Bayesian fitting in positronium lifetime imaging

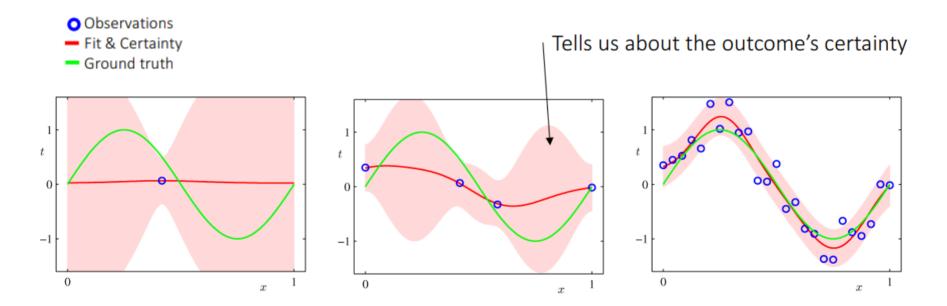
Roman Y. Shopa 16-06-2025

Outline

Bayesian fitting Uncertainty & probability Knowledge update **General Bayesian Inference** Linear and non-linear fitting Update new data Posterior sampling Ps decay and Ps lifetime spectrum Examples

Uncertainty & probability

Use probability as a vehicle to quantify degrees of belief on uncertainty in unobserved events \rightarrow Bayesian statistics



https://shapemodelling.cs.unibas.ch/pmm2017/slides/bayes.pdf

Uncertainty & probability

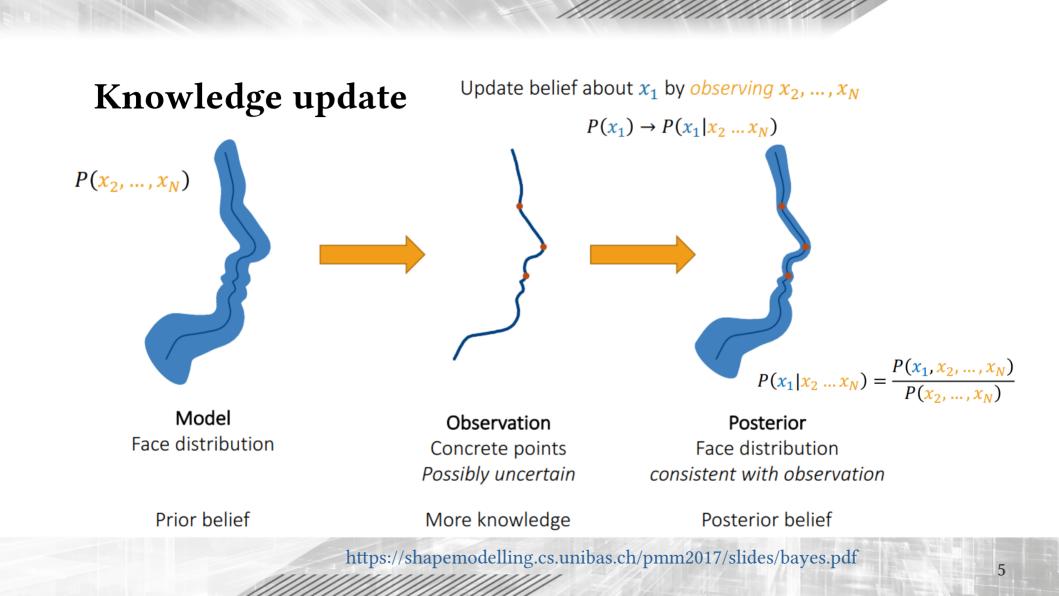
Why does the distribution change when we have more data? Shouldn't there be a real distribution $P(\theta)$?

Bayesian probabilities rely on a subjective perspective:

probability is used to express our *current knowledge*. It can change when we learn or see more: With more data, we are more certain about our result.

Subjectivity: There is no single, real underlying distribution. A probability distribution expresses our knowledge – It is different in different situations and for different observers since they have different knowledge.

https://shapemodelling.cs.unibas.ch/pmm2017/slides/bayes.pdf



General Bayesian Inference

General Bayesian inference case:

- Distribution of data **D** = **y** (or Evidence)
- Parameters θ (or Query)
- Update method (similar to MLEM): $P(\theta|D) \propto P(D|\theta)P(\theta)$

marginal likelihood (constant)

prior

likelihood

https://shapemodelling.cs.unibas.ch/pmm2017/slides/bayes.pdf

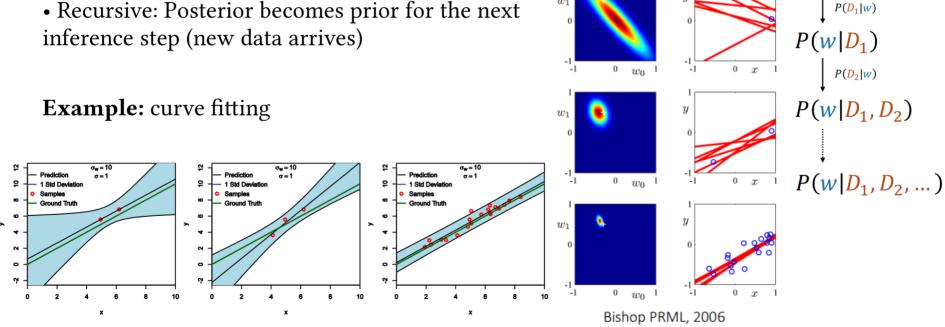
posterior

 $P(\theta | l$

Update new data

Inference case:

- beliefs evolve with observation
- Recursive: Posterior becomes prior for the next



https://shapemodelling.cs.unibas.ch/pmm2017/slides/bayes.pdf

prior/posterior

0

 $w_0 = 1$

-1

w

-1

data space

0 x 1

P(w)

Linear and non-linear fitting

Linear regression: many predictors (X as a matrix), errors ε are independent and identically normally distributed

Non-linear, multilevel models (MLMs): accounts for the population-level and grouped-level coefficients β and u, with the corresponding design matrices X and Z. Also, custom distribution ("family" D and link function $f(\eta)$)

$$y = \beta^T X + \varepsilon$$

 $y_i \sim D(f(\eta_i), \theta)$ $\eta = \mathbf{X}\beta + \mathbf{Z}u$

Bürkner, brms: An R Package... (2017)

8

What if we don't have new data?

Posterior sampling

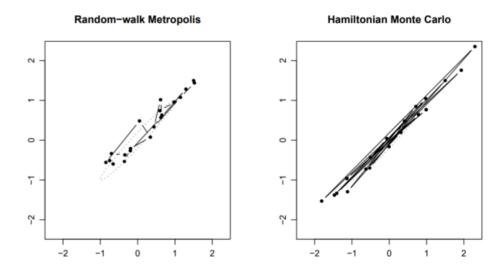
What if we don't have new data? - sample many candidates and refine:

- start with initial parameters θ as random guesses (rough distribution)
- generate a new candidate in the parameter space
- accept or reject the new value based on likelihood
- repeat for thousands of iterations

How to generate samples:

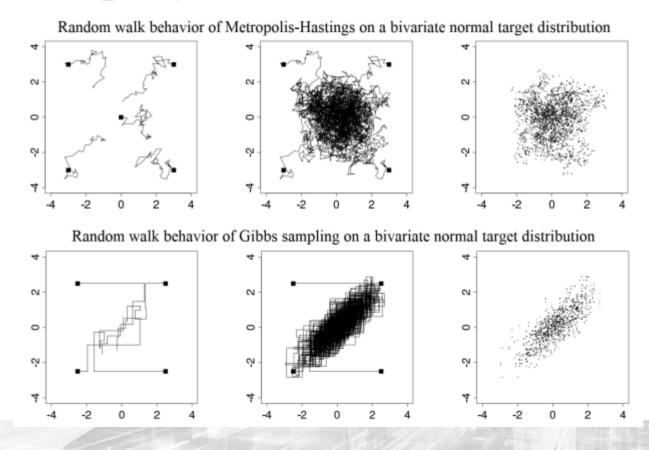
Random walk (least efficient) Gibbs,

Markov Chain Monte Carlo (MCMC): Metropolis-Hastings, Hamiltonian Monte Carlo, No-U-turn sampler (NUTS)



Posterior sampling

figure from Gelman et al. (2013), BDA3, Chapter 11



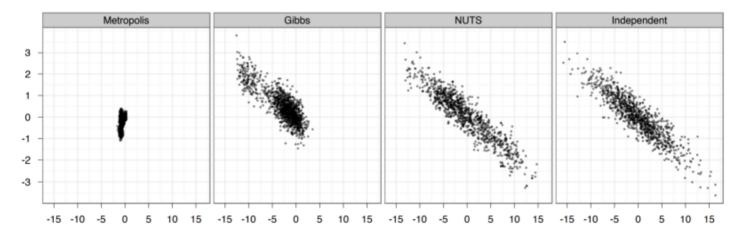
10

Posterior sampling

figure from Hoffman & Gelman (2014)

11

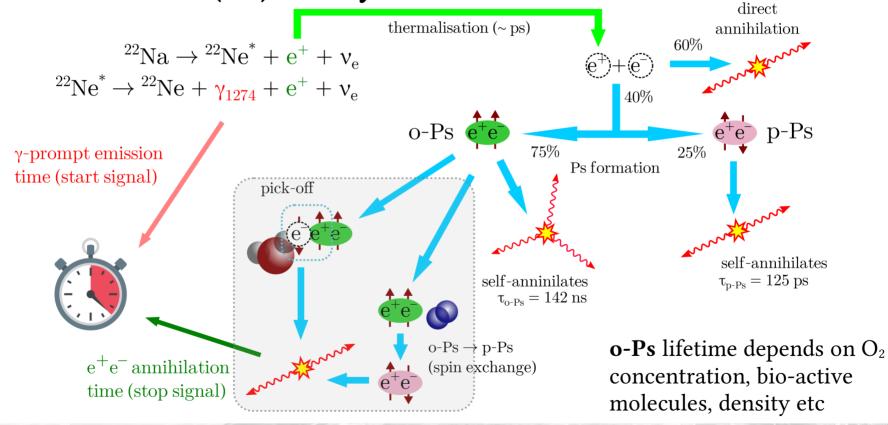
Advanced sample generation: Hamiltonian Monte Carlo \rightarrow no-U-turn sampler (NUTS).



Simulating a "*physical system*" via multiple MCMC chains where parameter changes are guided by *gradient-based forces* derived from the likelihood function. Accepted values if increased $P(y | \theta)$

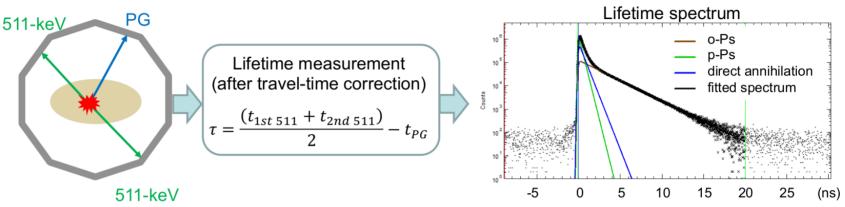
Convergence & Diagnostics: chains should mix well, R-hat stats ~1.0 indicate convergence, Effective Sample Size (ESS) should be sufficiently large

Positronium (Ps) decay



Ps lifetime spectrum

From J.Qi presentation (Jagiellonian symposiun 2024)



List-mode event parameters

- LOR *i*_k, including TOF information
- Time delay τ_k

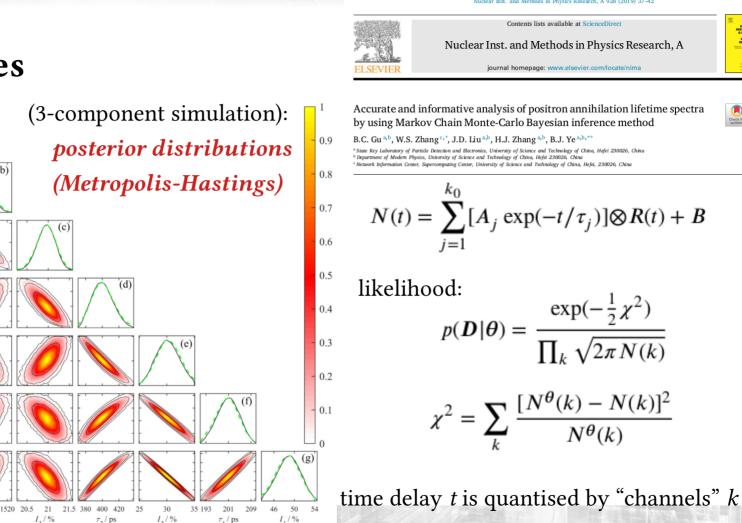
$$P(heta|y) = rac{P(y| heta)}{P(y)} \quad P(heta|y) \propto P(y| heta) P(heta)$$

Likelihood model of time measurement

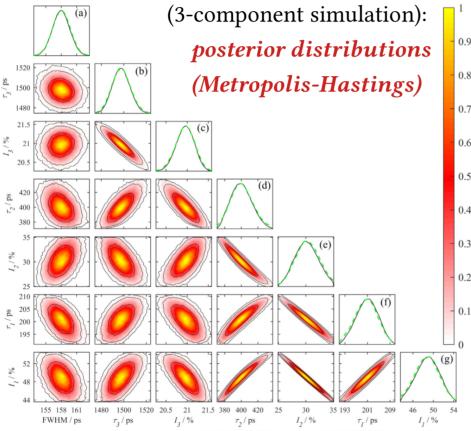
 $p(\tau | \boldsymbol{\lambda}, \boldsymbol{A}) = \sum_{l} g(\tau) * [A_{l}\lambda_{l} \exp(-\lambda_{l}\tau)u(\tau)] + B$

- λ_l : 1/lifetime of the l^{th} pathway
- A_l : Fraction of the l^{th} pathway
- $g(\tau)$: Detector timing response
- $u(\tau)$: Heaviside function
- B: random background events

Nuclear Inst. and Methods in Physics Research, A 928 (2019) 37-42



Examples



14

NUCLEAR INSTRUMENT & METHODS IN PHYSICS RESEARCH

Software:

Julia, Turing.jl, ArviZ, Stan, brms...

EJNMMI Physics

Open Access

- Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh approach to numerical computing. SIAM Rev. 2017;59:65–98.
- Ge H, Xu K, Ghahramani Z. Turing: a language for flexible probabilistic inference. In International Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9–11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain, 2018;1682–1690.
- 32. Kumar R, Carroll C, Hartikainen A, Martin O. ArviZ a unified library for exploratory analysis of Bayesian models in python. J Open Source Softw. 2019;4:1143. https://doi.org/10.21105/joss.01143.

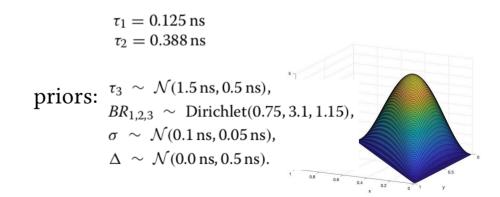
Another example:

Steinberger et al. EJNMMIPhysics (2024) 11:76

https://doi.org/10.1186/s40658-024-00678-4

ORIGINAL RESEARCH

 $F(t) = b + N \cdot \sum_{i=1}^{3} \frac{BR_i}{2\tau_i} e^{(\sigma^2 - 2t\tau_i + 2\Delta \tau_i)/(2\tau_i^2)} \cdot \operatorname{erfc}\left(\frac{\sigma}{\sqrt{2}\tau_i} + \frac{\Delta - t}{\sqrt{2}\sigma}\right)$



Positronium lifetime validation measurements using a long-axial field-of-view positron emission tomography scanner

William M. Steinberger^{1*}¹, Lorenzo Mercolli², Johannes Breuer³, Hasan Sari⁴, Szymon Parzych⁵, Szymon Niedzwiecki⁵, Gabriela Lapkiewicz⁵, Pawel Moskal⁵, Ewa Stepien⁵, Axel Rominger², Kuangyu Shi² and Maurizio Conti¹

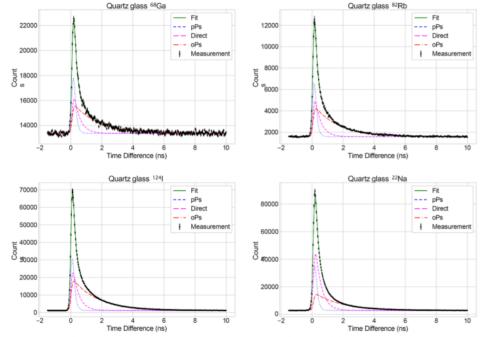


Fig. 14 Bayes fit using Eq. (7) to quartz glass data with the contributions of the Ps lifetime components

Steinberger et al. EJNMMIPhysics (2024) 11:76 https://doi.org/10.1186/s40658-024-00678-4 EJNMMI Physics

ORIGINAL RESEARCH

Positronium lifetime validation measurements using a long-axial field-of-view positron emission tomography scanner

William M. Steinberger^{1*}¹, Lorenzo Mercolli², Johannes Breuer³, Hasan Sari⁴, Szymon Parzych⁵, Szymon Niedzwiecki⁵, Gabriela Lapkiewicz⁵, Pawel Moskal⁵, Ewa Stepien⁵, Axel Rominger², Kuangyu Shi² and Maurizio Conti¹

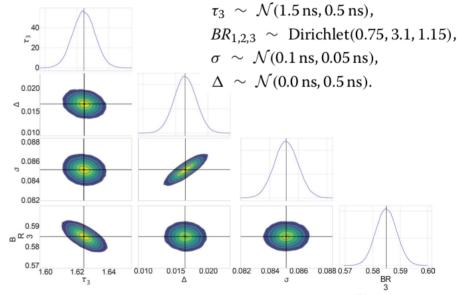


Fig. 15 Pair plot of the posterior distributions for the parameters τ_3 , BR₃, σ and Δ for the ¹²⁴ | quartz glass data

Example with hierarchical models:

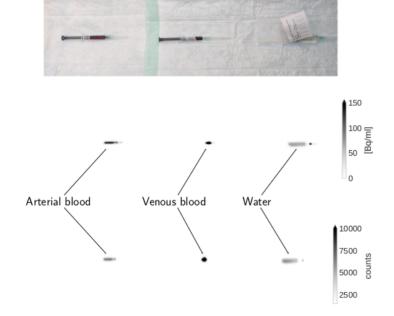


Fig. 11: Picture of the ¹²⁴I blood samples and water lying on Quadra's patient bed (top) together with the MIP of the coincidence PET image (middle) and $3\gamma E$ histoimage (bottom).

medRxiv preprint doi: https://doi.org/10.1101/2024.10.19.24315509; this version posted October 22, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

In Vivo Positronium Lifetime Measurements with a Long Axial Field-of-View PET/CT

Lorenzo Mercolli^{1,2*}, William M. Steinberger³, Hasan Sari^{1,2,4}, Ali Afshar-Oromieh¹, Federico Caobelli¹, Maurizio Conti³, Ângelo R. Felgosa Cardoso¹, Clemens Mingels¹, Paweł Moskal^{5,6}, Thomas Pyka¹, Narendra Rathod^{1,2}, Robin Schepers¹, Robert Seifert¹, Kuangyu Shi^{1,2}, Ewa Ł. Stępień^{5,6}, Marco Viscione¹, Axel O. Rominger¹

 ¹Department of Nuclear Medicine, Inselspital, Bern University Hostpital, University of Bern, Bern, Switzerland.
²ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.
³Siemens Medical Solutions USA, Inc., Knoxville TN, USA.
⁴Siemens Healthineers International AG, Zürich, Switzerland.
⁵Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland.
⁶Centre for Theranostics, Jagiellonian University, Krakow, Poland.

17

Example with hierarchical models (some parameters are shared across samples):

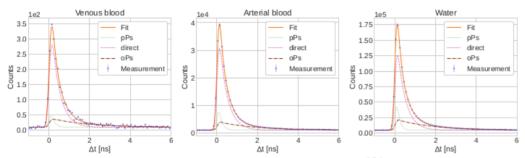


Fig. 12: TDD and fit prediction for the three ¹²⁴I samples.

In Vivo Positronium Lifetime Measurements with a Long Axial Field-of-View PET/CT

Lorenzo Mercolli^{1,2*}, William M. Steinberger³, Hasan Sari^{1,2,4}, Ali Afshar-Oromieh¹, Federico Caobelli¹, Maurizio Conti³, Ângelo R. Felgosa Cardoso¹. Clemens Mingels¹. Paweł Moskal^{5,6}.

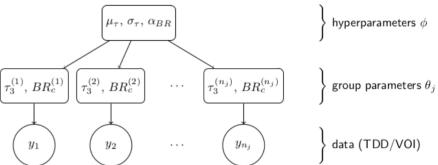


Fig. 2: Hierarchical model for the combined analysis of data from different VC

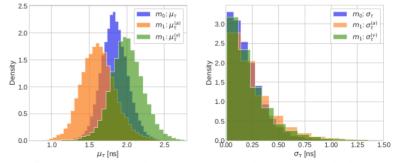


Fig. 13: Comparison between the sampled posterior distributions of the hyperparameters of the models m_0 and m_1 (see Fig. 3).

PLI using Bayesian fitting:

$$F(t) = b + N \cdot \sum_{i=1}^{3} \frac{BR_i}{2\tau_i} e^{(\sigma^2 - 2t\tau_i + 2\Delta\tau_i)/(2\tau_i^2)} \cdot \operatorname{erfc}\left(\frac{\sigma}{\sqrt{2\tau_i}} + \frac{\Delta - t}{\sqrt{2\sigma}}\right)$$

Positronium Lifetime Imaging with the Biograph Vision Quadra using $^{124}\mathrm{I}$

Lorenzo Mercolli^{1,2*}, William M. Steinberger³, Narendra Rathod^{1,2}, Maurizio Conti³, Paweł Moskal^{4,5}, Axel Rominger¹, Robert Seifert¹, Kuangyu Shi^{1,2}, Ewa Ł. Stępień^{4,5}, Hasan Sari^{1,2,6}

 ^{1*}Department of Nuclear Medicine, Inselspital, Bern University Hostpital, University of Bern, Bern, Switzerland.
²ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.
³Siemens Medical Solutions USA, Inc., Knoxville TN, USA.
⁴Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland.
⁵Centre for Theranostics, Jagiellonian University, Krakow, Poland.

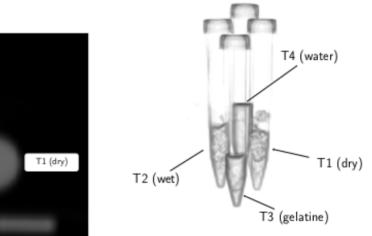


Fig. 3: Top view of a CT slice (right) and 3D rendering of the CT (left) of the setup with the four tubes taped together.

T4 (water)

T3 (gelatine)

T2 (wet)

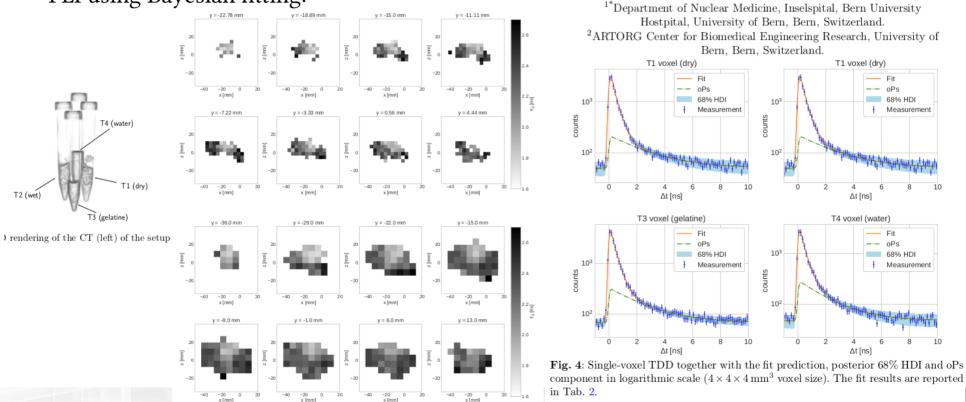
 $au_2 = 0.388 \,\mathrm{ns}$ $au_1 = 0.125 \,\mathrm{ns}$

```
\begin{split} &\tau_3 \sim \mathcal{N}(1.78\,\mathrm{ns}, 0.8\,\mathrm{ns}) \ ,\\ &BR_{1,2,3} \ \sim \ \mathrm{Dirichlet}(0.75, 3.1, 1.15) \\ &\sigma \sim \mathcal{N}(0.1\,\mathrm{ns}, 0.05\,\mathrm{ns}) \ ,\\ &\Delta \sim \mathcal{N}(0\,\mathrm{ns}, 0.5\,\mathrm{ns}) \ , \end{split}
```

PLI using Bayesian fitting:

Positronium Lifetime Imaging with the Biograph Vision Quadra using ¹²⁴I

Lorenzo Mercolli^{1,2*}, William M. Steinberger³, Narendra Rathod^{1,2}, Maurizio Conti³, Paweł Moskal^{4,5}, Axel Rominger¹, Robert Seifert¹, Kuangyu Shi^{1,2}, Ewa Ł. Stepień^{4,5}, Hasan Sari^{1,2,6}

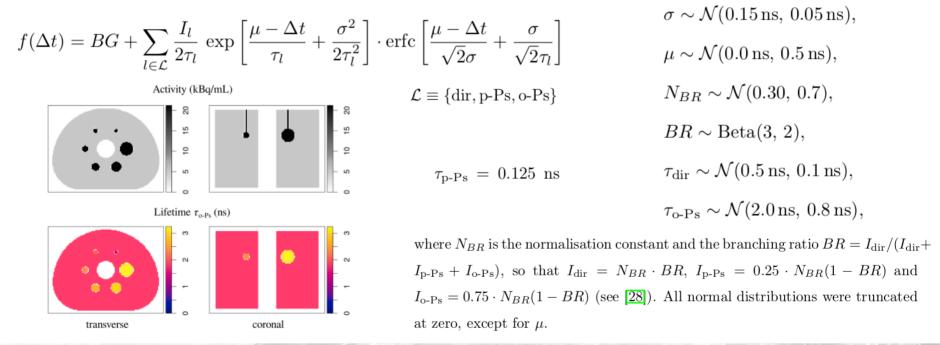


10

10

My example (NEMA IEC spheres)

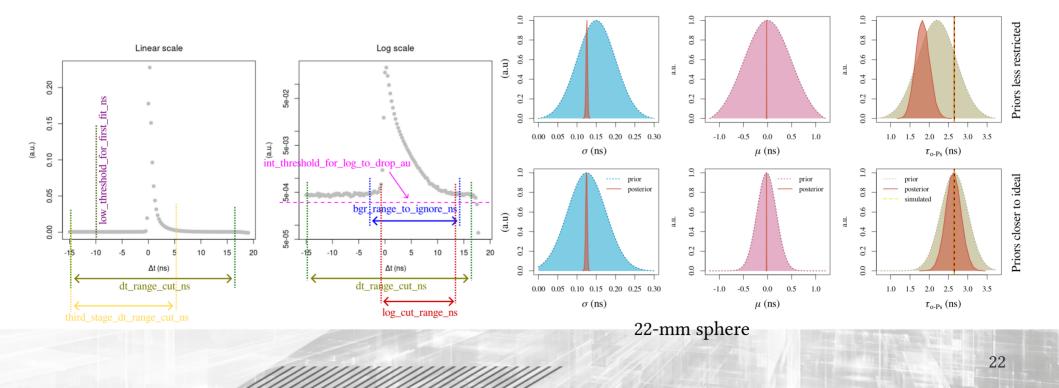
R package **'brms' / Stan** programming language (cf., Stan Development Team 2017b), provides a wide range of *non-linear distributional multilevel models*



N

Ay example
$$f(\Delta t) = BG + \sum_{l \in \mathcal{L}} \frac{I_l}{2\tau_l} \exp\left[\frac{\mu - \Delta t}{\tau_l} + \frac{\sigma^2}{2\tau_l^2}\right] \cdot \operatorname{erfc}\left[\frac{\mu - \Delta t}{\sqrt{2}\sigma} + \frac{\sigma}{\sqrt{2}\tau_l}\right]$$

Strong dependence on priors and fitting range, in particular in log scale $f(\Delta t) \rightarrow \log f(\Delta t)$



Э True events LMA3: --- Stage 1 (direct fit) Bayesian: Stage | (linear) data My example Stage 2 (log) Stage 2 (log) 0 Sphere 10 mm Sphere 22 mm Cold background 68% C.I. 68% C.I. ė le-02 68% C.L 68% C.I. 1e-02 (a.u.) (a.u.) 1e-03 (a.u.) le-04 $f(\Delta t)$ $\log f(\Delta t)$ lc-04 le-05 le-06 1 68% C.I. Stage 1 (linear) Stage 2 (log) -68% C.I. c-06 50 Bayesian LMA3 Bayesian LMA3 Bayesian LMA3 0.02 11 $\tau_{o.Ps}$ τ_{o-Ps} τ_{0} τ_{o-Ps} 0. 0 0 0 -5 0 5 10 15 -5 0 15 -5 5 10 15 5 10 0 10 mm Δt (ns) Δt (ns) 80 0.00 Δt (ns) 2.0 0 All events 0 0

0.2

 τ_{o-Ps}

0.4 0.6

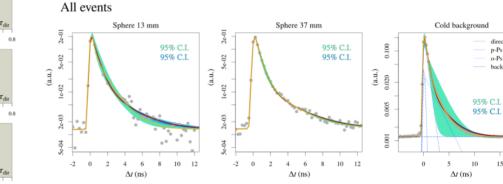


Figure 7: Time delay histograms, built from the MLEM weights (5th iteration) and fitted by various methods for the VOIs of the NEMA IEC phantom.

0.11 0.13 0.15 0.17 0.11 0.15 0.17 0.2 0.4 0.6 0.4 0.6 0.8 0.2 0.4 0.6 0.8 τ_{o-Ps} τ_{o-Ps} τ_{o-P} 3.0 0. 3.0 0. 17 mm 0.00 0 9 9 0.02

True coincidences 0.17 0.2 0.2 0.2 0.11 0.13 0.15 0.11 0.13 0.15 0.17 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 000 τ_{o-Ps} τ_{o-Ps} τ_{o-Ps} 0. 0 0 0 28 mm 0 8 0 9 0 0.13 0.15 0.17 0.2 0.2 0.4 0.6 0.8 0.11 0.11 0.13 0.15 0.17 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 000 τ_{o-Ps} $\tau_{\text{o-Ps}}$ $\tau_{\text{o-Ps}}$ τ_{o-Ps} 0 0. 0 Cold bgr. 0 000 0 8 0.2 0.11 0.13 0.15 0.17 0.11 0.13 0.15 0.17 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.4 0.6 0.8 direct comp

p-Ps comp.

o-Ps comp.

background

15

Thank You for Your attention!