Production of Self Interacting Scalars in the early Universe

Esau Cervantes

Supervisor: Andrzej Hryczuk

Oct 16, 2025

Graduate seminar

Content

Freezing-in Cannibal Dark Sectors

DOI:10.1007/JHEP11(2024)050

Esau Cervantes and Andrzej Hryczuk

National Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland

E-mail: esau.cervantes@ncbj.gov.pl, andrzej.hryczuk@ncbj.gov.pl

Freezing-in Cannibals with Low-reheating Temperature

DOI:10.1007/JHEP09(2025)083

Nicolás Bernal,^a Esau Cervantes,^b Kuldeep Deka,^a Andrzej Hryczuk^b

^aNew York University Abu Dhabi

PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates

^bNational Centre for Nuclear Research

Pasteura 7, 02-093 Warsaw, Poland

E-mail: nicolas.bernal@nyu.edu, esau.cervantes@ncbj.gov.pl, kuldeep.deka@nyu.edu, andrzej.hryczuk@ncbj.gov.pl

Current collaboration with

Felix Kahlhoefer, Jonas
Matuszak and Rosellon
Santiago from KIT (Germany)

standard cosmology Early Universe dynamics of Cannibal DM non-standard cosmology Cosmological (inverse) phase transitions

Content

Freezing-in Cannibal Dark Sectors

DOI:10.1007/JHEP11(2024)050

Esau Cervantes and Andrzej Hryczuk

National Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland

E-mail: esau.cervantes@ncbj.gov.pl, andrzej.hryczuk@ncbj.gov.pl

- All required numerical implementations.
- All parametric scans.
- Results (relic abundance, bounds, etc).
- Analysis and paper writing.

Freezing-in Cannibals with Low-reheating Temperature

DOI:10.1007/JHEP09(2025)083

Nicolás Bernal,^a Esau Cervantes,^b Kuldeep Deka,^a Andrzej Hryczuk^b

^aNew York University Abu Dhabi

PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates

^bNational Centre for Nuclear Research

Pasteura 7, 02-093 Warsaw, Poland

E-mail: nicolas.bernal@nyu.edu, esau.cervantes@ncbj.gov.pl, kuldeep.deka@nyu.edu, andrzej.hryczuk@ncbj.gov.pl

Same as above

Current collaboration with

Felix Kahlhoefer, Jonas
Matuszak and Rosellon
Santiago from KIT (Germany)

- Deriving the correct equations to solve.
- All required numerical implementations.
- Analysis.
- Results (bubble profile, etc).

Experiments

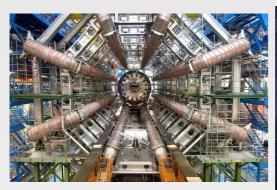
(In)Direct Detection

http://www.ep.ph.bham.ac.uk/ DiscoveringParticles/lhc/experiments/

https://science.nasa.gov/mission/webb/

Experiments

(In)Direct Detection

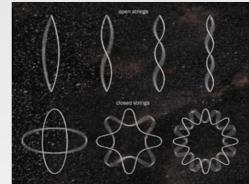


http://www.ep.ph.bham.ac.uk/ DiscoveringParticles/lhc/experiments/

https://science.nasa.gov/mission/webb/

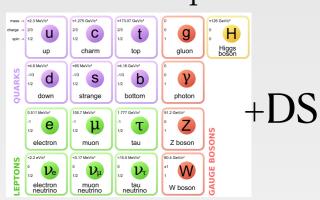
Model building

String theory (Susy)



https://cerncourier.com/a/testingtimes-for-strings/

Bottom-up

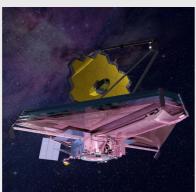


 $\label{lem:https://nhsjs.com/2024/the-holes-in-our-universe-beyond-the-standard-model/} https://nhsjs.com/2024/the-holes-in-our-universe-beyond-the-standard-model/$

Experiments

(In)Direct Detection

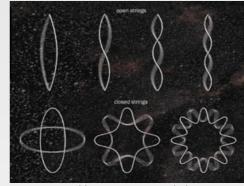
http://www.ep.ph.bham.ac.uk/ DiscoveringParticles/lhc/experiments/



 $\rm https://science.nasa.gov/mission/webb/$

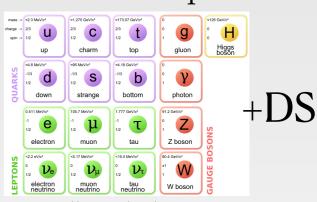
Model building

String theory (SUSY)



https://cerncourier.com/a/testing-times-for-strings/

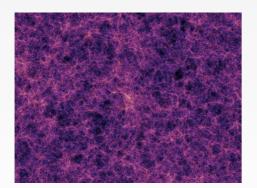
Bottom-up



https://nhsjs.com/2024/the-holes-in-our-universe-beyond-the-standard-model/

Astrophysics

Large structures
Distribution of DM

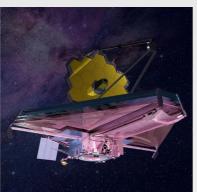


https://nhsjs.com/2024/the-holes-in-our-universe-beyond-the-standard-model/

Experiments

(In)Direct Detection

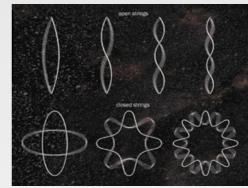
http://www.ep.ph.bham.ac.uk/ DiscoveringParticles/lhc/experiments/



https://science.nasa.gov/mission/webb/

Model building

String theory (Susy)



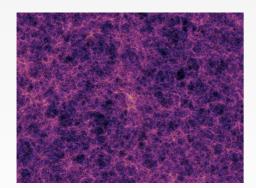
https://cerncourier.com/a/testingtimes-for-strings/



https://nhsjs.com/2024/the-holes-in-our-universebeyond-the-standard-model/

Astrophysics

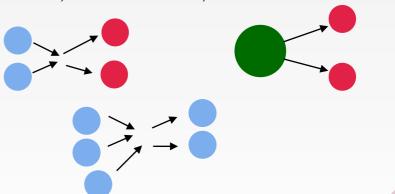
Large structures Distribution of DM



https://nhsjs.com/2024/the-holes-in-our-universe-beyond-thestandard-model/

Early Universe dynamics

freeze-out, freeze-in, Phase Transitions



Freezing-in Cannibal Dark Sectors

DOI:10.1007/JHEP11(2024)050

Esau Cervantes and Andrzej Hryczuk

National Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland

E-mail: esau.cervantes@ncbj.gov.pl, andrzej.hryczuk@ncbj.gov.pl

Freezing-in Cannibals with Low-reheating Temperature

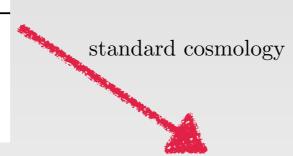
DOI:10.1007/JHEP09(2025)083

Nicolás Bernal,^a Esau Cervantes,^b Kuldeep Deka,^a Andrzej Hryczuk^b

^a New York University Abu Dhabi
PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates

^bNational Centre for Nuclear Research Pasteura 7, 02-093 Warsaw, Poland

E-mail: nicolas.bernal@nyu.edu, esau.cervantes@ncbj.gov.pl, kuldeep.deka@nyu.edu, andrzej.hryczuk@ncbj.gov.pl



Early Universe dynamics of Cannibal DM

non-standard cosmology

Cannibal Dark Matter

SELF-INTERACTING DARK MATTER

ERIC D. CARLSON

Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138

MARIE E. MACHACEK

Department of Physics, Northeastern University, Boston, MA 02115

AND

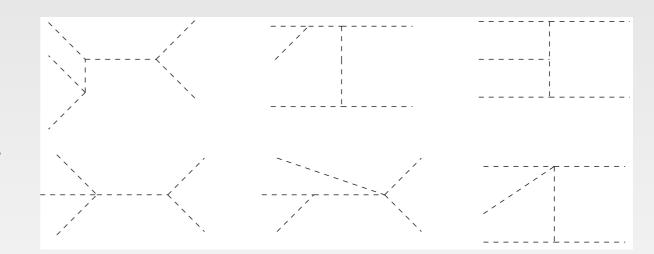
LAWRENCE J. HALL

Department of Physics, University of California; and Theoretical Physics Group, Physics Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720

Received 1992 March 17; accepted 1992 April 20

Simple realisation with a scalar

field:
$$\frac{g}{3!}\phi^3 + \frac{\lambda}{4!}\phi^4$$

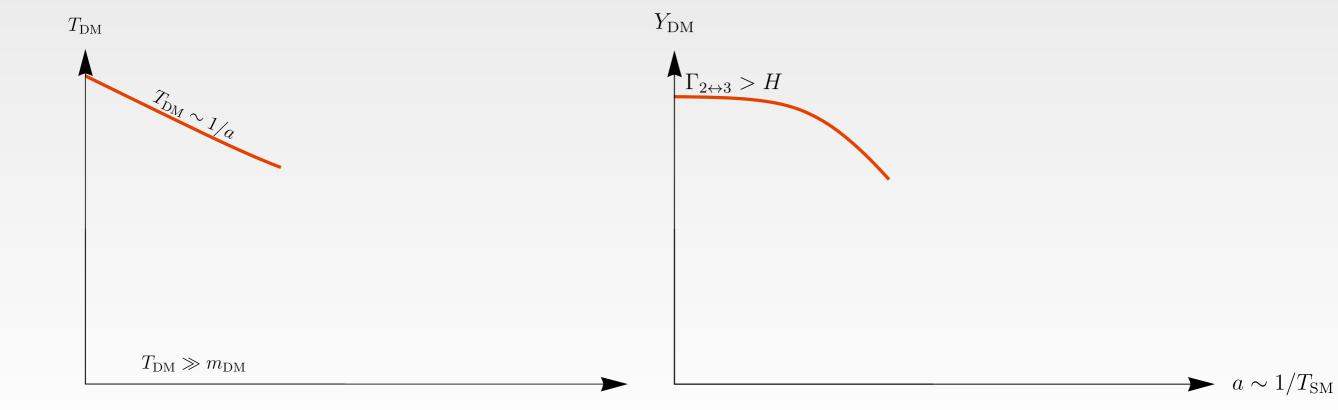


If DM is non-relativstic, $\Gamma_{3\to 2} > \Gamma_{2\to 3}$. The DM fluid **exchanges** particle number for kinetic energy!

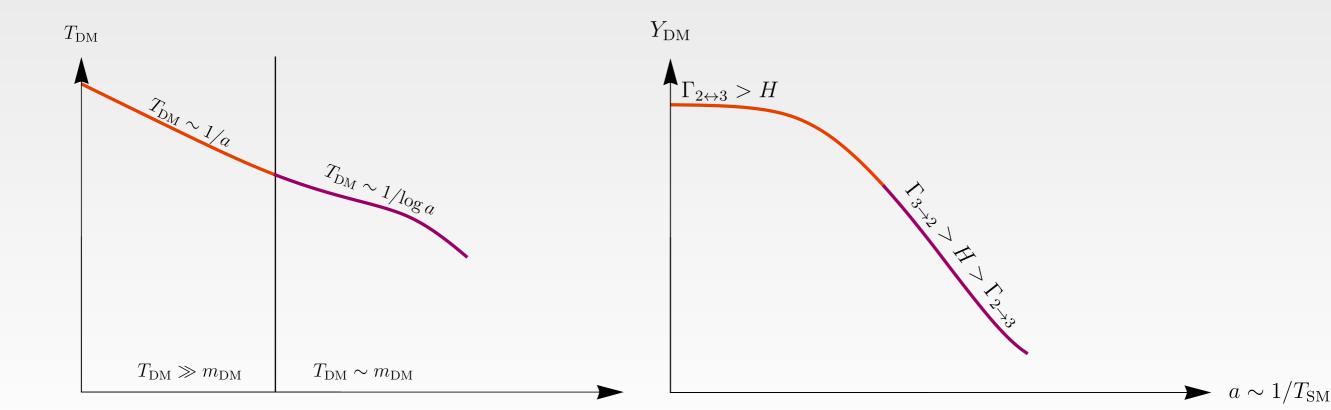


Absence of portals leads to $T_{DM} \neq T_{SM}$. Temperature evolution becomes relevant:

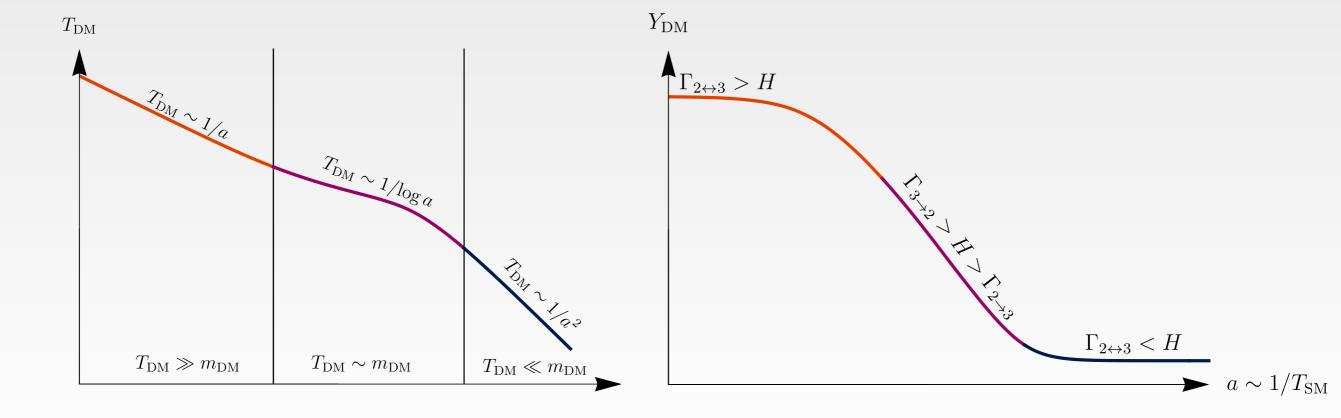
• DM is initially *relativistic*;



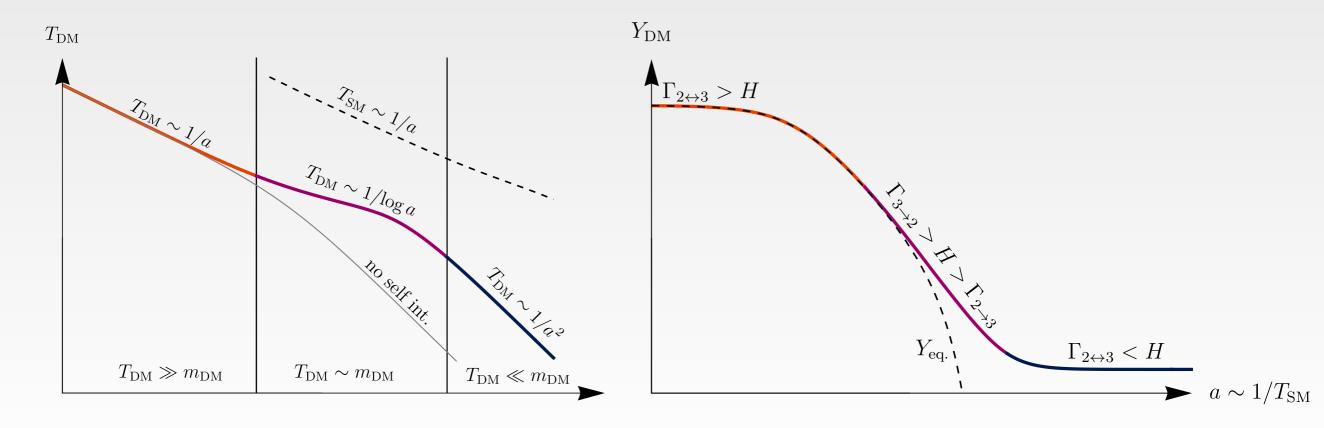
- DM is initially relativistic;
- as the DM fluid cools down, the dark sector *exchanges* number of particles for kinetic energy;



- DM is initially relativistic;
- as the DM fluid cools down, the dark sector *exchanges* number of particles for kinetic energy;
- all interactions decouple and the system behaves as a non-relativistic gas.



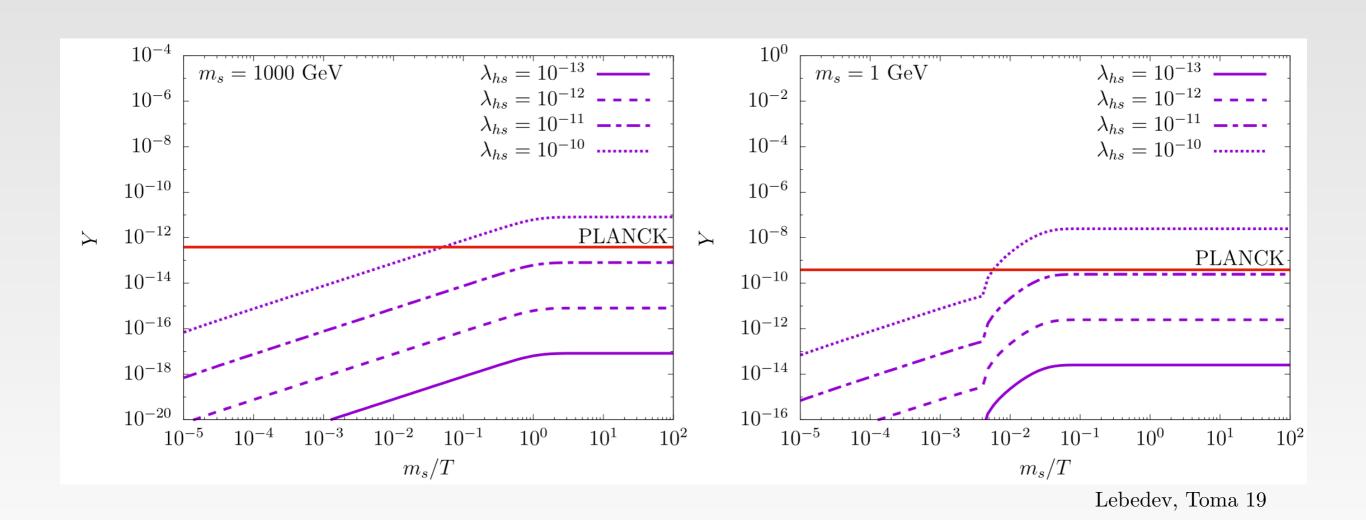
- DM is initially relativistic;
- as the DM fluid cools down, the dark sector *exchanges* number of particles for kinetic energy;
- all interactions decouple and the system behaves as a non-relativistic gas.



See also Hufnagel, Tygat 22 and Arcadi, Lebedev 19

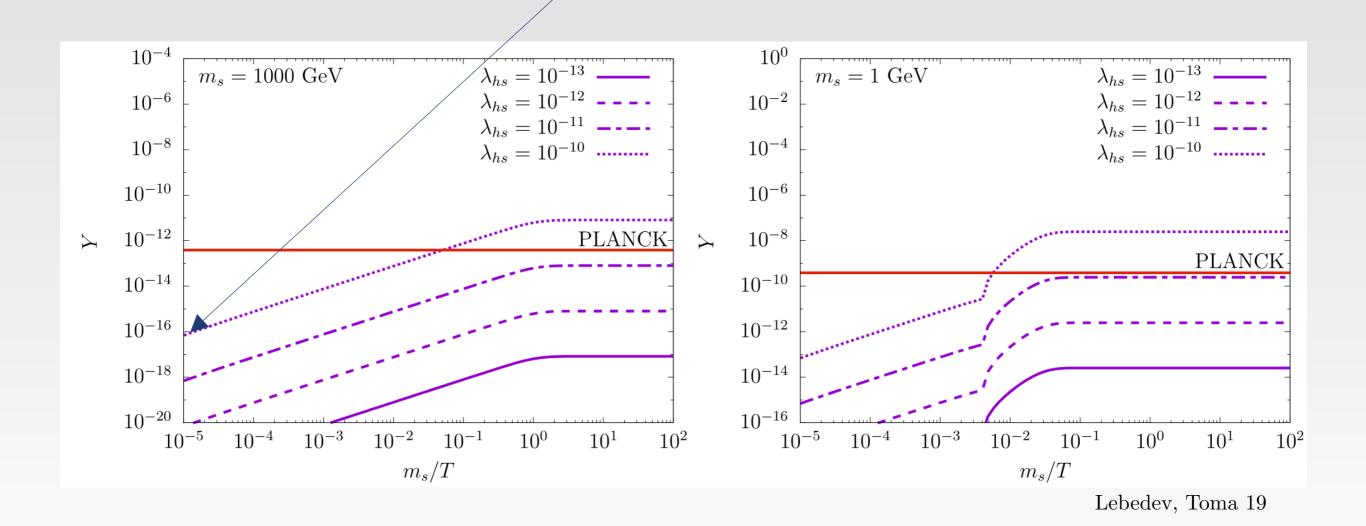
The freeze-in mechanism

The freeze-in mechanism assumes $n_i = 0$, and **feeble** portals:



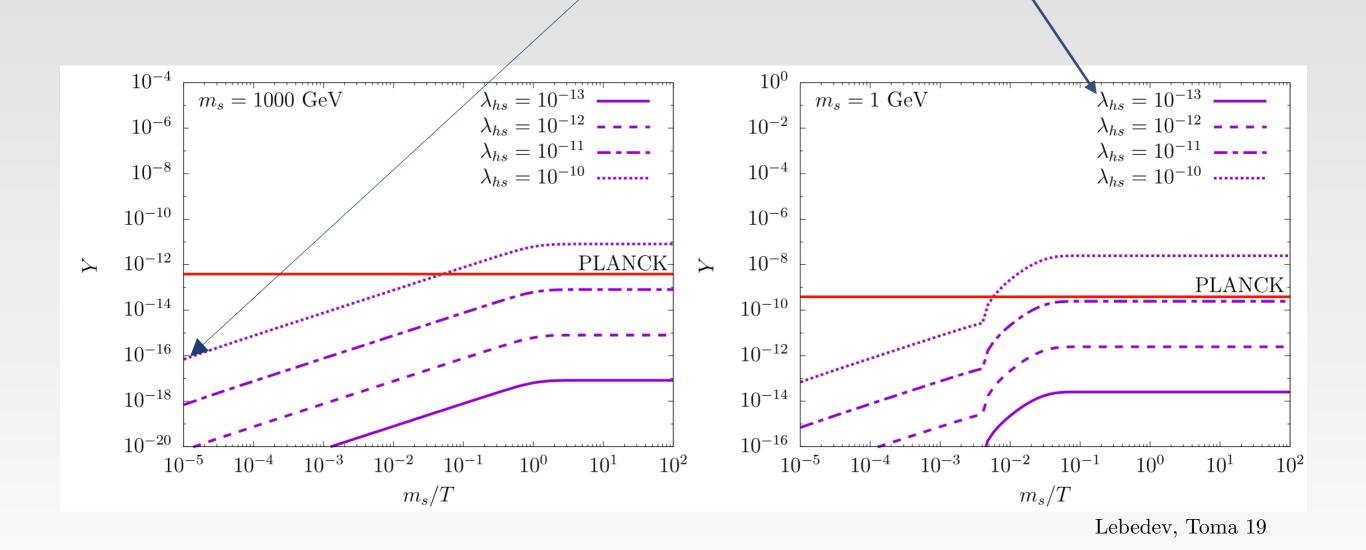
The freeze-in mechanism

The freeze-in mechanism assumes $n_i = 0$, and **feeble** portals:

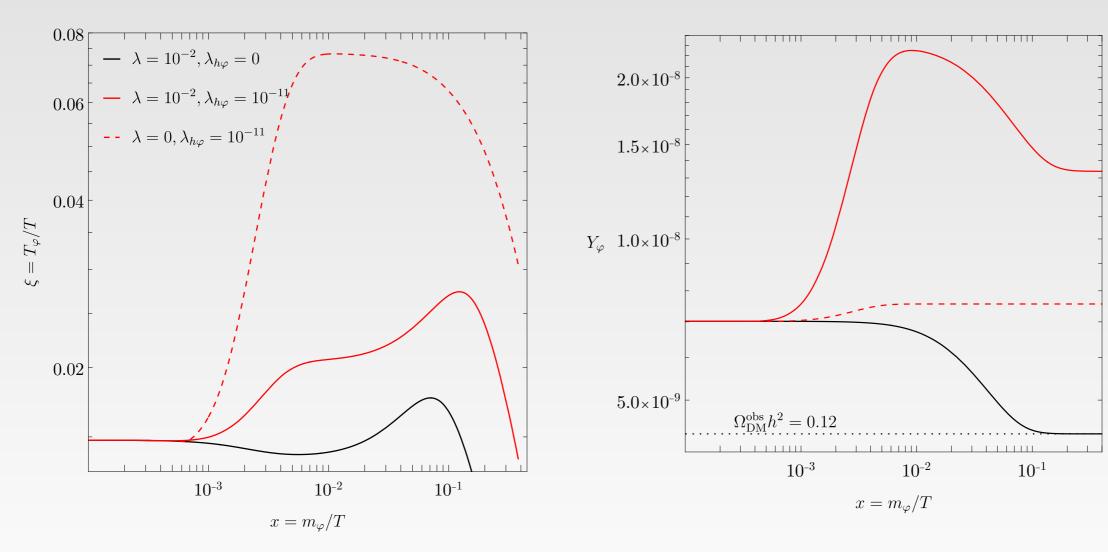


The freeze-in mechanism

The freeze-in mechanism assumes $n_i = 0$, and **feeble** portals:

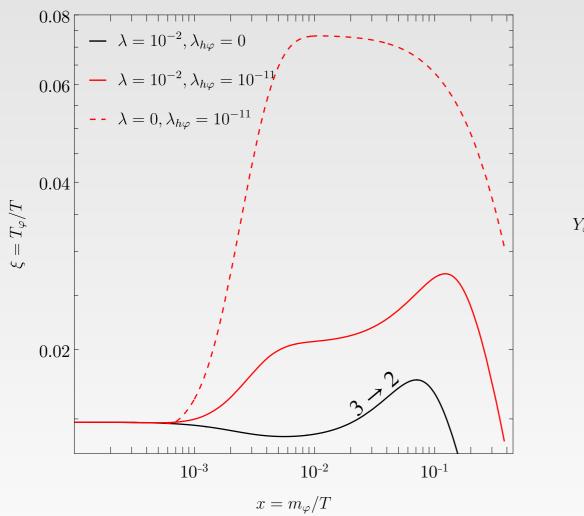


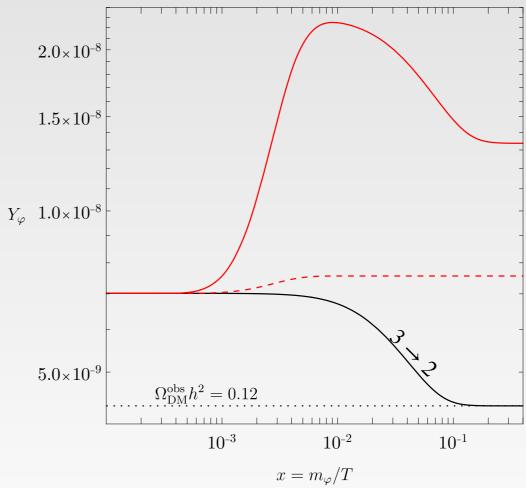
Consider $\mathcal{L} \supset -\lambda_{h\varphi} \varphi^2 H^{\dagger} H$, $\lambda_{h\varphi} \ll 1$, $\lambda_{\varphi} \geq 10^{-4}$ and initially cold DM; $T_{DM}/T_{SM} = 10^{-2}$:



See EC, A. Hryczuk 24

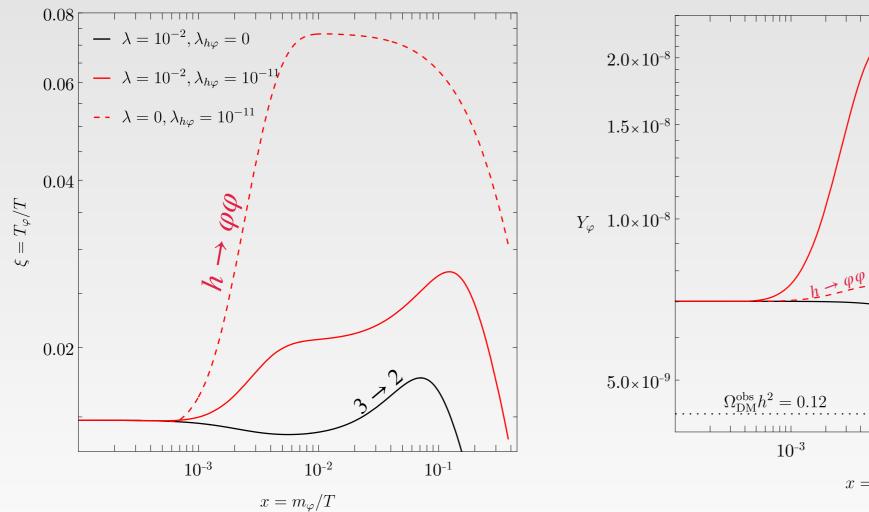
Consider $\mathcal{L} \supset -\lambda_{h\varphi} \varphi^2 H^{\dagger} H$, $\lambda_{h\varphi} \ll 1$, $\lambda_{\varphi} \geq 10^{-4}$ and initially cold DM; $T_{DM}/T_{SM} = 10^{-2}$:

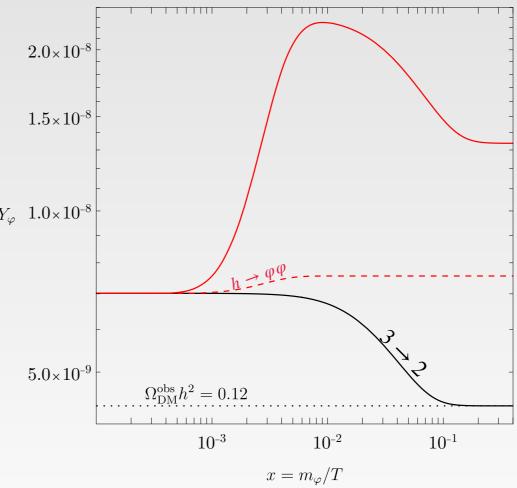




See EC, A. Hryczuk 24

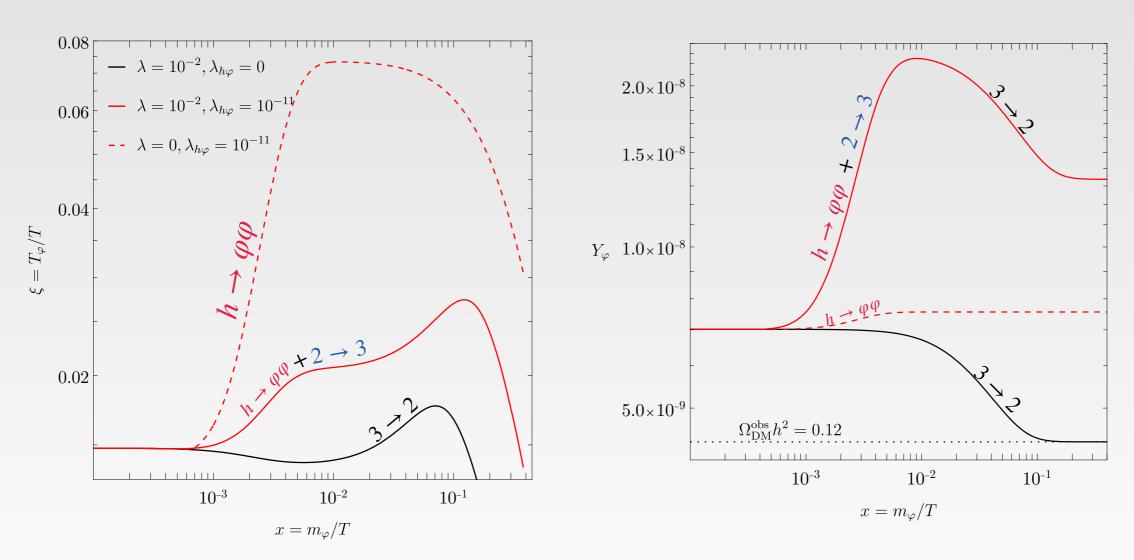
Consider $\mathcal{L} \supset -\lambda_{h\varphi} \varphi^2 H^{\dagger} H$, $\lambda_{h\varphi} \ll 1$, $\lambda_{\varphi} \geq 10^{-4}$ and initially cold DM; $T_{DM}/T_{SM} = 10^{-2}$:





See EC, A. Hryczuk 24

Consider $\mathcal{L} \supset -\lambda_{h\varphi} \varphi^2 H^{\dagger} H$, $\lambda_{h\varphi} \ll 1$, $\lambda_{\varphi} \geq 10^{-4}$ and initially cold DM; $T_{DM}/T_{SM} = 10^{-2}$:



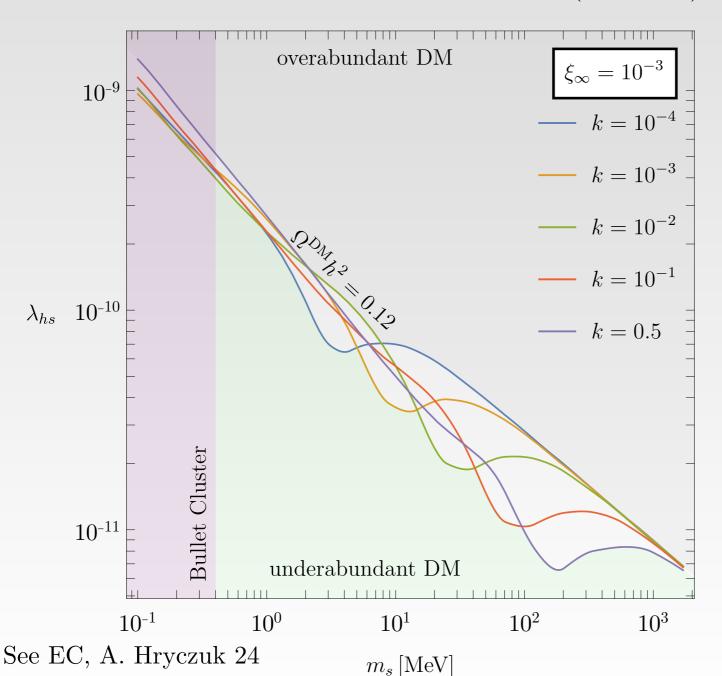
See EC, A. Hryczuk 24 and also Bernal, Chu 15 (SIMP \mathbb{Z}_2 DM)

Toy model:

$$\mathcal{L} \supset -\frac{1}{3!}g(S^3 + (S^*)^3) - \frac{\lambda}{4}|S|^4 - \lambda_{hs}|S|^2|H|^2$$

DM self interactions (cannibal)

Portal



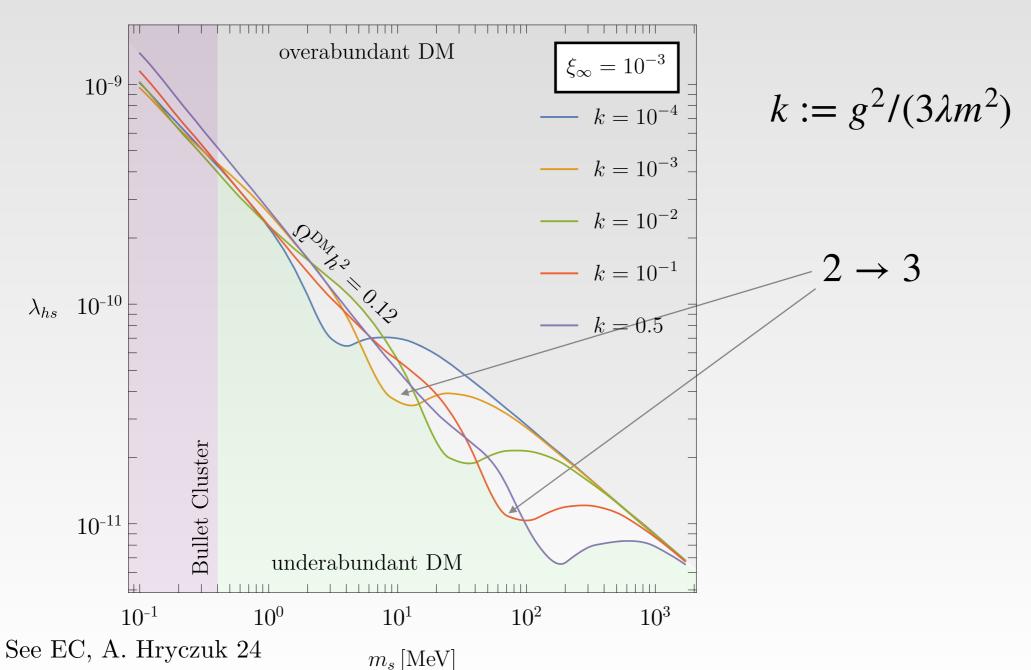
$$k := g^2/(3\lambda m^2)$$

Toy model:

$$\mathcal{L} \supset -\frac{1}{3!}g(S^3 + (S^*)^3) - \frac{\lambda}{4}|S|^4 - \lambda_{hs}|S|^2|H|^2$$

DM self interactions (cannibal)

Portal

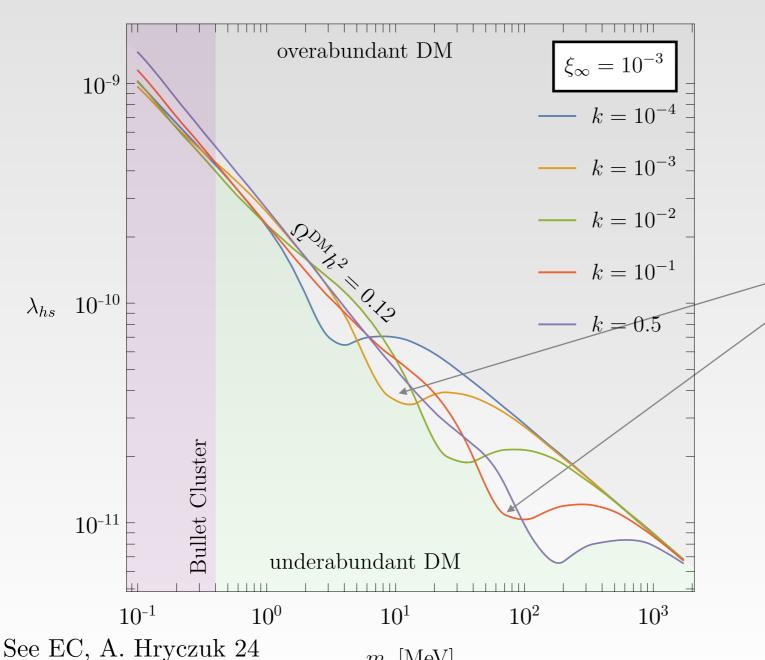


Toy model:

$$\mathcal{L} \supset -\frac{1}{3!}g(S^3 + (S^*)^3) - \frac{\lambda}{4}|S|^4 - \lambda_{hs}|S|^2|H|^2$$

DM self interactions (cannibal)

Portal



 m_s [MeV]

$$k := g^2/(3\lambda m^2)$$

 $2 \rightarrow 3$

Detectability

prospects if the reheating temperature is **low**

Freezing-in Cannibal Dark Sectors

DOI:10.1007/JHEP11(2024)050

Esau Cervantes and Andrzej Hryczuk

National Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland

E-mail: esau.cervantes@ncbj.gov.pl, andrzej.hryczuk@ncbj.gov.pl

Freezing-in Cannibals with Low-reheating Temperature

DOI:10.1007/JHEP09(2025)083

Nicolás Bernal,^a Esau Cervantes,^b Kuldeep Deka,^a Andrzej Hryczuk^b

^a New York University Abu Dhabi PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates

^bNational Centre for Nuclear Research Pasteura 7, 02-093 Warsaw, Poland

E-mail: nicolas.bernal@nyu.edu, esau.cervantes@ncbj.gov.pl, kuldeep.deka@nyu.edu, andrzej.hryczuk@ncbj.gov.pl

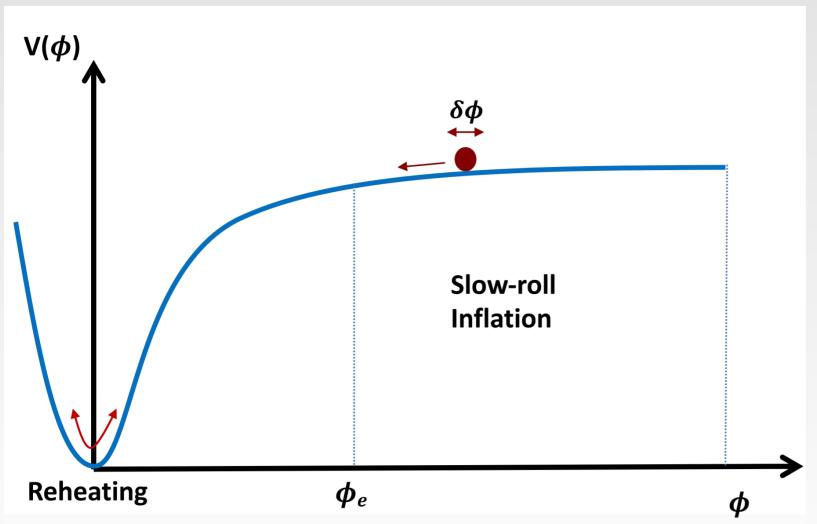
standard cosmology

Early Universe dynamics of Cannibal DM

non-standard cosmology

Inflaton decay and reheating

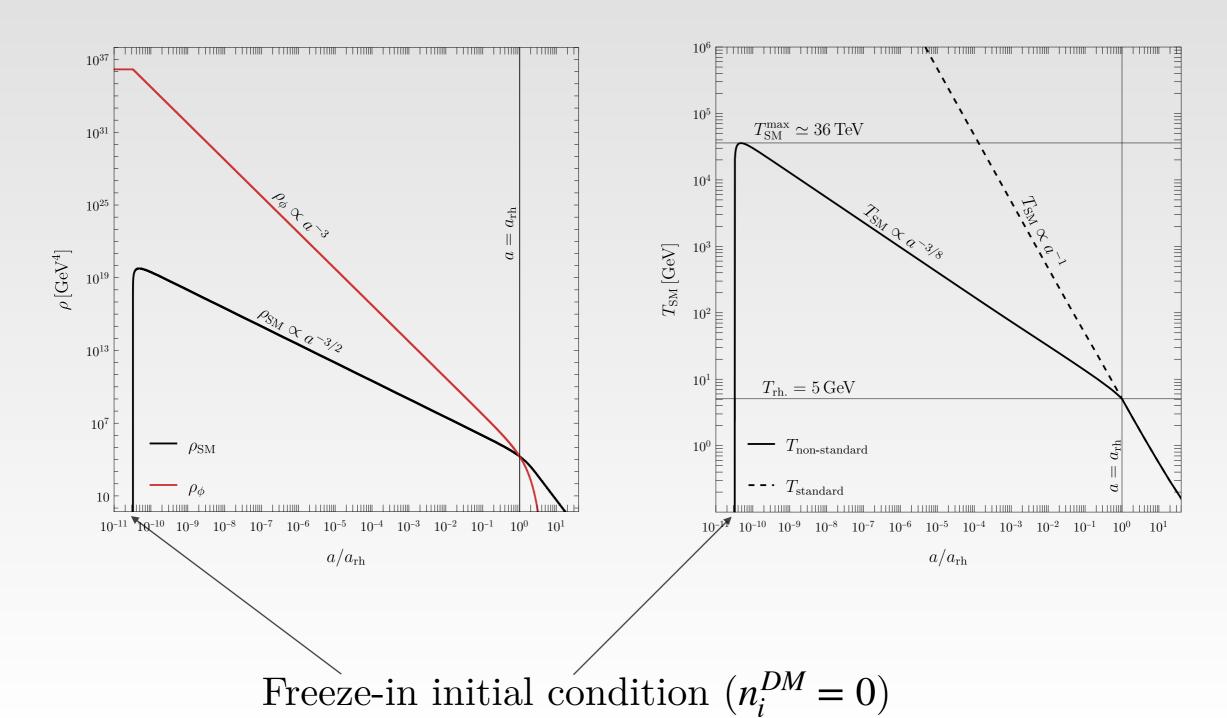
Transition between **non-standard** and **standard** cosmology is due to a scalar (**inflaton**) field that rolls ($a \propto e^{Ht}$) in a potential and subsequently oscillates in the minimum **decaying** into SM states.



$$\begin{split} \frac{d\rho_{\phi}}{dt} + 3H\rho_{\phi} &= -\Gamma \rho_{\phi}, \\ \frac{d\rho_{R}}{dt} + 4H\rho_{R} &= +\Gamma \rho_{\phi}, \end{split}$$

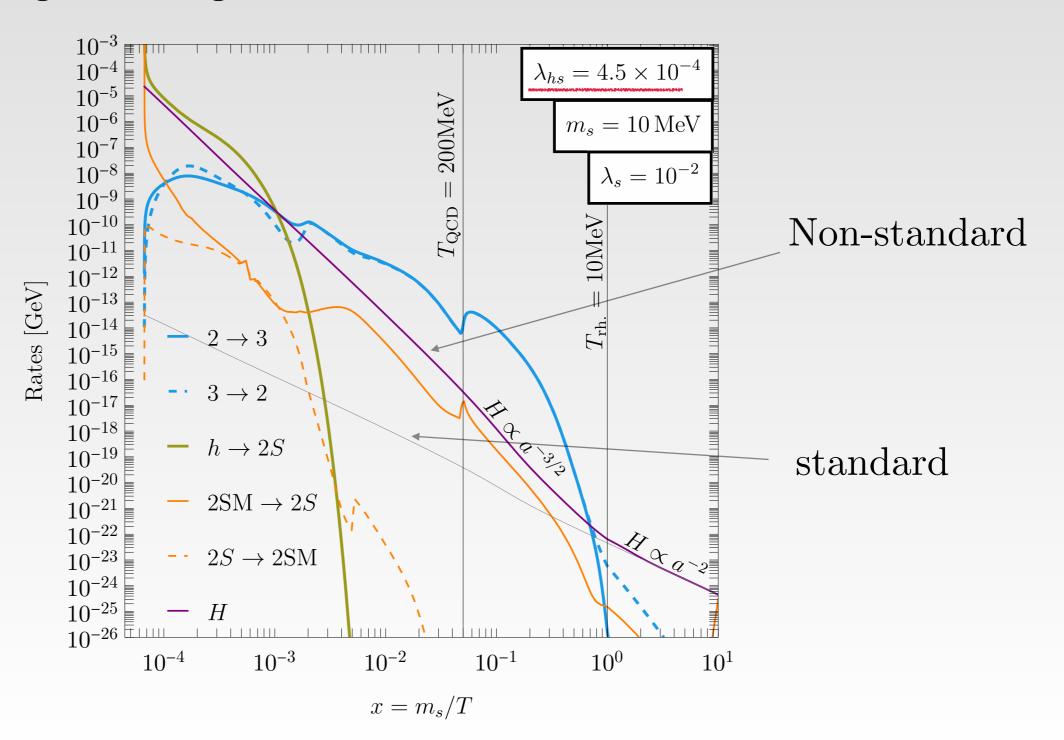
Inflaton decay and reheating

During reheating $T \propto a^{-3/8}$ (matter domination), and $H \propto T^4$, i.e., rapid expansion of the universe

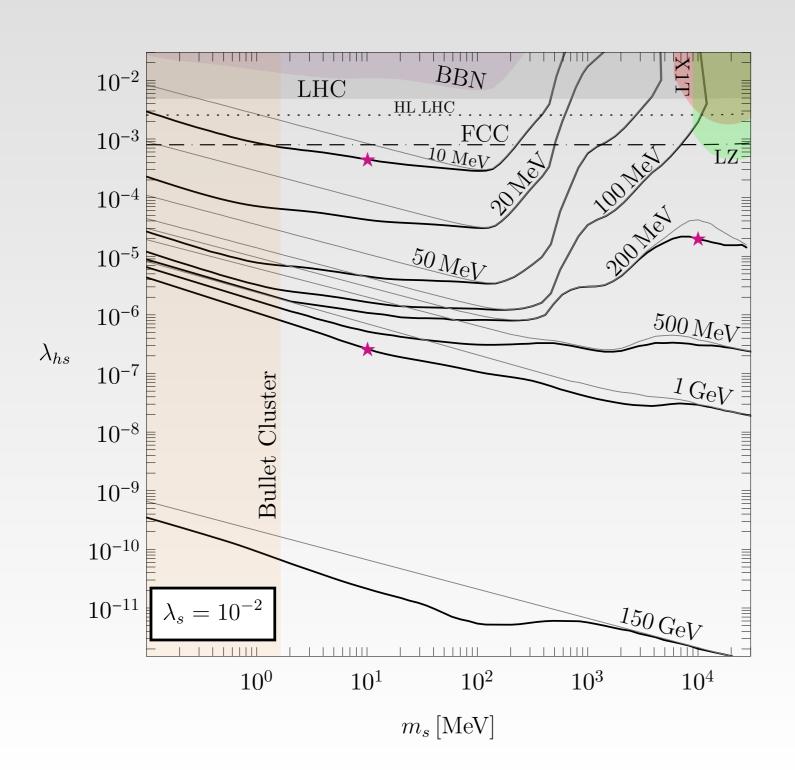


Production during reheating

Production rate from SM has to catch up with $H \propto T^4$, and ρ_{DM} dilutes during reheating.



Impact on collider phenomenology



- Low T_{rh} leads to detectability;
- The case of instantaneous reheating is studied in Lebedev, Morais, Oliveira, Pasechnik 24.

Current collaboration with

Felix Kahlhoefer, Jonas
Matuszak and Rosellon
Santiago from KIT (Germany)

Early Universe dynamics of a self interacting scalar

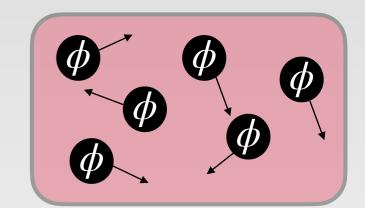
Cosmological (inverse) phase transitions

Thermal corrections

In the early universe there is a thermal (ensemble) background of states ϕ . This ensemble leads to thermal corrections:

$$V_{eff}(\phi_b) = V_{cl}(\phi_b) + V_{\mathbf{CW}}(\phi_b) + V_{\mathbf{Ct}}(\phi_b) + V_{\mathbf{T}}(\phi_b)$$

$$V_T(\phi_b) = \frac{T^4}{2\pi^2} g_\phi \int dy \, y^2 \ln\left(1 - e^{-\sqrt{y^2 + (m(\phi_b)/T)^4}}\right)$$

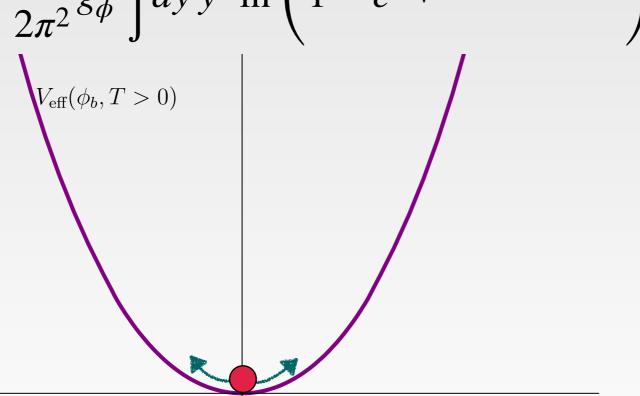


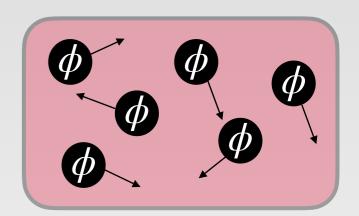
Thermal corrections

In the early universe there is a thermal (ensemble) background of states ϕ . This ensemble leads to thermal corrections:

$$V_{eff}(\phi_b) = V_{cl}(\phi_b) + V_{\mathbf{CW}}(\phi_b) + V_{\mathbf{Ct}}(\phi_b) + V_{\mathbf{T}}(\phi_b)$$

$$V_T(\phi_b) = \frac{T^4}{2\pi^2} g_\phi \int dy \, y^2 \ln\left(1 - e^{-\sqrt{y^2 + (m(\phi_b)/T)^4}}\right)$$



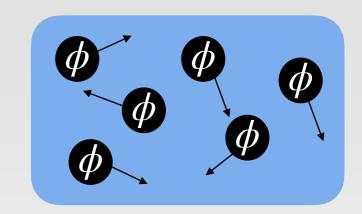


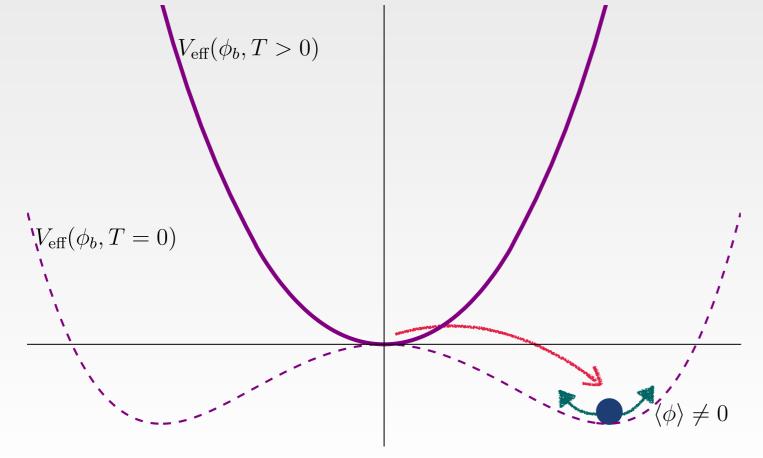
Thermal corrections

In the early universe there is a thermal (ensemble) background of states ϕ . This ensemble leads to thermal corrections:

$$V_{eff}(\phi_b) = V_{cl}(\phi_b) + V_{\mathbf{CW}}(\phi_b) + V_{\mathbf{Ct}}(\phi_b) + V_{\mathbf{T}}(\phi_b)$$

$$V_T(\phi_b) = \frac{T^4}{2\pi^2} g_\phi \int dy \, y^2 \ln\left(1 - e^{-\sqrt{y^2 + (m(\phi_b)/T)^4}}\right)$$





When the temperature drops, the system will roll to the true minimum in a smooth transition.

U(1) theory

If the transition is more **abrupt**, it can leave imprints in the early universe. Simple realization: complex scalar field Φ charged under a U(1) gauge symmetry

$$\mathcal{L} = |(\partial_{\mu} - igA'_{\mu})\Phi|^{2} - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + \mu^{2}\Phi^{*}\Phi - \lambda(\Phi^{*}\Phi)^{2} + \frac{\epsilon}{2\cos\theta_{w}}B_{\mu\nu}F'^{\mu\nu}.$$

U(1) theory

If the transition is more **abrupt**, it can leave imprints in the early universe. Simple realization: complex scalar field Φ charged under a U(1) gauge symmetry

$$\mathcal{L} = |(\partial_{\mu} - igA'_{\mu})\Phi|^{2} - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + \mu^{2}\Phi^{*}\Phi - \lambda(\Phi^{*}\Phi)^{2} + \frac{\epsilon}{2\cos\theta_{w}}B_{\mu\nu}F'^{\mu\nu}.$$

Dark gauge boson (dark photon)

Kinetic mixing

U(1) theory

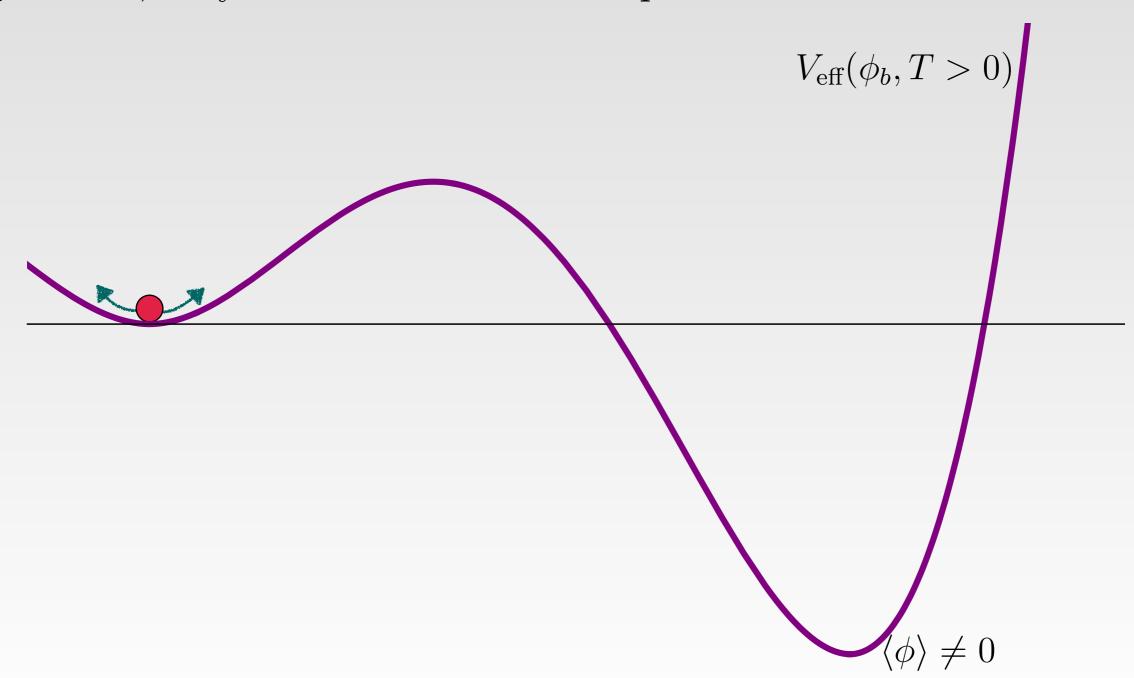
If the transition is more **abrupt**, it can leave imprints in the early universe. Simple realization: complex scalar field Φ charged under a U(1) gauge symmetry

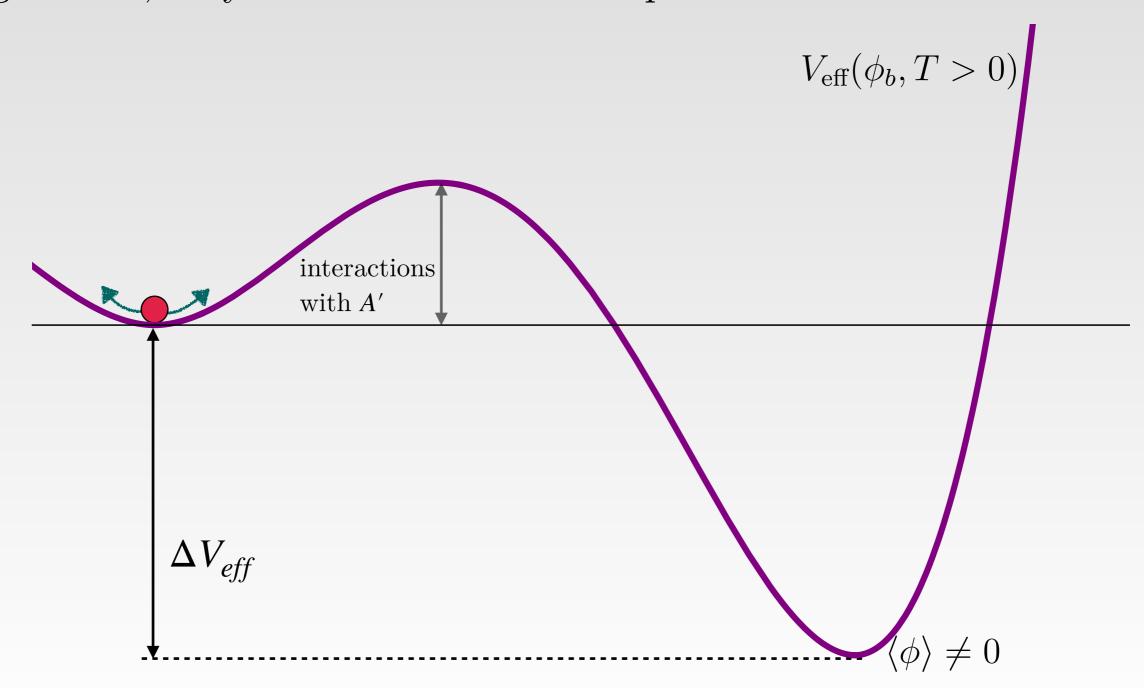
$$\mathcal{L} = |(\partial_{\mu} - igA'_{\mu})\Phi|^{2} - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + \mu^{2}\Phi^{*}\Phi - \lambda(\Phi^{*}\Phi)^{2} + \frac{\epsilon}{2\cos\theta_{w}}B_{\mu\nu}F'^{\mu\nu}.$$

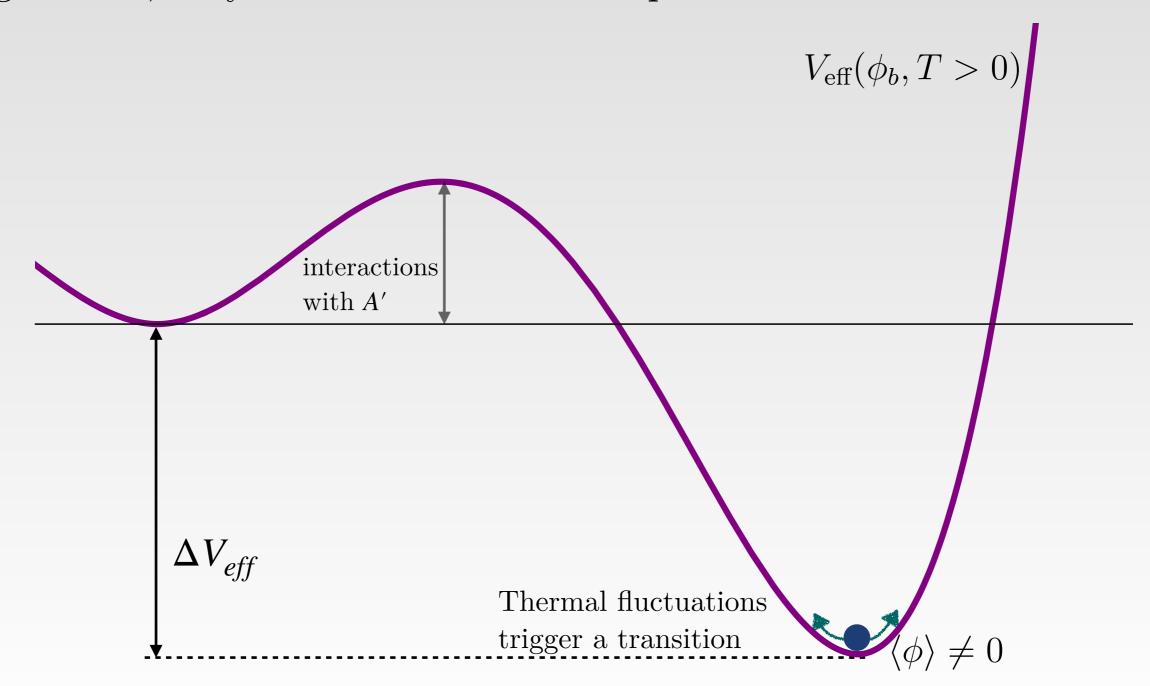
Dark gauge boson (dark photon)

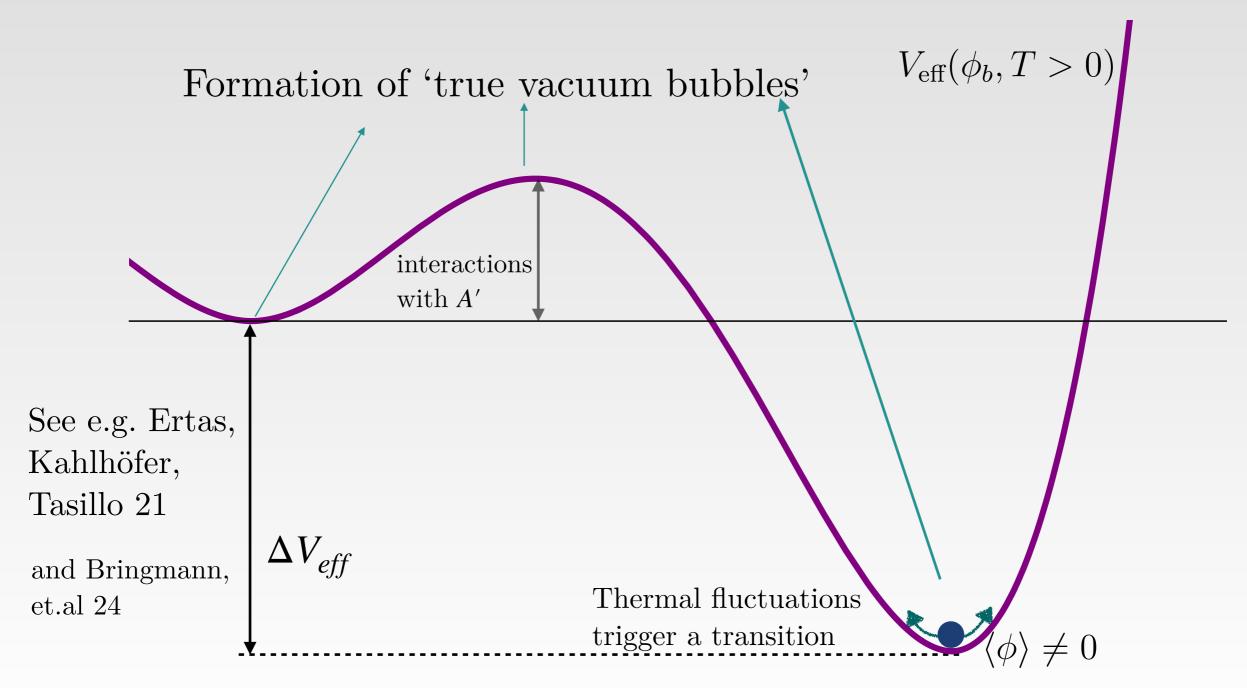
Kinetic mixing

And we expand the scalar as
$$\Phi \to (\phi + \phi_b + \mathrm{i} \varphi)$$
 Goldstone boson
$$\phi_b = \langle \phi \rangle \neq 0$$



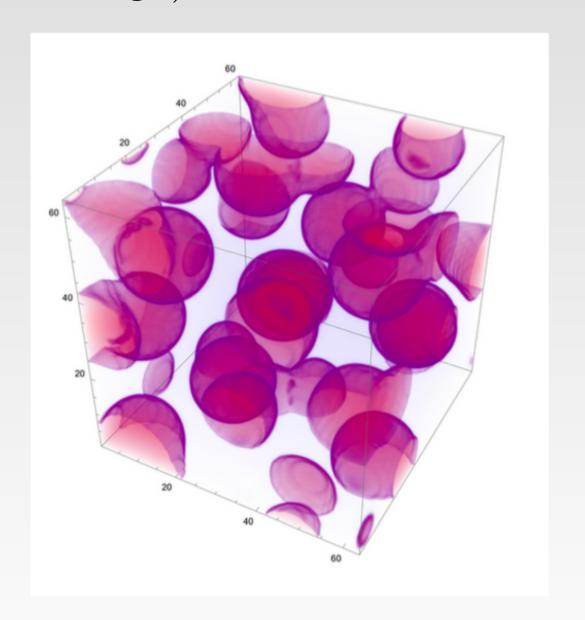


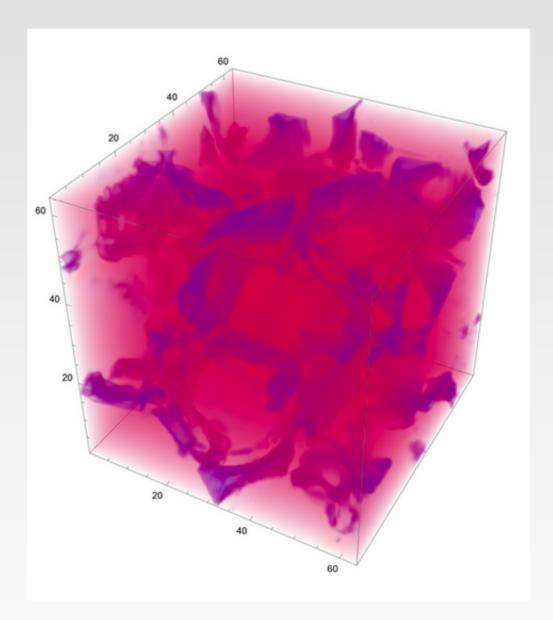




Vacuum bubbles

Vacuum bubbles nucleate and percolate (they *form*, grow, *collide* and *merge*)

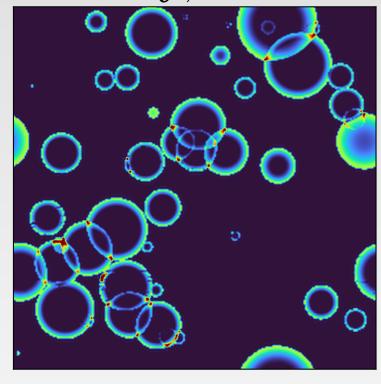




Nucleation and percolation on the lattice. Image courtesy of Henda Mansour

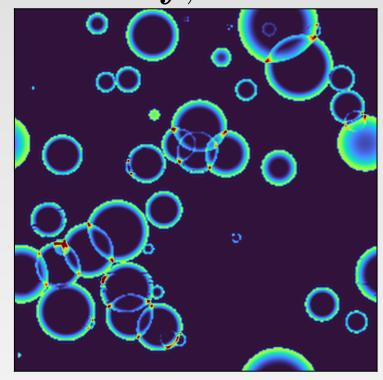
Space-time **feels** the *percolation*: energy and momentum determine the **curvature** of space-time. If energy moves or oscillates **unevenly**, it **disturbs** the space-time fabric.

Space-time **feels** the *percolation*: energy and momentum determine the **curvature** of space-time. If energy moves or oscillates **unevenly**, it **disturbs** the space-time fabric.

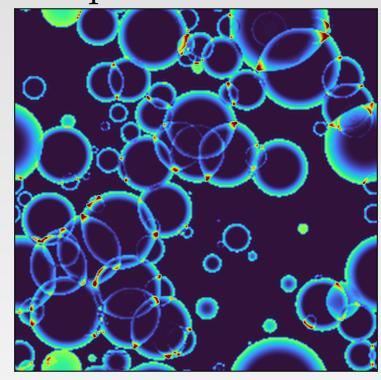


Nucleation

Space-time **feels** the *percolation*: energy and momentum determine the **curvature** of space-time. If energy moves or oscillates **unevenly**, it **disturbs** the space-time fabric.



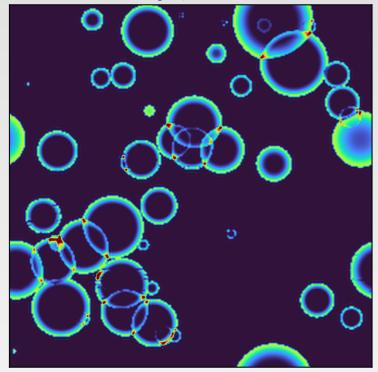
Nucleation



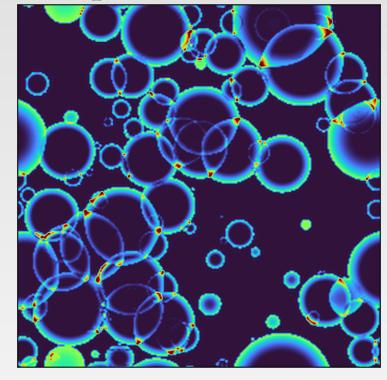
Expansion

Space-time **feels** the *percolation*: energy and momentum determine the **curvature** of space-time. If energy moves or oscillates

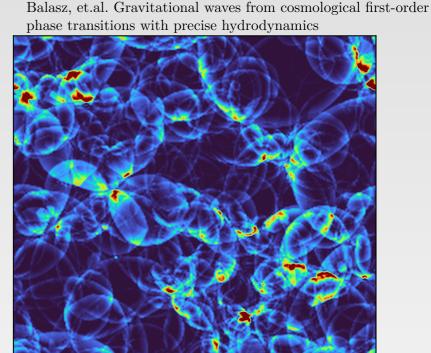
unevenly, it disturbs the space-time fabric.



Nucleation



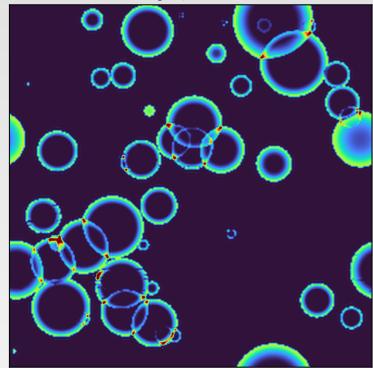
Expansion



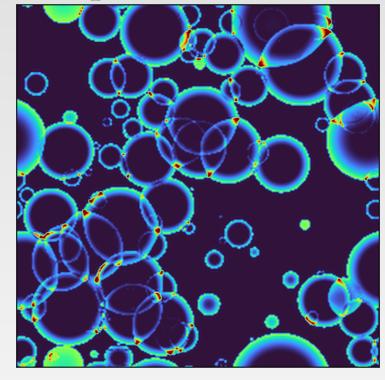
Percolation

Space-time **feels** the *percolation*: energy and momentum determine the **curvature** of space-time. If energy moves or oscillates

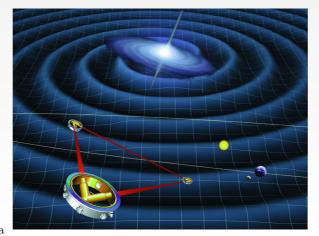
unevenly, it disturbs the space-time fabric.



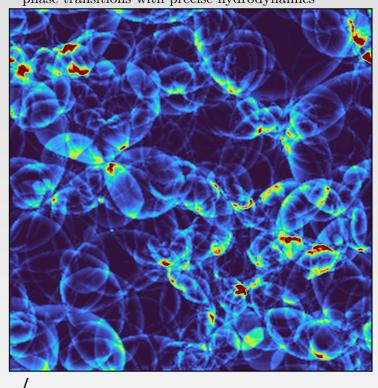
Nucleation



Expansion



Balasz, et.al. Gravitational waves from cosmological first-order phase transitions with precise hydrodynamics



Percolation

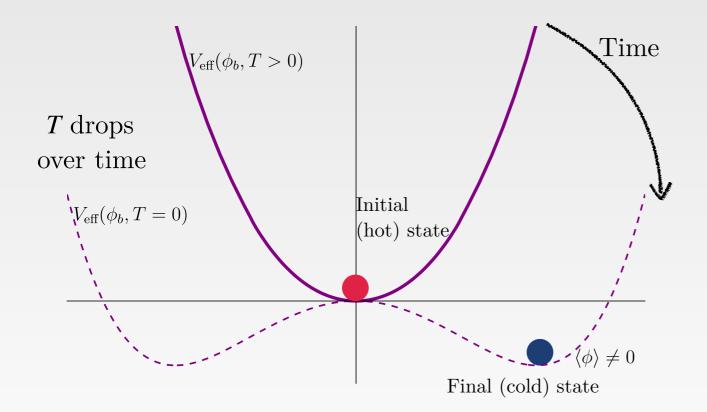
Possible observable GW background with the Laser Interferometer Space Antenna (LISA)

Wikipedia

Inverse First order phase transition

There are different scenarios leading to FOPTs. The system can go from a *broken* to a *symmetric* phase:

Standard assumption: symmetric to broken phase

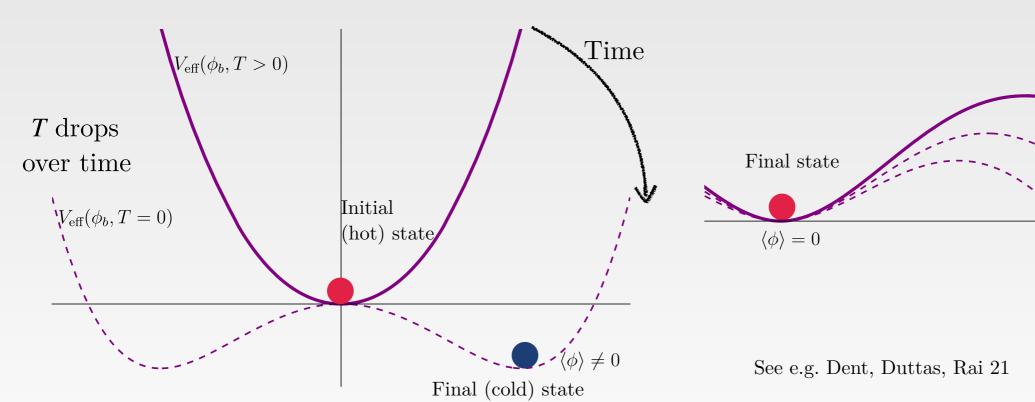


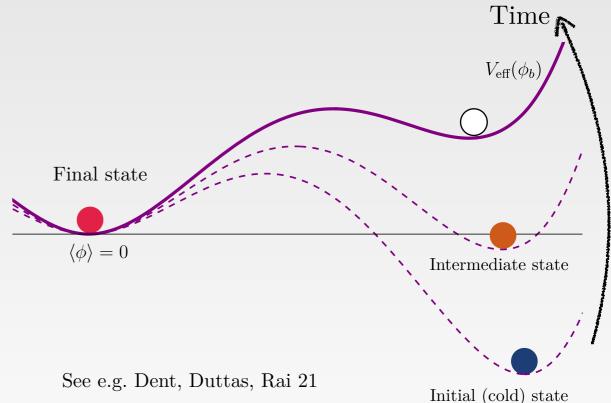
Inverse First order phase transition

There are different scenarios leading to FOPTs. The system can go from a broken to a symmetric phase:

Standard assumption: symmetric to broken phase

Inverse transition: **broken** to **symmetric** phase



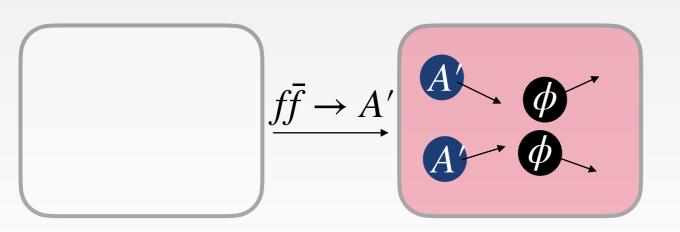


Realizable with injection of entropy from the SM plasma as in the freeze-in mechanism:

• **Zero** or **negligible** initial population of ϕ and A' $(n_i = 0)$.

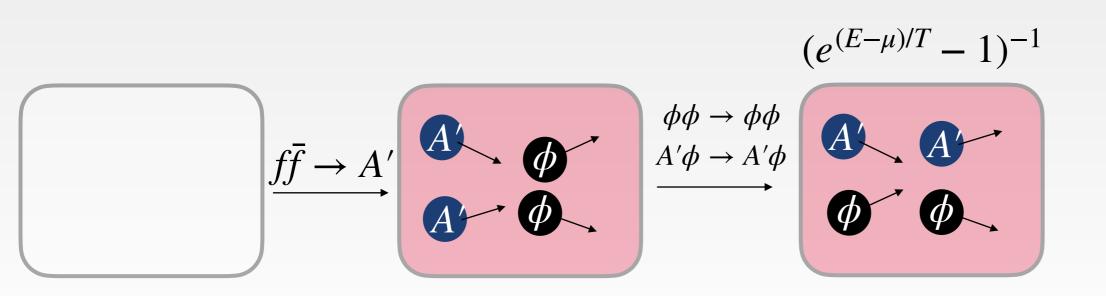
Realizable with injection of entropy from the SM plasma as in the freeze-in mechanism:

- **Zero** or **negligible** initial population of ϕ and A' $(n_i = 0)$.
- Inverse decays from the SM: $f\bar{f} \to A'$ populate the DS.



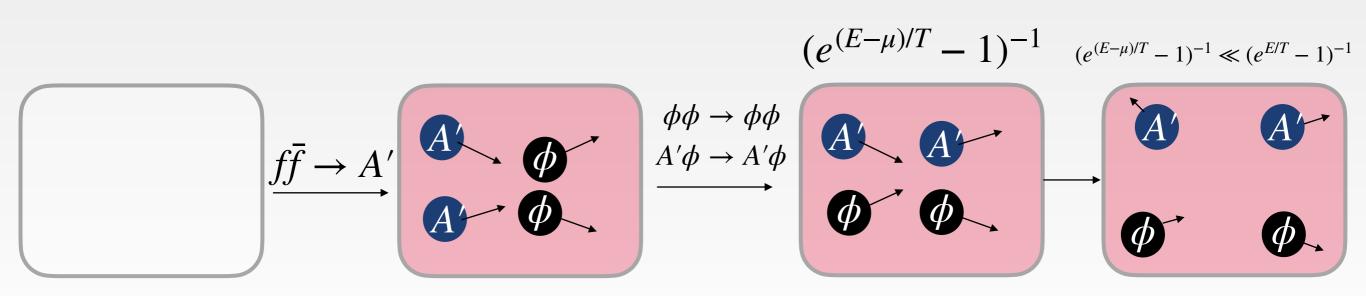
Realizable with injection of entropy from the SM plasma as in the freeze-in mechanism:

- **Zero** or **negligible** initial population of ϕ and A' $(n_i = 0)$.
- Inverse decays from the SM: $f\bar{f} \to A'$ populate the DS.
- Strong self and gauge interactions thermalize the system *instantly*.



Realizable with injection of entropy from the SM plasma as in the freeze-in mechanism:

- **Zero** or **negligible** initial population of ϕ and A' $(n_i = 0)$.
- Inverse decays from the SM: $f\bar{f} \to A'$ populate the DS.
- Strong self and gauge interactions thermalize the system *instantly*.
- The system is **dilute** $(z = e^{\mu/T} \ll 1)$.



In the previous discussion we implicitely assumed two things:

- Local thermal equilibrium (Bose-Einstein);
- Chemical equilibrium $(\mu = 0)$.

In the previous discussion we implicitely assumed two things:

- Local thermal equilibrium (Bose-Einstein);
- Chemical equilibrium $(\mu = 0)$.

Are there modifications to the effective potential when $\mu \neq 0$?

In the previous discussion we implicitely assumed two things:

- Local thermal equilibrium (Bose-Einstein);
- Chemical equilibrium $(\mu = 0)$.

Are there modifications to the effective potential when $\mu \neq 0$?

Yes

In the previous discussion we implicitely assumed two things:

- Local thermal equilibrium (Bose-Einstein);
- Chemical equilibrium $(\mu = 0)$.

Are there modifications to the effective potential when $\mu \neq 0$?

$$V_{T,\mu}(\phi_b) = \frac{T^4}{2\pi^2} \sum_{a=\phi,\phi,A'} g_a \int dy \, y^2 \ln\left(1 - \frac{e^{\mu/T}}{z} e^{-\sqrt{y^2 + (m_a(\phi_b)/T)^4}}\right)$$

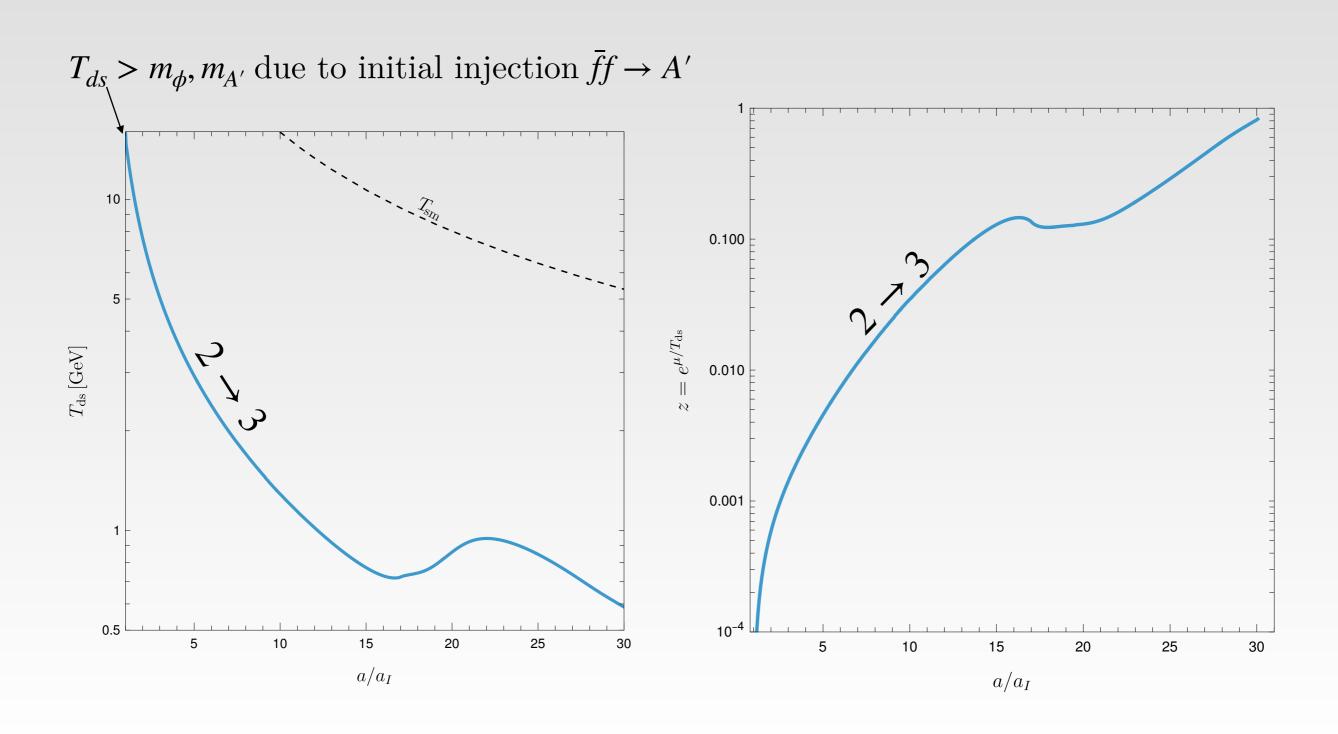
In fact

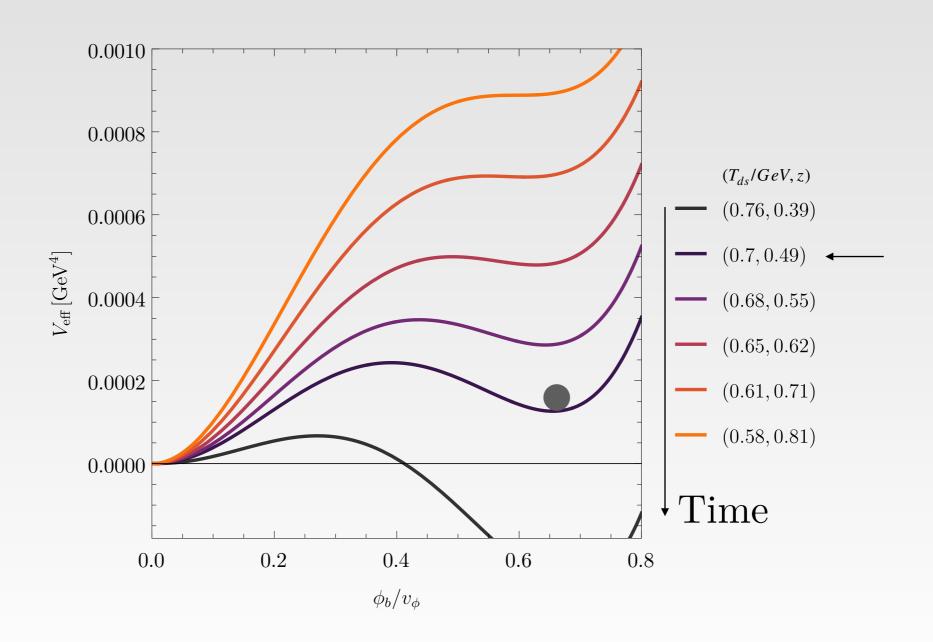
Free energy density

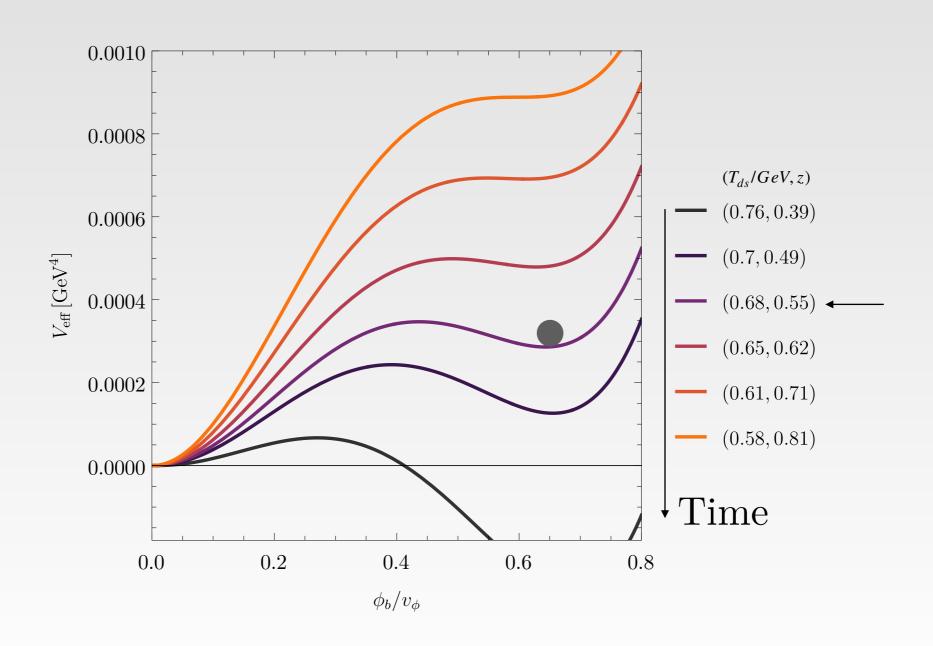
$$\frac{T^2}{2\pi^2} \int dy \, y^2 \ln\left(1 - \frac{e^{\mu/T}}{z} e^{-\sqrt{y^2 + (m/T)^4}}\right) = -\int \frac{d^3p}{(2\pi)^3} \frac{p^2}{3E} (e^{(E-\mu)/T} - 1)^{-1} = -p$$

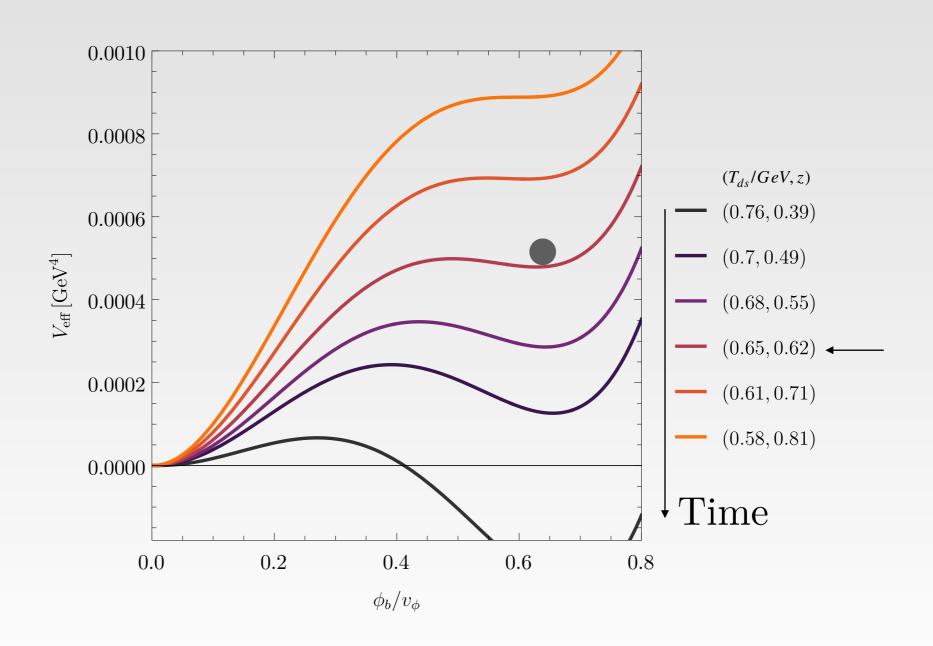
Dynamics

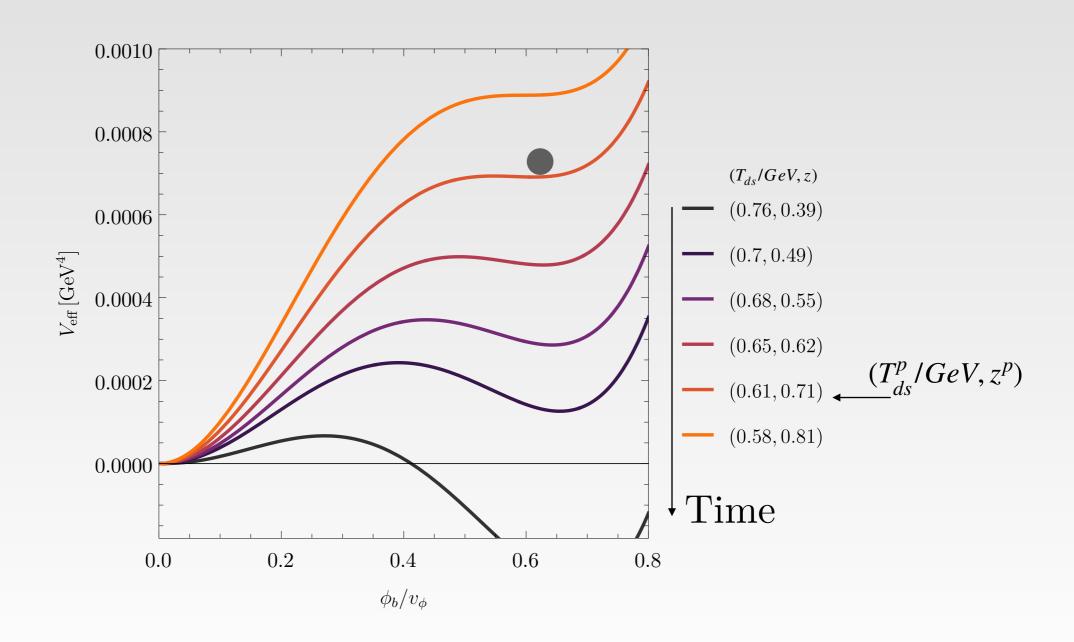
Evolution of T_{ds} and z with $m_{\phi} = \text{few MeV}$ and $m_{A'} = 1 \text{ GeV}$ at T = 0.

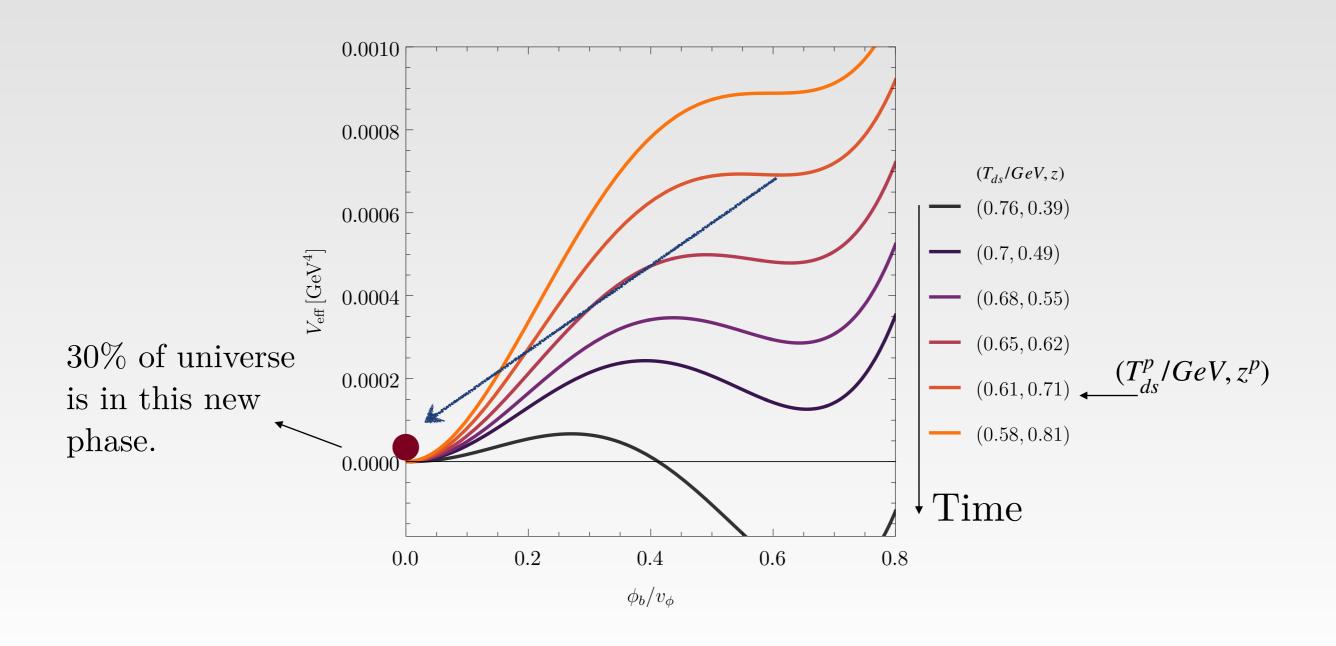










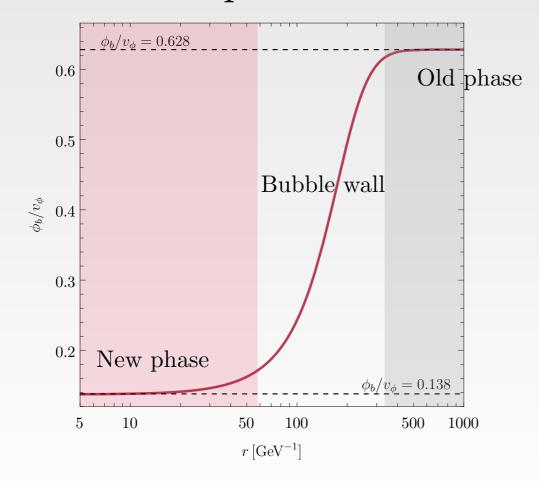


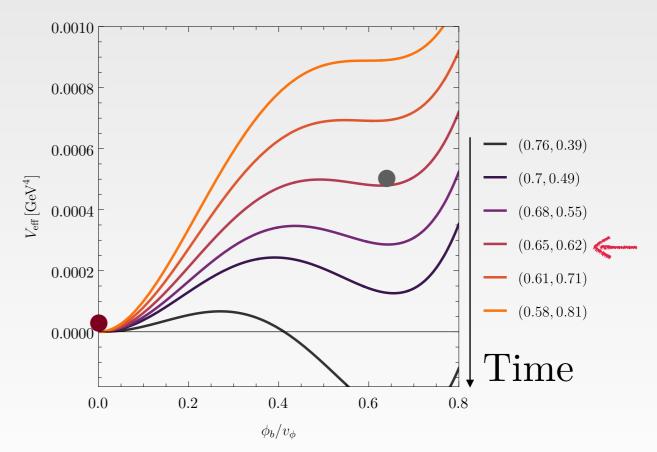
Bubble profile

The *shape* of the vacuum bubbles is given by the bounce equation (Klein Gordon equation)

$$(\partial_{rr} + \frac{2}{r}\partial_r)\phi_b(r) = \partial_{\phi_b}V_{eff}, \quad \partial_r\phi_b(r=0) = 0$$

Bubble profile





Conclusions

• SIDM produced via the freeze-in mechanism has a unique evolution in the Early Universe;

• Temperature can have a **non-trivial** impact in such scenarios and **need to be studied** carefully;

• The impact of **self-interactions** in **an inverse PT** requires a careful treatment of the **Boltzmann equation** coupled with the **effective potential**;

• Possible **gravitational waves** signatures might arise from such scenario (under current investigation).

Backup slides

Effective potential

Consider a simple QFT model with a real scalar field ϕ :

$$\mathcal{L}[\phi] = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} \mu^2 \phi^2 - \frac{\lambda}{4!} \phi^4.$$

Using the Feynman path integral definition:

$$Z[J] = e^{-iE[J]} = \int \mathcal{D}\phi \exp \left[i \int d^4x (\mathcal{L}[\phi] + J\phi)\right].$$

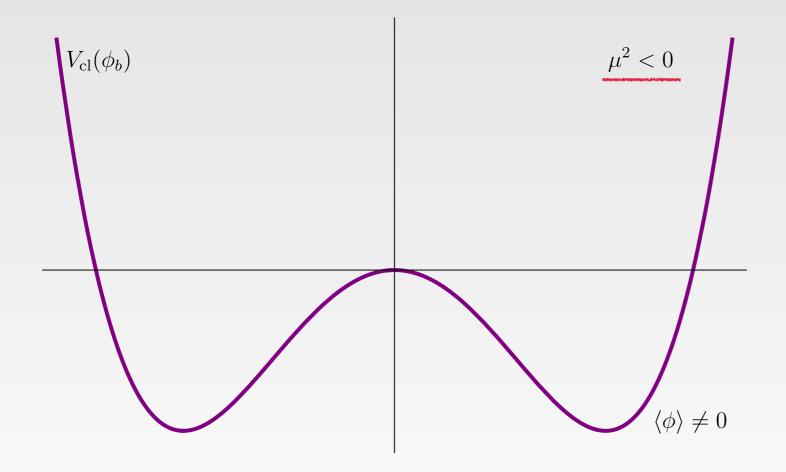
We define a background field and effective potential

$$\phi_b \equiv \langle \phi \rangle = -\frac{\delta}{\delta J} E[J] = \frac{\int \mathcal{D}\phi \exp\left[i \int d^4x (\mathcal{L}[\phi] + J\phi)\right] \phi}{\int \mathcal{D}\phi \exp\left[i \int d^4x (\mathcal{L}[\phi] + J\phi)\right]}$$
 i.e., averaged/macroscopic behaviour of ϕ

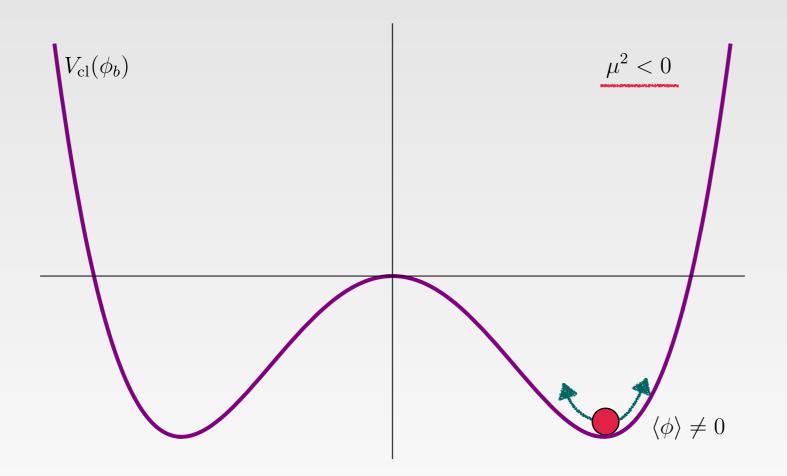
$$V_{eff}(\phi_b) \equiv \frac{E[J] + \int d^4y J(y) \phi_b(y)}{Volume}$$
 a.k.a. free energy density

$$V_{cl}(\phi_b) = \frac{1}{2}\mu^2\phi_b^2 + \frac{\lambda}{4!}\phi_b^4, \qquad \phi_b = \langle \phi \rangle$$

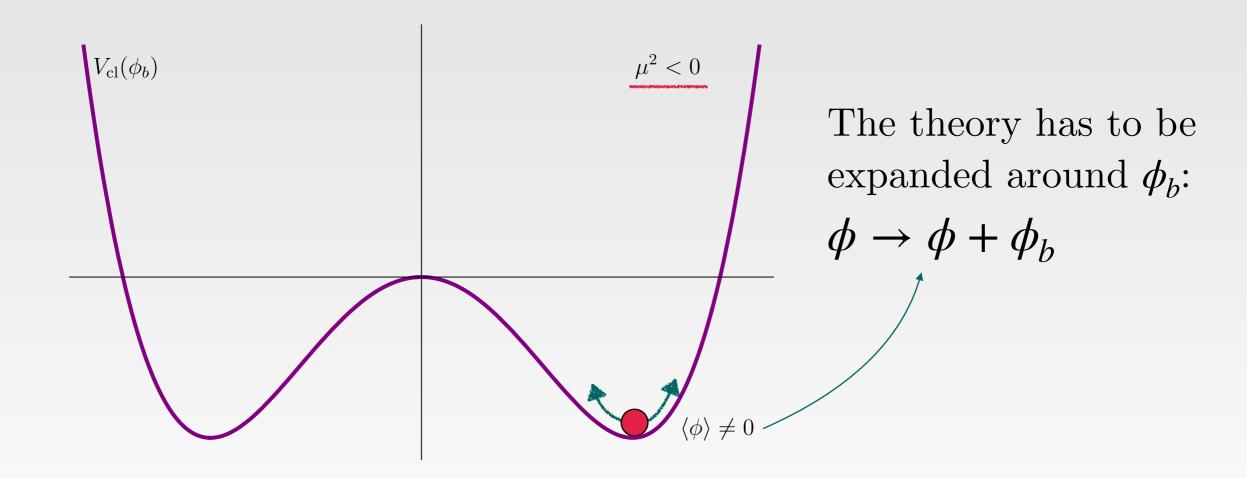
$$V_{cl}(\phi_b) = \frac{1}{2}\mu^2\phi_b^2 + \frac{\lambda}{4!}\phi_b^4, \qquad \phi_b = \langle \phi \rangle$$



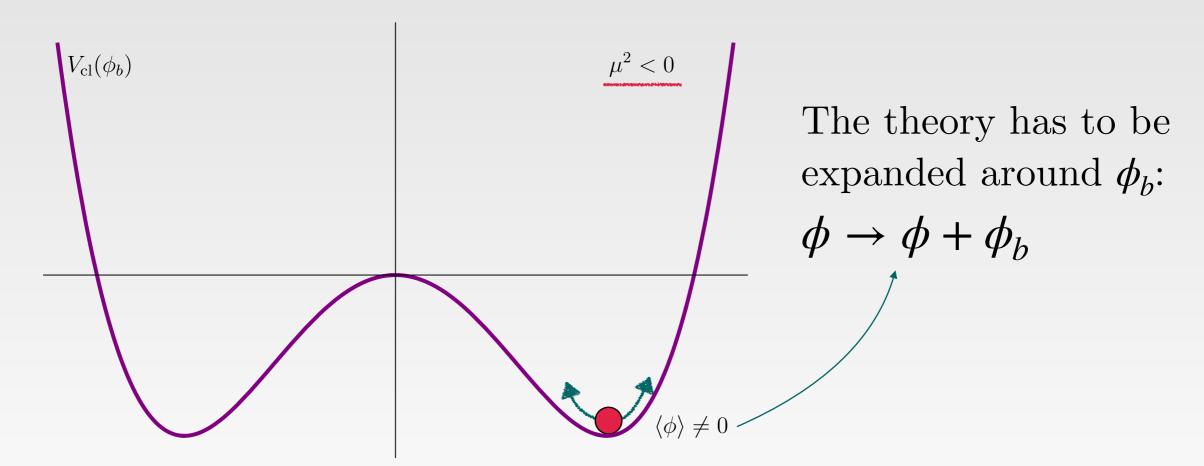
$$V_{cl}(\phi_b) = \frac{1}{2}\mu^2\phi_b^2 + \frac{\lambda}{4!}\phi_b^4, \qquad \phi_b = \langle \phi \rangle$$



$$V_{cl}(\phi_b) = \frac{1}{2}\mu^2\phi_b^2 + \frac{\lambda}{4!}\phi_b^4, \qquad \phi_b = \langle \phi \rangle$$



$$V_{cl}(\phi_b) = \frac{1}{2}\mu^2\phi_b^2 + \frac{\lambda}{4!}\phi_b^4, \qquad \phi_b = \langle \phi \rangle$$



$$\mathcal{L}[\phi] \supset -\frac{1}{2}\mu^2(\phi + \phi_b)^2 - \frac{\lambda}{4!}(\phi + \phi_b)^4 = -\frac{1}{2}m^2(\phi_b)\phi^2 - \frac{1}{3!}g(\phi_b)\phi^3 - \frac{\lambda}{4!}\phi^4$$

$$V_{eff}(\phi_b) = V_{cl}(\phi_b) + V_{CW}(\phi_b) + V_{Ct}(\phi_b)$$

$$V_{eff}(\phi_b) = V_{cl}(\phi_b) + V_{CW}(\phi_b) + V_{Ct}(\phi_b)$$

$$V_{CW}(\phi_b) = g_{\phi} \frac{m^4(\phi_b)}{64\pi^2} \left(\log \frac{m^2(\phi_b)}{\Lambda^2} - 3/2 \right), \qquad m(\phi_b)^2 = 3\lambda \phi_b^2$$

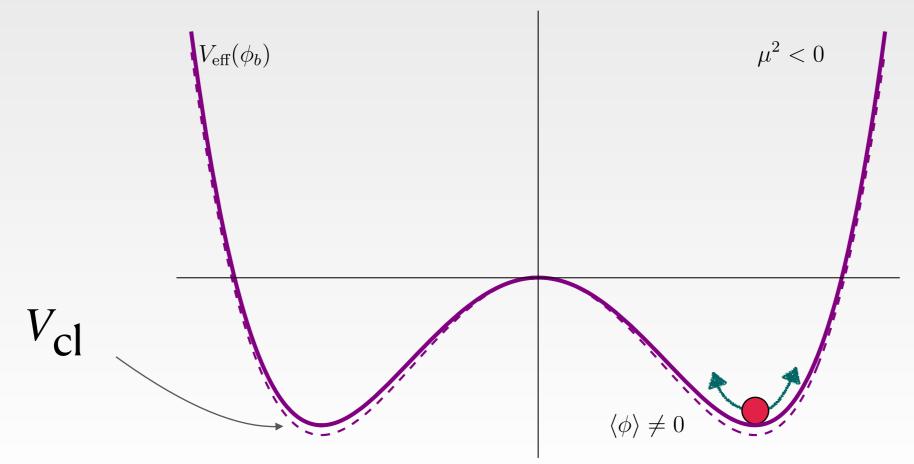
$$V_{Ct}(\phi_b) = \delta \mu^2 \phi_b^2 + \delta \lambda \phi_b^4$$

$$V_{eff}(\phi_b) = V_{cl}(\phi_b) + V_{CW}(\phi_b) + V_{Ct}(\phi_b)$$

$$V_{\text{CW}}(\phi_b) = g_{\phi} \frac{m^4(\phi_b)}{64\pi^2} \left(\log \frac{m^2(\phi_b)}{\Lambda^2} - 3/2 \right), \qquad m(\phi_b)^2 = 3\lambda \phi_b^2$$

$$V_{\text{Ct}}(\phi_b) = \delta \mu^2 \phi_b^2 + \delta \lambda \phi_b^4$$

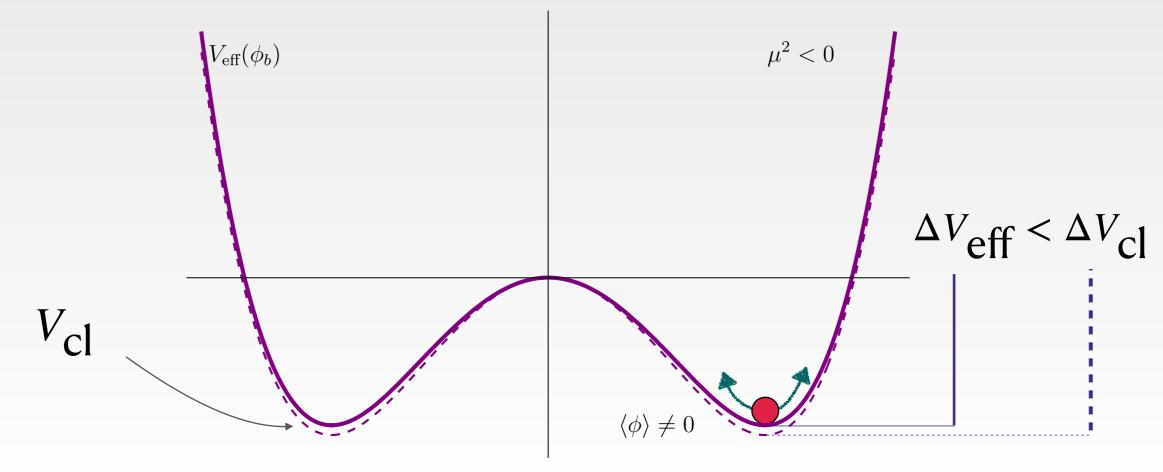
$$V_{\mathbf{Ct}}(\phi_b) = \delta\mu^2\phi_b^2 + \delta\lambda\phi_b^4$$



$$V_{eff}(\phi_b) = V_{cl}(\phi_b) + V_{CW}(\phi_b) + V_{Ct}(\phi_b)$$

$$V_{\text{CW}}(\phi_b) = g_\phi \frac{m^4(\phi_b)}{64\pi^2} \left(\log \frac{m^2(\phi_b)}{\Lambda^2} - 3/2 \right), \qquad m(\phi_b)^2 = 3\lambda \phi_b^2$$

$$V_{\mathbf{Ct}}(\phi_b) = \delta\mu^2\phi_b^2 + \delta\lambda\phi_b^4$$



U(1) theory

The transition might be more violent, leaving imprints in the early universe. Simple realization: complex scalar field Φ charged under a U(1) gauge symmetry

$$\mathcal{L} = |(\partial_{\mu} - igA'_{\mu})\phi|^{2} - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + \mu^{2}\Phi^{*}\Phi - \lambda(\Phi^{*}\Phi)^{2} + \frac{\epsilon}{2\cos\theta_{w}}B_{\mu\nu}F'^{\mu\nu}$$

$$= \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi + \frac{1}{2}\partial_{\mu}\varphi\partial^{\mu}\varphi - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} - \frac{1}{2}m_{\phi}^{2}\phi^{2} + \frac{1}{2}m_{A'}^{2}A'^{2}_{\mu}$$

$$-gA'_{\mu}(\varphi\partial^{\mu}\phi - \varphi\partial^{\mu}\varphi - \nu_{\phi}\partial^{\mu}\varphi) + \frac{g^{2}}{2}\phi^{2}A'^{2}_{\mu} + g^{2}\nu_{\phi}\phi A'^{2}_{\mu}$$

$$-\lambda\nu_{\phi}\phi^{3} - \lambda\nu_{\phi}\varphi^{2}\phi - \frac{\lambda}{4}\phi^{2}\varphi^{2} - \frac{\lambda}{4}\phi^{4} - \frac{\lambda}{4}\varphi^{4}$$

$$+\frac{\epsilon}{2\cos\theta}B_{\mu\nu}F'^{\mu\nu}$$

Effective potential of a U(1) theory

The effective potential of ϕ will receive corrections from its interactions with φ and A':

$$V_{cl}(\phi_b) = \frac{1}{2}\mu^2\phi_b^2 + \frac{\lambda}{4!}\phi_b^4$$

$$V_{\text{CW}}(\phi_b) = \sum_{a=\phi, \varphi, A'} g_a \frac{m_a^4(\phi_b)}{64\pi^2} \left(\log \frac{m_a^2(\phi_b)}{\Lambda^2} - 3/2 \right)$$

$$V_T(\phi_b) = \frac{T^4}{2\pi^2} \sum_{a=\phi,\phi,A'} g_a \int dy \, y^2 \ln\left(1 - e^{-\sqrt{y^2 + (m_a(\phi_b)/T)^4}}\right)$$

$$V_{\text{daisy}}(\phi_b) = -\frac{T}{12\pi} \sum_{a=\phi,\varphi,A_L'} g_a \left[(m_a^2(\phi_b) + \Pi_a(T))^{3/2} - (m_a^2(\phi_b))^{3/2} \right]$$

$$m_{\phi}^{2}(\phi_{b}) = 3\lambda\phi_{b}^{2} - \mu^{2}, \qquad m_{\varphi}^{2}(\phi_{b}) = \lambda\phi_{b}^{2} - \mu^{2}, \qquad m_{A'}^{2}(\phi_{b}) = g^{2}\phi_{b}^{2}.$$

Not surprising $(V_{eff} = -pressure)$, but useful:

$$\int \frac{d^3p}{(2\pi)^3} \frac{p^2}{3E} \left(e^{\frac{E-\mu}{T}} - 1 \right)^{-1} = \frac{m(\phi_b)^2 T^2}{2\pi^2} \sum_{k=1}^{\infty} \frac{z^k}{k^2} K_2(k \, m(\phi_b)/T) \,,$$

which converges for $z \le 1$. The *evolution* for T and z are given by the $Boltzmann\ equation$

$$\left(\partial_t - H p \partial_p \right) f(p, t) = C[f] \xrightarrow{\text{Collision}} \xrightarrow{\text{Self-int.}} \xrightarrow{\text{Freeze-in and}} \xrightarrow{\tilde{f}f} \to A' \text{ and } \atop \text{3}\phi \leftrightarrow 2\phi}$$

$$\begin{array}{c} \text{Oth} \\ \text{moment} \end{array} \right) \left\{ \frac{dN}{da} = \frac{a^2}{H} C_0, \right.$$

$$\begin{array}{c} \text{2nd} \\ \text{moment} \end{array} \right\} \left\{ \frac{dT_{ds}}{da} = \frac{1}{1 + \kappa_1} \left(-\frac{2T_{ds}}{a} + \frac{1}{3a} \left\langle \frac{p^4}{E^3} \right\rangle + \frac{a^2}{3HN} C_2 - \frac{N'}{N} T_{ds} + \kappa_2 \right)$$

Coupled Boltzmann equations

To obtain 'temperature' Boltzmann equation:

first we define
$$T':=\frac{g_{dm}}{3n}\int \frac{d^3p}{(2\pi)^3}\frac{p^2}{E}f(p);$$
 we integrate $g(2\pi)^{-3}\int d^3p\,\frac{p^2}{E}(\partial_t-H\vec{p}\cdot\vec{\nabla}_p)f=g(2\pi)^{-3}\int d^3p\,\frac{p^2}{E}C[f]=:C_2;$ to obtain $\frac{dT'}{da}=-\frac{2\,T'}{a}+\frac{1}{3\,a}\left\langle\frac{p^4}{E^3}\right\rangle+\frac{a^2}{3\,HN}\,C_2-\frac{a^2\,T'}{HN}\,C_0;$ along with the usual nBE: $\frac{dN}{da}=\frac{a^2}{H}\,g\int \frac{d^3p}{(2\pi)^3}\,C[f]=:\frac{a^2}{H}\,C_0,\,N=na^3;$ we close the system assuming $f(E)=\frac{n}{n_{\rm eq}}\,\exp\left[-\frac{E}{T'}\right]$ (local thermal eq).

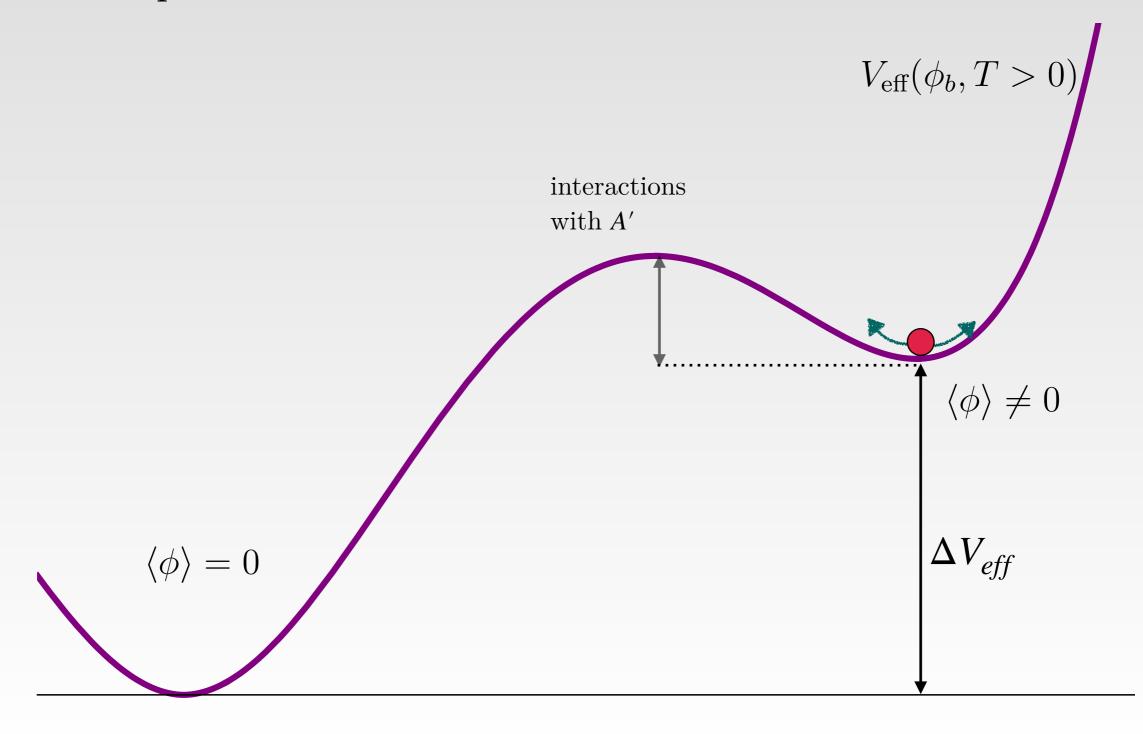
Coupled Boltzmann equations

When the mass changes over time (due to the effective potential)

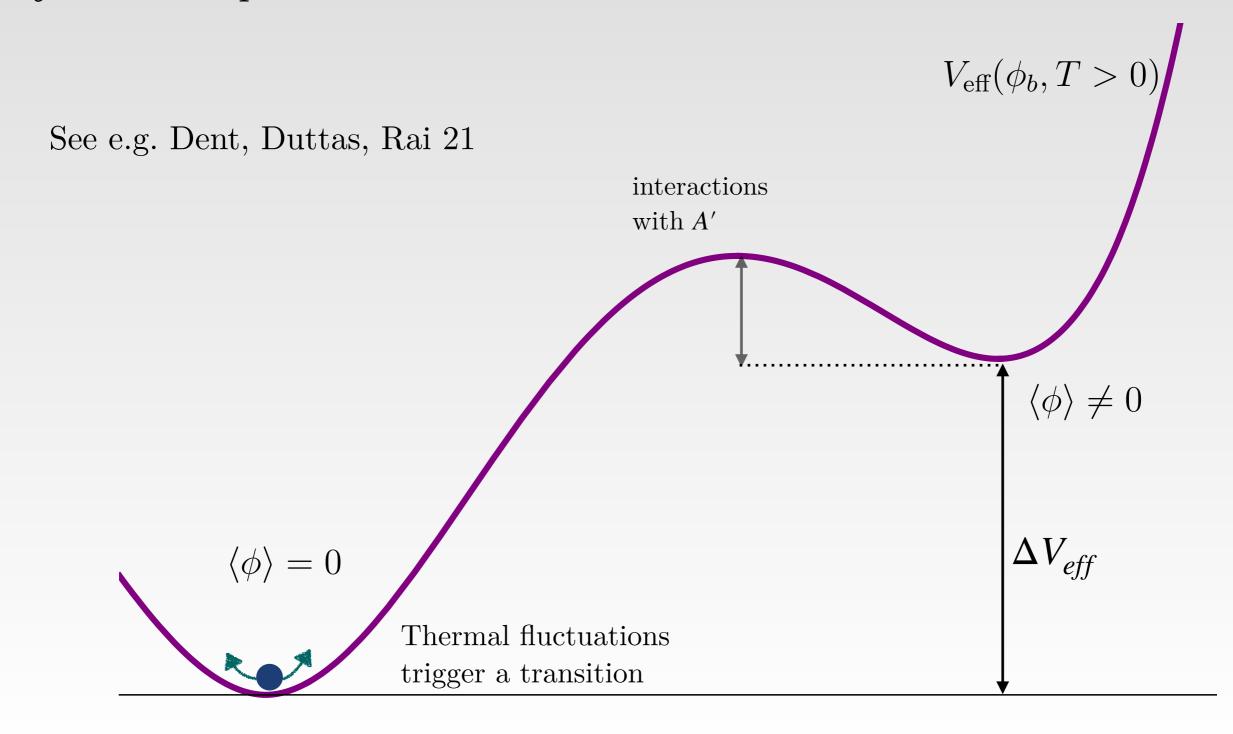
the integral
$$\int d^3p \, \frac{p^2}{E} (\partial_t - H\vec{p} \cdot \vec{\nabla}_p) f \text{ contains the term;}$$

$$\frac{d(m^2)}{dt} \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{E^3} f \text{ because } E = (p^2 + m(t)^2).$$
therefore
$$\frac{dT_{ds}}{da} = \frac{1}{1+\kappa_1} \left(-\frac{2T_{ds}}{a} + \frac{1}{3a} \left\langle \frac{p^4}{E^3} \right\rangle + \frac{a^2}{3HN} C_2 - \frac{N'}{N} T_{ds} + \kappa_2 \right);$$
with $\kappa_1 = \frac{1}{6} \langle p^2 / E^3 \rangle \left(V_{\phi\phi T} - \frac{V_{\phi\phi\phi} V_{\phi T}}{m^2} \right) \text{ and } \kappa_2 = -\frac{1}{6} \langle p^2 / E^3 \rangle \left(V_{\phi\phi z} - \frac{V_{\phi\phi\phi} V_{\phi z}}{m^2} \right) \frac{N'}{N_{ea}}.$

The system is *initially* in a **broken** phase and is 'pushed' towards a **symmetric** phase:



The system is *initially* in a **broken** phase and is 'pushed' towards a **symmetric** phase:



GW spectrum

The spectrum is calculated via

$$\Omega_{GW}h^{2}(f) = Rh^{2}\tilde{\Omega} \left(\frac{\kappa_{sw}\alpha}{\alpha+1}\right) (\beta/H)^{-1} \Upsilon S,$$

$$S(f, f_{p}) = \left(\frac{f}{f_{p}}\right)^{3} \left(\frac{7}{4+3(f/f_{p})^{2}}\right)^{7/2}$$

Latent heat (ΔV_{eff}) $\alpha = \frac{\Delta \theta}{4(\rho_{DS} + \rho_{sm})}$ $\kappa_{sw} = \frac{\Delta \Theta}{4\rho_{DS}}$

