Review of selected PET image correction approaches using machine learning methods

Michał Obara 13.01.2025

PET events detection

Georg Schramm, KU Leuven

20s p.i.

40min p.i.

50min p.i.

Scatter corrections

Single Scatter Simulation:

- Monte Carlo simulation of single scattered photons
- Using attenuation map and an initial activity estimation
- Does not directly consider multiple scattering
- Standard method in clinical PET
- Computational complexity

Machine learning techniques:

- End-to-end U-Net
 - Low-quality PET \rightarrow high-quality PET
 - Uncorrected PET + CT \rightarrow corrected PET
 - CT \rightarrow PET or AC PET \rightarrow CT

Figure 5.16. Geometry of the single scattering model used in simulation based scatter correction.

Dale L Bailey, PET Basic Sciences

ACFs

Emission

https://doi.org/10.1007/s00259-023-06422-x

Comment > Eur J Nucl Med Mol Imaging. 2023 Dec;51(1):27-39. doi: 10.1007/s00259-023-06422-x. Epub 2023 Sep 6.

Short-axis PET image quality improvement based on a uEXPLORER total-body PET system through deep learning

Zhenxing Huang ^{# 1}, Wenbo Li ^{# 1}, Yaping Wu ^{# 2}, Nannan Guo ^{1 3}, Lin Yang ^{1 3}, Na Zhang ¹, Zhifeng Pang ³, Yongfeng Yang ¹, Yun Zhou ⁴, Yue Shang ⁵, Hairong Zheng ¹, Dong Liang ¹, Meiyun Wang ⁶, Zhanli Hu ⁷

Affiliations + expand

PMID: 37672046 DOI: 10.1007/s00259-023-06422-x

Data:

- uEXPLORER PET/CT images from 335 patients (18F-FDG)
- Two sets of PET images:
 - High-Quality PET (HQ-PET): Total-body PET images (1940 mm AFOV)
 - Low-Quality PET (LQ-PET): Simulated short-axis PET images (320–500 mm AFOV)

- A 3D U-Net trained to map LQ-PET to HQ-PET images
- Separate training for brain, lung, and abdomen datasets
- Split: 300/35, loss: MAE, batch size: 16, Optimizer: Adam, epochs: 500

Evaluation Metrics:

- Quantitative: Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) comparison to HQ-PET and traditional denoising methods
- Qualitative: clinical evaluation by nuclear medicine experts using a 5-point scoring system

Results:

Quantitative evaluation:

Beds	LQ-PET		Gaussian		BM3D		Proposed	
	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
Bed 1	34.54±5.14	0.91 ± 0.09	28.66±3.3*	0.86±0.10*	30.88±6.38*	0.51±0.24*	35.41 ± 5.45*	0.94±0.15*
Bed 2	32.16 ± 6.22	0.92 ± 0.04	$30.95 \pm 3.68*$	$0.91 \pm 0.05*$	$29.45 \pm 5.49*$	$0.41 \pm 0.17^*$	33.77 ± 6.18*	0.95 ± 0.03*
Bed 3	36.65 ± 6.97	0.94 ± 0.04	$30.76 \pm 4.57*$	$0.91 \pm 0.05*$	$30.55 \pm 8.47*$	$0.43 \pm 0.27*$	$38.58 \pm 7.28^{*}$	$0.97 \pm 0.03^*$

Results:

- Qualitative Evaluation:
 - Proposed method significantly improved scores across all categories vs. LQ-PET
 - Overall quality for Proposed is close to HQ-PET, far exceeding LQ-PET

Laurent et al., 2023

https://doi.org/10.1088/1361-6560/ac9a97

IOP Publishing

Phys. Med. Biol. 68 (2023) 065004

DADED

https://doi.org/10.1088/1361-6560/ac9a97

Physics in Medicine & Biology

CrossMark	PAPER
	PET scatter estimation using deep learning U-Net architecture
RECEIVED 13 June 2022	
REVISED	Baptiste Laurent ^{1,*} , Alexandre Bousse ¹ , Thibaut Merlin ¹ , Stephan Nekolla ² and Dimitris Visvikis ¹
15 September 2022	1 LaTIM, INSERM, UMR 1101, UBO, Brest, France
ACCEPTED FOR PUBLICATION 13 October 2022	 ² Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany * Author to whom any correspondence should be addressed.
PUBLISHED 10 March 2023	E-mail: baptiste.laurent@univ-brest.fr
	Keywords: PET, reconstruction, scatter estimation, scatter correction, deep learning

Laurent et al., 2023

Data:

- GATE simulations with XCAT phantoms.
- Variations in anatomy (lung, pelvis regions) and body morphologies (S, M, L)
- 216 simulated datasets with acquisition durations of 1–6 minutes
- Two clinical Biograph mMR images

	Small	Medium	Large
Total body height (mm)	1227	1752	2103
Chest short axis (AP) (mm)	163	232	279
Chest Long axis (LAT) (mm)	228	325	391
Chest circumference (mm)	696	993	1194
Waist short axis (AP) (mm)	163	233	335
Waist long axis (LAT) (mm)	202	288	416

Figure 1. DLSE architecture, based on a CNN U-Net architecture. The network takes emission and attenuation sinograms as input, to predict scatter sinogram.

- U-Net architecture
- Input: PET emission and attenuation factor (AF) sinograms. output: estimated scatter sinogram
- Loss: MSE, batch size: 8, epochs: 100

Laurent et al., 2023

Evaluation:

- Metrics: Normalized Root Mean Square Error (NRMSE) and Structural Similarity Index (SSIM)
- Comparison with SSS and ground truth
- Tested on reconstructed PET images with simulated lesions and two clinical datasets

Results:

- DLSE achieves lower NRMSE and higher SSIM than SSS
- Better contrast recovery for hot lesions (3:1 and 6:1) than SSS

Method

DUSE.

1000

Scatter-free

• Slight overestimation in cold lesions (0:1)

(a) Contrasts for lesions of all ROIs (b) Contrasts for lesions in liver

https://doi.org/10.1016/j.engappai.2018.11.013

Engineering Applications of Artificial Intelligence Volume 78, February 2019, Pages 186-194

Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection 🖈

Avi Ben-Cohen ^a ∧ ⊠, Eyal Klang ^b, Stephen P. Raskin ^b, Shelly Soffer ^b, Simona Ben-Haim ^{c d}, Eli Konen ^b, Michal Marianne Amitai ^{b 1}, Hayit Greenspan ^{a 1}

Objective:

- Generate PET/CT from CT scans
- Reduce PET/CT cost and radiation
- Improve liver lesion detection

Dataset:

- 60 PET/CT clinical scans
- Training: 23 pairs (6 malignant); testing: 37 pairs (9 malignant)
- Focused on liver region.

- FCN (VGG-16 based) generates initial PET-like images from CT data, loss: L2, optimizer: Adam,
- cGAN (conditional GAN) refines outputs using U-Net generator and a custom L2 loss function
- Augmentation: scaling, translation, random noise

Evaluation:

- Reconstruction metrics:
 - PSNR (overall reconstruction quality)
 - MAE calculated for high (> 2.5) and low (<2.5) SUV sep.
- Detection performance:
- Tested on liver lesion detection system
- Metrics: TPR, FPS

Results:

- Reconstruction results:
 - High SUV gives lower results

	v			~		~	
	Method	High SUV		Low SUV		Average Score	
	Method	MAE	PSNR	MAE	PSNR	MAE	PSNR
g	*FCN-4s-cGAN Eq. (8)	1.33 ± 0.65	22.40 ± 2.92	0.11 ± 0.04	38.04 ± 1.92	0.72 ± 0.35	30.22 ± 2.42
ji i	*FCN-4s-cGAN Eq. (7)	1.48 ± 0.66	21.70 ± 2.95	0.09 ± 0.05	$\textbf{39.1} \pm \textbf{1.95}$	0.79 ± 0.36	$\textbf{30.4} \pm \textbf{2.45}$
Ē	FCN-4s-cGAN L2	1.55 ± 0.66	21.10 ± 2.94	0.10 ± 0.04	39.03 ± 1.94	0.83 ± 0.35	30.07 ± 2.44
Ŭ	Blending	1.50 ± 0.63	21.40 ± 2.94	0.10 ± 0.04	39.00 ± 2.03	0.80 ± 0.34	30.20 ± 2.49
Z	cGAN-U-Net gen.	1.70 ± 0.61	20.62 ± 2.92	0.10 ± 0.04	39.06 ± 1.90	0.90 ± 0.33	29.84 ± 2.41
J	cGAN-FCN-4s gen.	1.52 ± 0.63	21.10 ± 3.10	0.12 ± 0.04	37.60 ± 1.95	0.82 ± 0.34	29.35 ± 2.53
	FCN-4s	1.33 ± 0.59	$\textbf{22.50} \pm \textbf{2.93}$	0.16 ± 0.05	37.60 ± 1.99	0.74 ± 0.32	30.05 ± 2.46
FCN	FCN-8s	1.33 ± 0.57	22.45 ± 2.92	0.15 ± 0.05	37.63 ± 1.99	0.74 ± 0.31	30.04 ± 2.46
	FCN-2s	1.37 ± 0.62	22.42 ± 3.02	0.14 ± 0.05	37.70 ± 2.02	0.76 ± 0.34	30.06 ± 2.52
	U-Net	1.52 ± 0.67	21.57 ± 3.1	0.12 ± 0.04	38.56 ± 1.74	0.82 ± 0.36	30.07 ± 2.42

*Proposed method

Results:

- Detection results:
 - Maintained high TPR (96.4%)
 - Decreased FPR (2.9% to 2.1%)
 - No comparison to regular PET

Method	TPR[%]	Average FPR
Detection soft.	94.6	2.9 ± 2.1
Detection soft+ proposed	94.6	2.1 ± 1.7
Detection soft+ blending	90.9	2.2 ± 1.7
Detection soft+ FCN-4s	90.9	2.2 ± 1.7

Positron range

Marie Foley Kijewski, in Handbook of Neuro-Oncology Neuroimaging

Nuclide	Emax	Emode	tı	tı Range in W		Use in PET
	(MeV)	(MeV)	(mins)	Max	Mean	
¹¹ C	0.959	0.326	20.4	4.1	1.1	Labelling of organic molecules
¹³ N	1.197	0.432	9.96	5.1	1.5	¹³ NH ₃
150	1.738	0.696	2.03	7.3	2.5	150 ₂ , H ₂ 150, C ¹⁵ 0, C ¹⁵ 0 ₂
18F	0.633	0.202	109.8	2.4	0.6	[¹⁸ F]-DG, ¹⁸ F
68Ga	1.898	0.783	68.3	8.2	2.9	[68Ga]-EDTA, [68Ga]-PTSM
82Rb	3.40	1.385	1.25	14.1	5.9	Generator-produced perfusion tracer
94mTc	2.44	+	52	\$	\$	β ⁺ -emitting version of ^{99m} Tc
124	2.13	†	6.0×10 ³	ŧ	+	lodinated molecules

*Not reported to date.

[†]Many-positron decay scheme hence no E_{mode} value given.

Herraiz et al., 2020

https://doi.org/10.3390/app11010266

Deep-Learning Based Positron Range Correction of PET Images

by Joaquín L. Herraiz ^{1,2,*} 🖂 😳, Adrián Bembibre ¹ 🖂 😳 and Alejandro López-Montes ¹ 🖂 💿

- ¹ Nuclear Physics Group and IPARCOS, Faculty of Physical Sciences, University Complutense of Madrid, CEI Moncloa, 28040 Madrid, Spain
- ² Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- * Author to whom correspondence should be addressed.

Appl. Sci. 2021, 11(1), 266; https://doi.org/10.3390/app11010266

Submission received: 28 November 2020 / Revised: 21 December 2020 / Accepted: 25 December 2020 / Published: 29 December 2020

Herraiz et al., 2020

Data:

- 8 Simulated PET mice images for 18F and 68Ga
- Voxel size: 0.28 mm
- Augmented with flips, shifts, and rotations

- U-Net architecture
- Input: 68Ga PET images (with or without μ -maps)
- Output: PR-corrected images matching 18F reference images.
- Optimizer: Rectified Adam, loss: L1, epochs: 50

Herraiz et al., 2020

Evaluation:

- Comparison: 68Ga PET before and after correction vs. 18F reference.
- Metrics: Recovery (%) /"defining regions over the whole organ"/ and noise (σ/μ).
- Test data: Simulated PET not in training/validation.

Results:

- Recovery: >95% match to 18F images.
- Noise: Comparable to reference 18F PET.
- Input: PET-only sufficient for accurate correction.

]	Recovery (%))	Noise (%)			
	Heart Bladder Tumor			Heart	Bladder	Tumor	
¹⁸ F	100.00	100.00	100.00	2.00	3.75	3.39	
⁶⁸ Ga	67.41	53.49	60.50	4.03	4.96	4.08	
⁶⁸ Ga Deep-PRC	95.19	96.16	97.46	2.52	3.96	3.02	

https://doi.org/10.1007/s00259-022-06053-8

Federated Learning

- What? Collaborative model training without data sharing
- Why? Ensuring data privacy and leveraging multicenter datasets

<u>European Journal of Nuclear Medicine and Molecular Imaging</u> • Open Access • Volume 50, Issue 4, Pages 1034 - 1050 • March 2023

>

Decentralized collaborative multi-institutional PET attenuation and scatter correction using federated deep learning

<u>Shiri, Isaac</u> a; <u>Vafaei Sa</u>	i <mark>dr, Alireza^{b, c};</mark>	Akhavan, Azadeh ^a ;	
Salimi, Yazdan ^a ; Sanad	at, Amirhosseir	n ^a ; <u>Amini, Mehdi</u> a;	
Razeghi, Behrooz ^d ; Sal	beri <mark>, Abdollah</mark> a	; <u>Arabi, Hossein</u> ^a ;	
Ferdowsi, Sohrab ^e ; Vol	oshynovskiy, S	lava ^d ; <u>Gündüz, Der</u>	niz ^f
Show additional authors	s 🗸 🖪 Save	e all to author list	
28 97th percentile	6.05	3	View all metrics
Citations in Scopus	FWCI 🕐	Views count (?)	view dit metrics

Dataset:

- 6 centers, 50 pairs of 18F-FDG PET (NAC + CT ASC) images each
- Standardized PET images to SUV units with uniform voxel size (3×3×4 mm³)
- Normalized intensities to a consistent range (0 to 5) across all centers

		Centre 1	Centre 2	Centre 3	Centre 4	Centre 5	Centre 6
Demographic	Sex (F/M)	15/35	17/33	19/31	22/28	6/44	21/29
	Age	54 ± 22.7	62.6 ± 8.8	63.9 ± 12.2	68 ± 9.4	58.2 ± 9	52.6 ± 20.2
	Weight	69.1 ± 15.9	68.2 ± 18.4	77.3±18.7	74.5 ± 16.1	84.3 ± 18	70.2 ± 23.3
Scanners	Manufacture	GE	GE	GE	GE	GE	Siemens
	Model	Duo	LS	ST	Discovery 690	RX	Biograph
CT acquisition	Average tube current	115.7±9.2	120.6±41	149.2±51.9	98.3±61	264.1±41.9	176 ± 32.0
	kVp	130 ± 0	135 ± 8.8	134 ± 9.3	134 ± 9.3	119.2 ± 4	130 ± 0
PET acquisition	Injected dose	487.2 ± 72.9	514.3 ± 118.1	549.7 ± 95.2	425.5 ± 91.2	448.9 ± 121.8	373.9 ± 92.6
and reconstruc-	Time to scan	75.7 ± 18.9	72.1 ± 25.5	75.2 ± 17.6	73.1 ± 18.8	86.7 ± 13.6	97.6 ± 13.9
tion parameters	Time Per Bed	2.6 ± 0.5	4.6±1	3.6 ± 0.6	2.4±1	3.1 ± 0.3	3.1 ± 0.4
	Scatter Correction	Model-based	Convolution sub- traction	Convolution sub- traction	Model-based	Model-based	Model-based
	Reconstruction	OSEM	OSEM	OSEM	VPHD, VPHDS	OSEM	OSEM+PSF
	Matrix size	256×256	128×128	128×128	192×192	128×128	168×168
	Slice thickness	3.4	4.3	3.3	3.5	3.3	3
	Slice numbers	14,598	10,647	13,683	16,282	11,002	26,210

Table 1 Patients demographics and PET/CT image acquisition and reconstruction settings across the six different centers

- Architecture: Modified U2-Net with residual blocks
- Input: Non-AC/SC PET images
- Output: AC/SC-corrected PET images
- Training: Adam optimizer, L2 loss, learning rate 0.001 **Methodology:**
- FL Sequential (FL-SQ)
 - A) model meets data center-after-center
 - B) model passes sequentially through all centers
 - C) process repeats for number of rounds
- FL Parallel (FL-PL)
 - A) models are trained separately in each node
 - B) central model is distributed across all nodes
 - C) local models are returned to central server and aggregate to central global model
- Centralized (CZ)
- Center based (CB)

Evaluation & results:

- Metrics: AE, MAE, RE, RAE, PSNR, SSIM
- FL (PL, SQ): comparable to CZ, significantly better than CB
- CB: Poor generalization due to isolated data

Limitations:

- Simulated setup; real-world use may face communication and computational challenges
- FL models are sensitive to noise and artifacts, requiring monitoring

Thank you :)