

Many faces of decoherence

Wojciech Krzemień

From imaging algorithms to quantum methods 14.04.2025

Quantum Mechanics in one slide :-)

State: $|\Psi
angle$

Superposition: $|\Phi\rangle=a\,|\Psi_1\rangle+b\,|\Psi_2\rangle\neq\Psi_1 or \Psi_2$

Time evolution: $-i\hbar\frac{\partial}{\partial t}\left|\Psi\right\rangle = \hat{H}\left|\Psi\right\rangle$

https://physicsworld.com/a/double-slits-with-single-atoms/

Measurement:

$$\hat{O}|\Psi\rangle = m|\Psi\rangle$$

Probabilitic interpretation:

$$\hat{O}\left|\Psi\right\rangle = k\left|\Phi\right\rangle$$

$$|\langle \Phi | \Psi \rangle|^2$$

$$\langle \Psi | \hat{O} | \Psi \rangle$$

https://en.wikipedia.org/wiki/Polarizer

Pure state vs mixed state

Pure state:
$$|\Psi\rangle = \propto |\Psi_1\rangle + |\beta|\Psi_2\rangle$$

Density operator:
$$S = |\Psi\rangle\langle\Psi| = \begin{pmatrix} x \cdot x^* & x \beta^* \\ \beta x^* & \beta \cdot \beta^* \end{pmatrix}$$

Mixed state:
$$S = \sum_{i} \rho_{i} | \Psi_{i} \times \Psi_{i} |$$

Example - a source of light in a partially mixed state:

$$S = \frac{1}{1} \left[HHXHH + \frac{1}{2} \right] V W W$$

QM as a probability theory

Born's rule: $P = |z|^2$

Quantum interference

$$P = |z|^2 = |\alpha + \beta|^2$$

$$P = |\alpha|^2 + |\beta|^2 + 2|\alpha||\beta| \cos(\phi 1 - \phi 2)$$

$$P = p1 + p2 + 2 * sqrt(p1 * p2) cos(\phi1 - \phi2)$$

→ interference term

classical probabilities

Why don't we see QM phenoma in the "macroscopic" world?

https://en.wikipedia.org/wiki/File:Schrodingers cat.svg

realm QM

 $|\Psi\rangle = \alpha |\text{dead cat}\rangle + \beta |\text{alive cat}\rangle$

|dead cat>

Classical realm

or

|alive cat>

Measurement problem

Why don't we see QM phenoma in the "macroscopic" world II?

Environment

$$|\Psi\rangle = \alpha$$
 |dead cat> + β |alive cat>

Quantum decoherence = environment-induced decoherence

The environment **filters** the possible states \rightarrow quantum **interference** effects are (partially) **suppressed** \rightarrow we are approaching the "classical" predictions

- Purely quantum phenomena (vs dissipation or stochastic fluctuations)
- Independent of any QM interpretations

Decoherence and quantum computers

IBM Q quantum computer

https://flic.kr/p/23qF8wx

First "decoherence model"

 α -particle spherical wavefunction

https://commons.wikimedia.org/wiki/ File:Indeterminacy principle.gif

cloud chamber

First decoherence "model"

α-particle spherical wavefunction

https://commons.wikimedia.org/wiki/ File:Indeterminacy_principle.gif

cloud chamber

https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1929.0205

H. Dieter Zeh

Wojciech Żurek

Simple intuition

$$|\Psi\rangle = \propto |\Psi_1\rangle + |B|\Psi_2\rangle$$
 $|\chi|^2 + |B|^2 = 1$
 $|\chi|^2 + |B|^2 = 1$
 $|\chi|^2 = \frac{1}{2}$
 $|\chi|^2 = \frac{1}{2}$

$$S = |\Psi\rangle\langle\Psi| = \begin{pmatrix} \frac{1}{2} & \frac{1}{2}e^{-i\Psi} \\ \frac{1}{2}e^{i\Psi} & \frac{1}{2} \end{pmatrix}$$

Simple intuition

Simple "model" - multiple interactions with the environment each changes the phase randomly

Average
$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2}e^{-i\psi} \\ \frac{1}{2}e^{i\psi} & \frac{1}{2} \end{pmatrix}$$
 Fully mixed state!

Pure state

Quantum interference vanishes!

Evolution of the quantum systems

Pure State:

Schroedinger equation:

$$-i \frac{d}{dt} | \Psi(t) \rangle = \hat{H} | \Psi(t) \rangle$$

$$| \Psi(t) \rangle = U | \Psi(0) \rangle$$

Mixed state:

Von Neumann equation:

Evolution of the quantum systems

Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation:

$$\frac{ds}{dt} = -\frac{i}{h} \left[H_{1}S \right] + \sum_{i} \gamma_{i} \left(L_{i}S L_{i}^{\dagger} - \frac{1}{2} \langle L_{i}^{\dagger} L_{i} S^{\dagger} \rangle \right)$$

Kraus operators:

$$S \rightarrow S = \sum_{k} E_{k} S = 1$$

$$\sum_{k} E_{k} = 1$$

decoherence

$$\frac{1}{\sqrt{2}} \left(|\Psi_1\rangle |e_1\rangle + e^{i\varphi} |\Psi_2\rangle |e_2\rangle \right)$$

Error model

$$|\Psi_1\rangle|e\rangle \rightarrow |\Psi_1\rangle|e_4\rangle$$

$$|\Psi_2\rangle|e\rangle \rightarrow |\Psi_2\rangle|e_2\rangle$$

$$\langle e_1 | e_2 \rangle = \forall e^{i\alpha}$$

visibility

$$4 - 4 = 9 |x|^2 = \frac{1}{2}$$

Entanglement with the environment !!! Environment learns something about the system

Taken from "Quantum Decoherence" Maximilian Schlosshauer

$$P = \frac{1}{2} \left[1 + \langle e_1 | e_1 \rangle e^{iP} + c.c. \right] = \frac{1}{2} \left[1 + V \cos(Q + \omega) \right]$$

Visibility damps the quantum intereference term More environments "learns" more interference is suppressed!!

Same analysis for a single qubit state

Kraus representation

- Non-unitary operators
- Preserve trace and positivity
- Non-unique decomposition in the Kraus representation
- In quantum computing language → Quantum Errors (e.g. for qubit - flip the sign, or phase flip errors)

References

- "Quantum Decoherence" Maximilian Schlosshauer (https://arxiv.org/abs/1911.06282)
- "Decoherence and the Transition from Quantum to Classical" W.H.
 Żurek
- "A short introduction to the Lindblad Master Equation", D.Manzano
- Artur Ekert's online course