Statistical reconstruction algorithm based on the method of moments in positronium imaging

> **Roman Y. Shopa** 17-02-2025

Outline

Positronium decay Ps lifetime spectrum The SIMPLE algorithm Method of moments SIMPLE-Moment Preliminary results for the simulated study

Positronium decay

Ps lifetime spectrum

From J.Qi presentation (Jagiellonian symposiun 2024)

List-mode event parameters

- LOR i_k , including TOF information
- Time delay τ_k ٠

Likelihood model of time measurement

 $p(\tau|\boldsymbol{\lambda}, \boldsymbol{A}) = \sum g(\tau) * [A_l \lambda_l \exp(-\lambda_l \tau) u(\tau)] + B$

- λ_l : 1/lifetime of the l^{th} pathway
- A_l : Fraction of the l^{th} pathway
- $q(\tau)$: Detector timing response
- $u(\tau)$: Heaviside function
- *B*: random background events

25

(ns)

SIMPLE – Statistical IMage reconstruction of Positron annihilation LifetimE

Search preprints

Article

Fast High-resolution Lifetime Image Reconstruction for Positron Lifetime Tomography

PI event model

Positronium imaging (PI), also – positronium lifetime imaging (PLI)

The distribution of the lifetime measurement of true PI events (no randoms, no background):

$$p(\tau|\boldsymbol{\lambda}, \boldsymbol{A}) = g(\tau - \mu) * \sum_{l \in \{o, p, d\}} A_l \lambda_l \exp(-\lambda_l \tau) u(\tau)$$
 (1)

where u(t) is the unit step function. The subscript $l \in \{o, p, d\}$ denotes an annihilation pathway corresponding to o-Ps, p-Ps and direct annihilation, respectively. A_l denotes the intensity of the l^{th} pathway and λ_l is the annihilation rate (i.e., the inverse of the lifetime). $g(\tau - \mu)$ is a Gaussian function accounting for the detector timing response, where μ is the timing offset. The

J.Qi (doi.org/10.21203/rs.3.rs-5045821/v1)

The Ps lifetime *m* at voxel *j*:

$$m_j = \int_{-\infty}^{+\infty} \tau \times p(\tau | \boldsymbol{\lambda}_j, \boldsymbol{A}_j) d\tau - \mu.$$

<u>NOT o-Ps</u>, with the expected *m* covering <u>all decay mechanisms</u> (*j* is omitted here)

$$m = E[\tau] = \int_{-\infty}^{\infty} \tau p(\tau | \lambda, A) d\tau = \frac{A_o}{\lambda_o} + \frac{A_p}{\lambda_p} + \frac{A_d}{\lambda_d}$$

J.Qi (doi.org/10.21203/rs.3.rs-5045821/v1)

Ps lifetime image *m* -- from activity *x* as a weighted *w*:

$$w_j = x_j m_j,$$

From J.Qi presentation (Jagiellonian symposiun 2024)

Computation cost equivalent to reconstructing two PET images

¹Huang, et al., Statistical Image Reconstruction of Positron Lifetime via Time-Weighting (SIMPLE), 2022 IEEE MIC, Milano, Italy, 2022. ²Huang and Qi, Fast Reconstruction of Positronium Lifetime Image by the Method of Moments, 17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, Stony Brook, NY, USA, 2023.

J.Qi (doi.org/10.21203/rs.3.rs-5045821/v1)

Projection data vector z whose <u>expectation</u> is the forward projection of w.

$$\bar{z}_i = \sum_j^N H_{ij} w_j = \sum_j^N H_{ij} x_j m_j = \sum_j^N E[y_{ij}] m_j \qquad E[y_{ij}] m_j = E\left[\sum_{k \in K_{ij}} \tau_k\right]$$

 y_{ij} is the number of PI events originated in voxel *j* and detected in TOF sinogram bin *i*; *N* is the number of voxels; *H* and is a standard TOF system matrix whose element H_{ij} denotes the probability of detecting a coincident event originated in voxel *j* in TOF sinogram bin *i*.

$$\bar{z}_i = \sum_j^N E[y_{ij}]m_j = \sum_j^N E\left[\sum_{k \in K_{ij}} \tau_k\right] = E\left[\sum_{k \in K_i} \tau_k\right],$$
$$K_i = \bigcup_j K_{ij}.$$

Projection data is a sum of the measured lifetimes:

$$z_i = \sum_{k \in K_i} \tau_k$$

 K_{ij} denotes the set of list-mode indices of the events originated in voxel j and detected in LOR i

minimizing the cross-entropy (Kullback-Leibler) distance between the data vector z and the forward projection Hw

 $\widehat{\boldsymbol{w}} = \operatorname*{argmin}_{\boldsymbol{w}} KL(\boldsymbol{z}, \boldsymbol{H}\boldsymbol{w})$

Surrogate function (via optimisation transfer):

 $\phi(\boldsymbol{w}; \boldsymbol{w}^n)$

$$= \sum_{i=1}^{M} \left[-z_i \sum_{j=1}^{N} \frac{H_{ij} w_j^n}{\sum_{l=1}^{N} H_{il} w_l^n} \log(w_j) + \sum_{j=1}^{N} H_{ij} w_j \right]$$

J.Qi (doi.org/10.21203/rs.3.rs-5045821/v1)

The SIMPLE (experiment) J.Qi (doi.org/10.21203/rs.3.rs-5045821/v1)

Fig. 2. (a) Schematic illustration of the experimental setup of the source and biological tissue. The point source is suspended over the sample with an 8-mm clearance. (b) The 3D-printed holder with the source and sample. (c) The bottom beef sample consists of muscle and fat tissue. (d) The top beef sample. (e) The tray for the ²²Na source looked from above. Positrons pass through the hole and irradiate the bottom sample. (f) The ²²Na point source (orange disk).

The SIMPLE (experiment)

J.Qi (doi.org/10.21203/rs.3.rs-5045821/v1) From J.Qi presentation (Jagiellonian symposiun 2024)

Activity

The lifetime image reconstructed by our SIMPLE method shows clear • contrast between fat and muscle

Method of moments

Isenberg I and Dyson RD (1969) Biophys. J.

Let E(t) be the intensity of the exciting lamp and F(t) the emission of the sample when excited by E(t).

E(t) and F(t) are shown, schematically, in Fig. 1.

F(t) is given by the convolution

$$F(t) = \int_0^t E(t - u) f(u) \, du.$$
 (2)

E(t) and F(t) constitute, of course, the experimentally determined data. Let us define the k^{th} moments of F and E by

$$\mu_k = \int_0^\infty t^k F(t) dt \qquad (3)$$

$$f(t) = \sum_{n=1}^{N} \alpha_n e^{-\lambda_n t}$$

and

 $m_k = \int_0^\infty t^k E(t) \ dt.$ (4)

Method of moments

Taking the k^{th} moment of F, we obtain

$$\mu_{k} = \int_{0}^{\infty} t^{k} \int_{0}^{t} E(t - u) f(u) \, du \, dt.$$
 (5)

The right hand side of equation 5 is the double integral of $t^k E(t - u)f(u)$, in the u, t plane, taken over the area bounded by the lines u = 0 and u = t. By reversing the order of integration, one obtains

$$\mu_{k} = \int_{0}^{\infty} f(u) \int_{0}^{\infty} (u+v)^{k} E(v) \, dv \, du \qquad (6)$$

$$= k! \sum_{s=1}^{k+1} G_s (m_{k+1-s})/(k+1-s)!$$
 (7)

E(t)

F(t)

 $G_s = \sum_{n=1}^{N} \alpha_n / \lambda_n^s$ $= \sum_{n=1}^{N} \alpha_n \tau_n^s.$

Isenberg I and Dyson RD (1969) Biophys. J.

SIMPLE-Moment

The *n*-th moment of the lifetime

 $f(\tau|A_{l,j},\lambda_{l,j},l\in\{o,p,d\}) = g(\tau) * \sum A_{l,j}\lambda_{l,j}\exp(-\lambda_{l,j}\tau) u(\tau)$

$$l \in \overline{\{\mathbf{o}, \mathbf{p}, \mathbf{d}\}}$$

$$m_j^n = E[(\tau)^n] = \int_{-\infty}^{\infty} (\tau)^n f(\tau | A_{l,j}, \lambda_{l,j}, l \in \{\mathbf{o}, \mathbf{p}, \mathbf{d}\})$$

 $m_j^n = \sum_{s=0}^n \frac{n!}{(n-s)!} \mu_{n-s} G_{s,j} \qquad \mu_k = E_{g(\tau)} \left[\tau^k\right] \text{ is the } k\text{th moment of the Gaussian distribution } g(\tau)$

$$\lambda_{\rm o} = \frac{-B + \sqrt{B^2 - 4AC}}{2A} \qquad \begin{cases} A = G_0 \lambda_{\rm d} - G_1 \lambda_{\rm d}^2 - G_0 \lambda_{\rm p} + G_2 \lambda_{\rm p} \lambda_{\rm d}^2 + 4G_1 \lambda_{\rm p}^2 - 4G_2 \lambda_{\rm p}^2 \lambda_{\rm d}, \\ B = -3G_0 \lambda_{\rm p}^2 + 3G_2 \lambda_{\rm p}^2 \lambda_{\rm d}^2, \\ C = 3G_0 \lambda_{\rm p}^2 \lambda_{\rm d} - 3G_1 \lambda_{\rm p}^2 \lambda_{\rm d}^2. \end{cases}$$

How to reconstruct moments?

Reconstruct an activity-weighted moment image: $w_i^n = q_j x_j m_j^n$ $(x_i$ is the radioactivity in voxel *j*, q_i is the detection probability of a prompt gamma emitted from voxel *j*)

A time-delay weighted projection data:

$$z_{i}^{n} = \sum_{k \in K_{i}} (\tau_{k})^{n}$$
Its expectation:

$$E(z_{i}^{n}) = E\left[\sum_{k \in K_{i}} (\tau_{k})^{n}\right] = \sum_{j} E\left[\sum_{k \in K_{ij}} (\tau_{k})^{n}\right]$$

$$K_{i} = \bigcup_{j} K_{ij}$$

Show that the expectation ~ forward projection of *w*:

$$E\left[\sum_{k\in K_{ij}} (\tau_k)^n\right] = E\left(\left|K_{ij}\right|\right) m_j^n \qquad E\left(\left|K_{ij}\right|\right) = H_{ij}q_j x_j \qquad E(z_i^n) = \sum_j E\left[\sum_{k\in K_{ij}} (\tau_k)^n\right] = \sum_j H_{ij}q_j x_j m_j^n = \sum_j H_{ij}w_j^n$$

 $|K_{ij}|$ is equal to the number of tri-coincidence events originated in voxel j and detected in LOR i

How to reconstruct moments?

Reconstruct an activity-weighted moment image: $w_j^n = q_j x_j m_j^n$ (x_j is the radioactivity in voxel j, q_j is the detection probability of a prompt gamma emitted from voxel j)

$$E(z_i^n) = \sum_j E\left[\sum_{k \in K_{ij}} (\tau_k)^n\right] = \sum_j H_{ij}q_jx_jm_j^n = \sum_j H_{ij}w_j^n$$

Update (with the expectation of background events):

$$w_{j}^{n(l+1)} = \frac{w_{j}^{n(l)}}{\sum_{i} H_{ij}} \sum_{k \in S_{l}} \frac{H_{i_{k}j}(\tau_{k})^{n}}{\sum_{j} H_{i_{k}j} w_{j}^{n(l)} + \bar{r}_{i_{k}}^{n}}$$

Three reconstructions with n = 0, 1, 2 (2 - for o-Ps).

$$m_j^n = \frac{w_j^n}{w_j^0}$$

11

SIMPLE-Moment

Simulated in GATE for Neuro-EXPLORER, (R = 52 cm, L = 49 cm), ⁴⁴Sc 20kBq/mL, 30 min, CRT = 250 ps.

The results are compared with the SPLIT ML-based algorithm (more precise, more time-consuming)

Huang B et al. (2024) IEEE Trans. Med. Imaging

- 200 - 150 100 100 100 100 100 100 100 100 100	200 (200 (250) 150 100 (200 (200) 100 (200) (20) (2	2.5	rution 15	Tieffune [us]	
Ground truth	Reconstructed	Ground truth	SPLIT	SIMPLE-Moment	
Activity image		Lifetime image			

". The biases (standard deviations) of reconstructed lifetimes in the lesion, kidney, liver and body background (in ns)

	Lesion	Kidney	Liver	BG
True value	2.0	2.5	2.5	2.5
SPLIT	0.007(54)	0.028(59)	0.035(91)	0.014(136)
SIMPLE-Moment	0.015(56)	-0.006(55)	-0.002(87)	-0.003(132)

Geant4 simulation (Kamil Dulski)

Replicated geometry of the modular Jagiellonian PET + NEMA phantom ²²Na, no positron range. 7.8E+6 3-photon events (2.1E+6 - true)

Preliminary results

2.1E+6 true events

Original granularity - cubic voxels of 4-mm side,

True events

Also downscaled to 8-mm

<u>Median post-filter</u> (MPF) applied with a cubic mask of the radius R = 8 mm.

Reference reconstruction (no MPF) (original PI algorithm), voxel side – 8 mm

SIMPLE-Moment

Thank You for Your attention!