to be 
expanded around :ϕb

ϕ → ϕ + ϕb

Consider a classical theory:

Vcl(ϕb) =
1
2

μ2ϕ2
b +

λ
4!

ϕ4
b , ϕb = ⟨ϕ⟩



Classical potential

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

ℒ[ϕ] ⊃ −
1
2

μ2(ϕ + ϕb)2 −
λ
4!

(ϕ + ϕb)4 = −
1
2

m2(ϕb)ϕ2 −
1
3!

g(ϕb)ϕ3 −
λ
4!

ϕ4

The theory has to be 
expanded around :ϕb

ϕ → ϕ + ϕb

Consider a classical theory:

Vcl(ϕb) =
1
2

μ2ϕ2
b +

λ
4!

ϕ4
b , ϕb = ⟨ϕ⟩



Quantum corrections

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

The classical potential is not the full picture:

Veff(ϕb) = Vcl(ϕb)+Vcw(ϕb) + Vct(ϕb)



Quantum corrections

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

Vcw(ϕb) = gϕ
m4(ϕb)
64π2 (log

m2(ϕb)
Λ2

− 3/2) , m(ϕb)2 = 3λϕ2
b

Vct(ϕb) = δμ2ϕ2
b + δλϕ4

b

The classical potential is not the full picture:

Veff(ϕb) = Vcl(ϕb)+Vcw(ϕb) + Vct(ϕb)



Quantum corrections

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

Vcw(ϕb) = gϕ
m4(ϕb)
64π2 (log

m2(ϕb)
Λ2

− 3/2) , m(ϕb)2 = 3λϕ2
b

Vct(ϕb) = δμ2ϕ2
b + δλϕ4

b

Vcl

The classical potential is not the full picture:

Veff(ϕb) = Vcl(ϕb)+Vcw(ϕb) + Vct(ϕb)



Quantum corrections

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

ΔVeff < ΔVcl

Vcl

Vcw(ϕb) = gϕ
m4(ϕb)
64π2 (log

m2(ϕb)
Λ2

− 3/2) , m(ϕb)2 = 3λϕ2
b

Vct(ϕb) = δμ2ϕ2
b + δλϕ4

b

The classical potential is not the full picture:

Veff(ϕb) = Vcl(ϕb)+Vcw(ϕb) + Vct(ϕb)



U(1) theory

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

=
1
2

∂μϕ∂μϕ +
1
2

∂μφ∂μφ −
1
4

F′￼μνF′￼μν −
1
2

m2
ϕϕ2 +

1
2

m2
A′￼

A′￼2
μ

−gA′￼μ(φ∂μϕ − ϕ∂μφ − vϕ∂μφ) +
g2

2
ϕ2A′￼2

μ + g2vϕϕA′￼2
μ

−λvϕϕ3 − λvϕφ2ϕ −
λ
4

ϕ2φ2 −
λ
4

ϕ4 −
λ
4

φ4

+
ϵ

2 cos θw
BμνF′￼μν

ℒ = | (∂μ − igA′￼μ)ϕ |2 −
1
4

F′￼μνF′￼μν + μ2Φ*Φ − λ(Φ*Φ)2 +
ϵ

2 cos θw
BμνF′￼μν

The transition might be more violent, leaving imprints in the 
early universe. Simple realization: complex scalar field  
charged under a U(1) gauge symmetry

Φ



Effective potential of a U(1) theory

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

The effective potential of  will receive corrections from its 
interactions with  and :

ϕ
φ A′￼

VCW(ϕb) = ∑
a=ϕ,φ,A′￼

ga
m4

a(ϕb)
64π2 (log

m2
a(ϕb)
Λ2

− 3/2)
VT(ϕb) =

T4

2π2 ∑
a=ϕ,φ,A′￼

ga ∫ dy y2 ln (1 − e− y2 + (ma(ϕb)/T)4)

m2
ϕ(ϕb) = 3λϕ2

b − μ2, m2
φ(ϕb) = λϕ2

b − μ2, m2
A′￼

(ϕb) = g2ϕ2
b .

Vdaisy(ϕb) = −
T

12π ∑
a=ϕ,φ,A′￼L

ga [(m2
a(ϕb) + Πa(T ))3/2 − (m2

a(ϕb))3/2]

Vcl(ϕb) =
1
2

μ2ϕ2
b +

λ
4!

ϕ4
b



Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

Not surprising ( ), but useful:Veff = − pressure

∫
d3p

(2π)3

p 2

3E (e
E − μ

T − 1)
−1

=
m(ϕb)2T2

2π2

∞

∑
k=1

zk

k2
K2(k m(ϕb)/T ) ,

which converges for . The evolution for  and  are given by 
the Boltzmann equation

z ≤ 1 T z

(∂t − H p∂p) f(p, t) = C[ f ] Collision 
operator

Freeze-in and 
Self-int.

 and f̄ f → A′￼

3ϕ ↔ 2ϕ

dN
da = a2

H C0 ,

dTds

da = 1
1 + κ1 (−

2 Tds

a + 1
3 a ⟨ p4

E3 ⟩ + a2

3 H N C2 − N′￼

N Tds + κ2)

0th 
moment

2nd 
moment

What about a chemical potential?



Coupled Boltzmann equations

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

first we define ;


we integrate ;


to obtain  


along with the usual nBE: , ;


we close the system assuming  (local thermal eq).

T′￼:=
gdm

3n ∫
d3p

(2π)3

p2

E
f(p)

g(2π)−3 ∫ d3p
p2

E
(∂t − H ⃗p ⋅ ⃗∇p)f = g(2π)−3 ∫ d3p

p2

E
C[ f ] =: C2

dT′￼

da
= −

2 T′￼

a
+

1
3 a ⟨ p4

E3 ⟩ +
a2

3 H N
C2 −

a2 T′￼

H N
C0;

dN
da

=
a2

H
g∫

d3p
(2π)3

C[ f ] =:
a2

H
C0 N = na3

f(E) =
n

neq
exp [−

E
T′￼]

To obtain ‘temperature’ Boltzmann equation:



Coupled Boltzmann equations

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

the integral  contains the term;


 because .


therefore ;


with  and .

∫ d3p
p2

E
(∂t − H ⃗p ⋅ ⃗∇p)f

d(m2)
dt ∫

d3p
(2π)3

p2

E3
f E = (p2 + m(t)2)

dTds

da
=

1
1 + κ1 (−

2 Tds

a
+

1
3 a ⟨ p4

E3 ⟩ +
a2

3 H N
C2 −

N′￼

N
Tds + κ2)

κ1 =
1
6

⟨p2/E3⟩(VϕϕT −
VϕϕϕVϕT

m2 ) κ2 = −
1
6

⟨p2/E3⟩(Vϕϕz −
VϕϕϕVϕz

m2 ) N′￼

Neq

When the mass changes over time (due to the effective 
potential)



Inverse phase transition

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

ΔVeff

interactions 
with  A′￼

The system is initially in a broken phase and is ‘pushed’ towards a 
symmetric phase:



Inverse phase transition

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

The system is initially in a broken phase and is ‘pushed’ towards a 
symmetric phase:

ΔVeff

interactions 
with  A′￼

Thermal fluctuations 
trigger a transition

See e.g. Dent, Duttas, Rai 21



GW spectrum

Γ3→2 = Γ2→3 > H 1
T

∼ t1/2 ∝ a

The spectrum is calculated via

ΩGWh2( f ) = Rh2 Ω̃ ( κswα
α + 1 ) (β/H)−1 Υ S ,

S( f, fp) = ( f
fp )

3

( 7
4 + 3( f /fp)2 )

7/2

κsw =
ΔΘ
4ρDS

α =
Δθ

4(ρDS + ρsm)

Latent heat ( )ΔVeff

10°5 10°4 10°3 10°2 10°1 100

f [Hz]

10°13

10°12

10°11

10°10

10°9

10°8

10°7

10°6

≠
G

W

LISA

Gonstal, Lewicki, Swiezewska 25


