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Goal of medical imaging

▶ Medical imaging refers to techniques and process of imaging the interior of a body
for clinical analysis and medical intervention1

▶ Many techniques exist:
▶ Magnetic resonance imaging (MRI)
▶ X-ray computed tomography (CT)
▶ Positron emission tomography (PET)
▶ Single photon emission Computed tomography (SPECT)
▶ . . . and many more, including proton computed tomography (pCT)!

1https://en.wikipedia.org/wiki/Medical_imaging
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How does X-ray CT work?

▶ A rotating X-ray tube emits X-rays
towards the patient

▶ X-rays are attenuated when traversing
the various tissues (described by µ(x))

▶ Residual energy is detected in order to
estimate the integral of the attenuation
along the ray (Beer-Lambert law:
− log

(
I
I0

)
=
∫
µ(x)dx)

▶ For each gantry position, a projection
is acquired, eventually forming a
sinogram
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Tomographic image reconstruction

▶ Goal: turn sinogram data into an
image understandable by the human
eye

▶ Many algorithms exist, that fall into
two categories:
▶ Analytic algorithms (filtered

backprojection (FBP),
Feldkamp-Davis-Kress (FDK))

▶ Iterative algorithms (algebraic
reconstruction technique (ART),
simultaneous algebraic
reconstruction technique (SART),
conjugate gradient (CG). . . )

→
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Proton therapy

▶ When traversing a material, protons
deposit their energy in a well-defined
area (Bragg peak phenomenon)

▶ That makes protons good candidates
to destroy tumoral cells

▶ This process is known as proton
therapy

6 / 33



Proton range

▶ Location and shape of the Bragg peak must be precisely determined

▶ Treatment planning requires a map of the relative stopping power (RSP)
distribution within the patient’s body

▶ Stopping power (SP): ability for a material to stop protons
▶ RSP = SPmaterial

SPwater

▶ Currently determined by converting Hounsfield unit (HU) from X-ray CT
▶ This conversion introduces uncertainties ranging from 1% to 5%2, resulting in

increased saftey margins

2Ming Yang et al. In: Physics in Medicine & Biology 57.13 (2012)
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Proton Computed tomography

▶ Goal: use protons to directly recover the RSP distribution
▶ Shoot protons with enough energy to completely traverse the patient and detect

their residual energy
▶ Use tomographic reconstruction techniques in order to reconstruct an image of the

RSP distribution

8 / 33



Proton physics

In the patient, protons undergo several
interactions:

▶ Multiple Coulomb scattering (MCS):
stochastic collision of protons onto
atomic eletrons

▶ Nuclear interactions, that can be. . .

▶ Elastic: the indicent proton scatters
off a nucleus

▶ Inelastic: the proton is absorbed
then re-emitted by a nucleus

Courtesy of Catherine Thérèse Quiñones3.

3Catherine Thérèse Quiñones. PhD thesis. Université de Lyon, 2016
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Energy-loss pCT scanner

▶ Up- and downstream detectors track
the protons’ position and direction to
estimate their most likely path (MLP)

▶ The calorimeter measures the residual
energy to estimate the integral of the
SP along the MLP

▶ The scanner (or the object) rotates

Proton
trackers

Proton
trackers

Calorimeter

Object

Proton
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List-mode pCT data

▶ Detected protons’s information are
stored in list-mode files
▶ Incoming position and direction
▶ Outgoing position and direction
▶ Residual energy

▶ “Distance-driven projections” are
formed by properly binning these data

▶ Reconstruction can be achieved using
“distance-driven FBP”4

4Simon Rit et al. In: Medical Physics 40.3 (2013)
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Time-of-flight pCT

▶ Calorimeter is replaced by two
time-tracking low gain avalanche
detectors5

▶ The time-of-flight (TOF) is
converted to the corresponding
energy

▶ The reconstruction can then be
carried out as in energy-loss pCT

Proton
trackers

Proton
trackers

TOF detectors

Object

Proton

5Felix Ulrich-Pur et al. In: Physics in Medicine & Biology 67.9 (2022), Nils Krah et al. In: Physics
in Medicine & Biology 67.16 (2022)
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Sandwich Time-of-flight pCT

▶ The residual energy is not measured
anymore

▶ Instead, the time is measured in the
up- and downstream detectors6

▶ How to reconstruct the RSP
distribution from TOF measurements
only?

4D proton
trackers

4D proton
trackers

Object

Proton

6F. Ulrich-Pur et al. In: Journal of Instrumentation 18.02 (2023)
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Difficulty of sandwich time-of-flight pCT
▶ Protons traversing different materials with equivalent water-equivalent path

lengths (WEPLs) result in
▶ equal energy loss
▶ different TOFs

▶ The conversion between TOF and WEPL is non-bijective
▶ The forward problem is non-linear and non-trivial to invert

14 / 33



Outline

Medical imaging in a few words

Energy-loss proton computed tomography
Motivation
Scanner design

Time-of-flight proton computed tomography

Sandwich Time-of-flight proton computed tomography
First proposal: 1D calibration curve
Second proposal: 2D calibration curve
Third proposal: formulation as an optimization problem

Conclusion



Monte Carlo simulation

▶ Perfect detectors of 40 cm in the x and y
directions located at z = {−110 mm, 110 mm}

▶ Parallel, 40 cm wide 200 MeV proton beam
located at z = −1000 mm

▶ The scanned object is located between the
detectors

▶ At each of the 720 steps. . .
▶ The object rotates around the y axis by 0.5◦
▶ 72 000 protons are shot

▶ Implemented with GATE 7 version 10

7Nils Krah et al. In: XXth International Conference on the use of Computers in Radiation therapy.
2024
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TOF to WEPL conversion

▶ Based on the Monte Carlo simulation
explained before

▶ Object is a water box of
40 × 40 × L cm, where L is the length
of the box in the z direction

▶ The simulation is repeated 100 times
for L between 0mm and 220mm

▶ In each simulation, 104 protons are
emitted from a point-like source

▶ For each simulation, the median
energy loss and TOF are stored

▶ A polynomial curve is finally fitted

Upstream
detector

Downstream
detector

Water box

L ∈ [0; 220]

Proton
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TOF and energy-loss to WEPL

−20 0 20 40 60 80 100 120 140 160 180 200 220
0

100

200

Energy loss [MeV]

W
EP

L
[m

m
]

1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44 1.46 1.48 1.5 1.52 1.54

TOF [ns]

Energy loss sandwich time-of-flight (STOF)
Medians Medians

Fit Fit
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Tomographic reconstructions
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Profiles
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The abstract

Proton computed tomography
reconstruction from sandwich time-of-flight

using a lookup table approach
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The idea
▶ Use the convex hull of the object to account for the air around the object
▶ A two-dimensional calibration curve is constructed on two variables:

1. the TOF between the beginning of the object and the downstream detectors
(τobject + τ2)

2. the amount of air between the object and the downstream detector (d2)

Upstream detector Downstream detector
Convex hull

MLP

τ1(Ein, d1) τobject = τ − τ1 − τ2 τ2(Eout, d2)
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The fit

The Monte Carlo is repeated for. . .
▶ 10 realisations of d2 from 0 to 220mm
▶ 10 realisations of L from 0 to 220 − d2

Water box

L d2

Upstream
detector

Downstream
detector

Proton
0

100
200 0

1
2−200

0

200

d2 [mm] τobject + τ2 [ns]

W
EP

L
[m

m
]

Medians

Fit
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Reconstructions
Previous method:

New method:
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Forward model

Continuous version
▶ TOF of proton p:

τp =

∫
Γp

dx
vp(x)

(1)

▶ Velocity of the proton p at point x :

vp(x) = c2 Ep(x)
Ep(x) +mc2

√
1 + 2

mc2

Ep(x)
(2)

▶ Energy of the proton p at point x = Γp(sk ):

Ep(Γp(s)) = Ein−
∫ s

−∞
ρ(Γp(s

′))σH2O(Ep(Γp(s
′)))ds′

(3)

Discrete version
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(3)

Discrete version
▶ TOF of proton p:

τp ≈
K∑

k=1

d
sk
p

v
sk
p

(4)

▶ Velocity of the proton p at point x :

v
sk
p = c2 E

sk
p

E
sk
p +mc2

√
1 + 2

mc2

E
sk
p

(5)

▶ Energy of the proton p at point x = Γp(sk ):

E
sk
p = E

sk−1
p − d

sk
p ρ̃ρ(Γp(sk−1))σH2O(E

sk−1
p )

(6)
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Optimization scheme

▶ Let τ̂ the TOFs produced by the forward model, and τ the measurements
▶ The cost function can be defined as

L (ρ) = ∥τ̂ (ρ)− τ∥2
2 (7)

25 / 33



Minimization of the cost function

L (ρ) = ∥τ̂ (ρ)− τ∥2
2

▶ The cost function can be minimized using gradient descent

▶ In its simplest form, the update step is given by ρ′i = ρi − α
∂L
∂ρi

▶ The derivative can be computed using
▶ Finite differences
▶ Analytical differentiation
▶ Automatic differenciation

26 / 33



Calculating the derivative
Finite differences

∂L
∂ρi

= lim
h→0

L





ρ0
ρ1
...

ρi + h
...
ρJ




− L





ρ0
ρ1
...
ρi
...
ρJ




h

(8)

Super slow but useful nonetheless to check other implementations!
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Calculating the derivative
Analytical differenciation

By repeatedly applying the chain rule:

▶
∂L
∂ρi

=

(
∂L
∂τ̂

)⊤ ∂τ̂

∂ρi

▶
∂τ̂p
∂ρi

= −
K∑

k=1

d sk
p

(v skp )2
∂v skp
∂ρi

▶
∂v skp
∂ρi

= c2

 mc2

(E sk
p +mc2)2

√
1 + 2

mc2

E sk
p

+
mc2√

1 + 2mc2

E
sk
p

E sk
p

E sk
p +mc2

 ∂E sk
p

∂ρi

▶
∂E sk

p

∂ρi
=

∂E
sk−1
p

∂ρi
−

d sk
p

(
∂ρ̃ρ(Γp(sk−1))

∂ρi
σH2O(E

sk−1
p ) + ρ̃ρ(Γp(sk−1))

∂σH2O(E
sk−1
p )

∂E
sk−1
p

∂E
sk−1
p

∂ρi

)
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Calculating the derivative
Analytical differenciation

Ep ← Ein ▷ Current energy
∂Ep

∂ρi
← 0 ▷ Current derivative of the energy

∂τ̂p
∂ρi
← 0 ▷ Current TOF derivative

for k ← 2, . . . ,K do
∂Ep

∂ρi
← ∂Ep

∂ρi
− d sk

p

(
ϕi (Γp(sk))σH2O(Ep) + ρ̃ρ(Γp(sk−1))

∂σH2O(Ep)

∂Ep

∂Ep

∂ρi

)
∂vp
∂ρi
← c2

 mc2

(Ep +mc2)2

√
1 + 2

mc2

Ep
+

mc2√
1 + 2mc2

Ep

Ep

Ep +mc2

 ∂Ep

∂ρi

∂τ̂p
∂ρi
← ∂τ̂p

∂ρi
− d sk

p

v2
p

∂vp
∂ρi

▷ Update TOF derivative

Ep ← Ep − d sk
p ρ̃ρ(Γp(sk−1))σH2O(E

sk−1
p ) ▷ Update current energy

end for
return

∂τ̂p
∂ρi
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Calculating the derivative
Automatic differenciation

▶ The chain rule can be automatically applied
▶ PyTorch’s autograd does so by building a graph representing the computation

https://www.digitalocean.com/community/tutorials/
pytorch-101-understanding-graphs-and-automatic-differentiation

import torch
a = 5.
w = torch.tensor([1., 2., 3., 4.],

requires_grad=True)↪→

b = a * w[0]
c = a * w[1]
d = b + c + w[2] + w[3]
L = -d
print(L) # tensor(-22.,

grad_fn=<NegBackward0>)↪→

L.backward()
print(w.grad) # tensor([-5., -5.,

-1., -1.])↪→

30 / 33
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pytorch-101-understanding-graphs-and-automatic-differentiation

import torch
a = 5.
w = torch.tensor([1., 2., 3., 4.],

requires_grad=True)↪→

b = a * w[0]
c = a * w[1]
d = b + c + w[2] + w[3]
L = -d
print(L) # tensor(-22.,

grad_fn=<NegBackward0>)↪→

L.backward()
print(w.grad) # tensor([-5., -5.,

-1., -1.])↪→
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Results

▶ Number of projections: 90
▶ Protons per projection: about

6000
▶ Reconstruction grid:

220 × 4 × 220
▶ Voxel size:

1 mm × 100 mm × 1 mm
▶ Number of iterations: 100
▶ Step size: 2mm
▶ Optimizer: Adam
▶ Color scale: [0.75, 1.25]
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Outline

Medical imaging in a few words

Energy-loss proton computed tomography
Motivation
Scanner design

Time-of-flight proton computed tomography

Sandwich Time-of-flight proton computed tomography
First proposal: 1D calibration curve
Second proposal: 2D calibration curve
Third proposal: formulation as an optimization problem

Conclusion



Energy-loss, TOF and sandwich TOF pCT

Energy-loss pCT

Position
detector

Position
detector

Calorimeter

Object

Proton

▶ Energy is detected using a
calorimeter

▶ Hard to keep a reasonable
acquisition time

TOF pCT8

Position
detector

Position
detector

TOF detectors

Object

Proton

▶ Energy is estimated using
TOF between two
downstream detectors

▶ Placing TOF detectors
with sufficient distance is
impractical

STOF pCT9

4D
upstream
detector

4D
downstream

detector

Object

Proton

▶ WEPL is directly
estimated from the TOF
between up- and
downstream detectors

▶ Can be implemented with
two 4D low gain
avalanche detectors

8Nils Krah et al. In: Physics in Medicine & Biology 67.16 (2022)
9F. Ulrich-Pur et al. In: Journal of Instrumentation 18.02 (2023)
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Conclusion

▶ Reconstruction from TOF pCT data is challenging
▶ We proposed methods based on calibration curves and on direct optimization of

the image
▶ Proposed methods are contributed to the PCT toolkit10

Dziękuję!

10https://github.com/RTKConsortium/PCT
33 / 33

https://github.com/RTKConsortium/PCT


Conclusion

▶ Reconstruction from TOF pCT data is challenging
▶ We proposed methods based on calibration curves and on direct optimization of

the image
▶ Proposed methods are contributed to the PCT toolkit10

Dziękuję!

10https://github.com/RTKConsortium/PCT
33 / 33

https://github.com/RTKConsortium/PCT


Backup slides



Computation costs

Speed Memory usage
autograd 16 h 20 GB

autograd + GPU 1 h 20 GB
autograd + functions 16 h 10 GB

autograd + GPU + functions 1 h 10 GB

Why not have the whole forward model as a single autograd operator?

How to compute
∂ρi
∂τ̂p

?

1 / 2



autograd custom functions

▶ Possibility to replace some parts of the
gradient graph with custom analytical
derivatives

▶ Some advantages:
▶ Reduced memory footprint
▶ Reduced computation time (?)
▶ Validation of the analytical

derivatives using
torch.autograd.gradcheck

▶ Main drawback: additional complexity

class Velocity(torch.autograd.Function):

@staticmethod
def forward(ctx, e):

ctx.save_for_backward(e)
return c * (e / (e + m0)) *

torch.sqrt(1 + 2 * (m0 / e))↪→

@staticmethod
def backward(ctx, grad_output):

e, = ctx.saved_tensors
dv_de = -c*e*torch.sqrt(1 +

2*m0/e)/(e + m0)**2 +
c*torch.sqrt(1 + 2*m0/e)/(e +
m0) - c*m0/(e*torch.sqrt(1 +
2*m0/e)*(e + m0))

↪→

↪→

↪→

↪→

return grad_output * dv_de
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