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The quark-gluon plasma (QGP)
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• Phase of matter consisting of 
deconfined quarks and gluons

• Asymptotic freedom - the strong force between quarks and gluons 
decreases with increasing relative momentum

• Colour confinement - colour-charged particles cannot be isolated

• Extremely hot (~  MeV 
 3.5   K)

300
≈ ⋅ 1012



The quark-gluon plasma (QGP)
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• The QGP existed in nature only soon 
after the Big Bang (10−12 to 10−6 s)

• We are able to study the QGP in the 
laboratory through heavy-ion collision 
experiments

• Extremely hot (~  MeV  3.5   K)300 ≈ ⋅ 1012



Units:  [fm/ ], , t c c = 1 ℏ = 1
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• Measuring time in fm/  is convenient for describing the motion of high-speed 
particles in a laboratory setting.

• We understand it as time in which the light traveled a femtometer.

• In 1 second the light will travel  m  
(  s   m)

• The light will travel a 1 meter in  s  
(1 m/  s)

• The light will travel a 1 femtometer in  s  
(1 fm/ m/  s)

c

3 ⋅ 108

1 ⋅ c = 3 ⋅ 108

3.3 ⋅ 10−9

c = 1/(3 ⋅ 108) ≈ 3.3 ⋅ 10−9

3.3 ⋅ 10−24

c = 10−15 c = 10−15/(3 ⋅ 108) ≈ 3.3 ⋅ 10−24

• A femtometer is a size characteristic for the problem of nuclei collision

• Nucleon size m  fm≈ 10−15 = 1



Magnetic field in the presence 
of strong interactions
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• Quarks interact with each other via the strong interactions (100 times stronger 
than the electromagnetic force)

• We cannot neglect the magnetic field when it is of a great magnitude

• We estimate the magnetic field in heavy-ion collisions using the Biot-Savart 
law (equation describing the magnetic field generated by a constant electric 
current).

B ∼ γZe
b

R3



Biot-Savart law: 

•  - the radius of two ions 
•  - electric charge of the ions
•  - impact parameter
•  - Lorentz factor. 

• At RHIC heavy ions are collided at 200 GeV per nucleon, hence . Using 
 for gold and  fm. 

B ∼ γZe
b

R3

R
Ze
b
γ = sNN /2mN

γ = 100
Z = 79 b ∼ RA ≈ 7

Magnetic field in heavy-ion collisions
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K. Tuchin, Particle production in strong 
electromagnetic fields in relativistic 
heavy-ion collisions,  
Adv. High Energy Phys. 2013, 490495

Heavy-ion collision geometry as seen along the collision axis 𝑧

 G eB ∼ 1018 ≈ m2
π



Magnetic field in heavy-ion collisions
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 G  MeV2eB ∼ 1018 ≈ m2
π ≈ 1.96 ⋅ 104

101510131010∼ 107

• the strongest magnetic field created on earth in a form of electromagnetic 
shock wave:  G

• magnetic field of a neutron star:  G,
• magnetic field of a magnetar: up to   G. 

∼ 107

1010 − 1013

1015

• The influence of electromagnetic field is especially noticeable when it is of 
a size characteristic for strong interactions. For the magnetic field it’s when 
it’s proportional to the square of pion mass.



The magnetic field in a vacuum
- the point of reference -
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• The problem was already studied and the 
magnetic field can be calculated using the 
Li’enard-Wiechert potentials

• Two identical nuclei collide at  with 
an impact parameter 

t = 0
b

R ≡ r − r0 − vt
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The magnetic field in a vacuum
- the point of reference -



• The Maxwell’s equations

∇ ⋅ D(t, r) = 4πρext(t, r),
∇ ⋅ B(t, r) = 0,

∇ × E(t, r) = −
∂B(t, r)

∂t
,

∇ × B(t, r) = 4πjext(t, r) +
∂D(t, r)

∂t
.

Electromagnetic field in heavy-ion collisions
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•  - the electric displacement field

•  - the displacement current - an additional source of the magnetic 

field. It is not an electric current of moving charges, but a time-varying 
electric field.

D

∂D(t, r)
∂t

- Gauss’ law
- Gauss’ law for magnetism

- Faraday’s law

- Modified Ampère’s law



Dielectric permittivity tensor
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• The electric displacement field 

   

•  - the dielectric permittivity tensor - provides information about the 
medium in which the heavy-nuclei collide

• The medium properties are described with ( ). It requires us to transform 
the Maxwell equations from  to ( ) dependance. We do that using the 
Fourier transformations.

D

D(ω, k) = ̂ε(ω, k)E(ω, k)

̂ε(ω, k)

ω, k
(t, r) ω, k



Two-sided Fourier transformation
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• Assumes that the medium in which the collision happens doesn’t 
undergo any changes from time  to . 

• In reality the production of quark-gluon plasma at  modifies the 
electromagnetic field due to the quark currents. 

• The use of the two-sided Fourier transformation implies that those 
currents exist even before the plasma is present.

• The two-sided Fourier transformation is not sufficient for the initial 
condition problem.

t = − ∞ t = + ∞

t = 0

f (ω, k) ≡ ∫
∞

−∞
dt∫ d3rei(ωt−k⋅r)f (t, r)

f (t, r) = ∫
∞

−∞

dω
2π ∫

d3k
(2π)3

e−(ωt−k⋅r)f (ω, k)



One-sided Fourier transformation
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f (ω, k) ≡ ∫
∞

0
dt∫ d3rei(ωt−k⋅r)f (t, r)

f (t, r) = ∫
∞+iσ

−∞+iσ

dω
2π ∫

d3k
(2π)3

e−(ωt−k⋅r)f (ω, k)

The real parameter  is chosen is such a way 
that the integral over  is taken along a straight 
line in the complex -plane, parallel to the real 
axis, above all singularities of . 

σ > 0
ω

ω
f (ω, k)

Magnetic field in reality

• Before the collision ( ) there is no plasma. Only the approaching nuclei 
generate the magnetic field.  

• The additional fields generated due to the plasma appear at 
• At  we see the effects of the quark-gluon plasma on the electromagnetic 

field.

t < 0

t = 0
t > 0



• The Maxwell’s equations

k ⋅ D(ω, k) = 4πρext(ω, k),
k ⋅ B(ω, k) = 0,
k × E(ω, k) = ωB(ω, k),
k × B(ω, k) = − ωD(ω, k) − 4πijext(ω, k) .

The magnetic field in heavy-ion collisions
The two-sided Fourier transformation
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f (ω, k) ≡ ∫
∞

−∞
dt∫ d3rei(ωt−k⋅r) f (t, r)

f (t, r) = ∫
∞

−∞

d ω
2π ∫

d3k
(2π)3

e−(ωt−k⋅r) f (ω, k)

B(ω, k) = − 4πi
k × jext(ω, k)

ω2εT(ω, k) − k2

- Gauss’ law
- Gauss’ law for magnetism
- Faraday’s law
- Modified Ampère’s law

• The displacement field 

   

D

D(ω, k) = ̂ε(ω, k)E(ω, k)

• The current density jext

jext(t, r) = qvδ(r − r0 − vt)

jext(ω, k) = 2πqv δ(ω − k ⋅ v) e−ik⋅r0



Magnetic field in the vacuum
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Two-sided Fourier transformation

εT = 1

B(ω, k) = − 4πi
k × jext(ω, k)

ω2 − k2
B(t, k) = − 4πiZe

k × v
(k ⋅ v)2 − k2

e−i(k⋅vt+k⋅r0)

Magnetic field in the vacuum for the Au-Au collision 



Magnetic field in the medium
- collisionless plasma -
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Two-sided Fourier transformation

εT = 1 −
ω2

p

ω2
B(ω, k) = − 4πi

k × jext(ω, k)
ω2 − ω2

p − k2

Magnetic field in the medium for the Au-Au collision 

B(t, k) = − 4πiZe
k × v

(k ⋅ v)2 − k2 − ω2
p

e−i(k⋅vt+k⋅r0)



Magnetic field in the medium
- collisional plasma -
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Two-sided Fourier transformation

εT = 1 −
ω2

p

ω(ω + iν)

B(ω, k) = − 4πi
k × jext(ω, k)

ω2 −
ω ω2

p

ω + iν − k2

B(t, k) = − 4πiZe e−i(k⋅vt+k⋅r0) [ (k ⋅ v)2((k ⋅ v)2 − k2 − ω2
p) + ν2((k ⋅ v)2 − k2)

(k ⋅ v)2((k ⋅ v)2 − k2 − ω2
p)2 + ν2((k ⋅ v)2 − k2)2

−i
ν(k ⋅ v)ω2

p

(k ⋅ v)2((k ⋅ v)2 − k2 − ω2
p)2 + ν2((k ⋅ v)2 − k2)2 ] k × v



The magnetic field in heavy-ion collisions
The one-sided Fourier transformation
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f (ω, k) ≡ ∫
∞

0
dt∫ d3rei(ωt−k⋅r) f (t, r)

f (t, r) = ∫
∞+iσ

−∞+iσ

dω
2π ∫

d3k
(2π)3

e−(ωt−k⋅r) f (ω, k)
• The Maxwell’s equations

ik ⋅ D(ω, k) = 4πρext(ω, k),
ik ⋅ B(ω, k) = 0,
ik × E(ω, k) = iωB(ω, k) + B0(k),
ik × B(ω, k) = 4πjext(ω, k) − iωD(ω, k) − D0(k) .

Magnetic field in reality

• Before the collision ( ) there is no plasma. Only the approaching nuclei generate 
the magnetic field.  

• The additional fields generated due to the plasma appear at 
• At  we see the effects of the quark-gluon plasma on the electromagnetic field.

t < 0

t = 0
t > 0



The magnetic field and the initial fields
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One-sided Fourier transformation

B(ω, k) = −
i

ω2εT(ω, k) − k2 [k × (4πjext(ω, k) − E0(k)) −
k2

ω
B0(k)] +

i
ω

B0(k)

• The initial fields generated at t = 0

E0(k) = − 4πi∫
dω
2π [ k(k ⋅ jext(ω, k))

ω(ω2 − k2)
+

ωjext(ω, k)
ω2 − k2 ]

B0(k) = − 4πi∫
dω
2π

k × jext(ω, k)
ω2 − k2

• We use the one-sided Fourier transformation for the magnetic field, but the 
two-sided transformation for the initial fields! (The same for their current 
densities)

jext(ω, k) = i
Zeve−ik⋅r0

ω − k ⋅ v + i0+

jext(ω, k) = 2πZevδ(ω − k ⋅ v)e−ik⋅r0



Magnetic field in the vacuum

20

εT = 1

Magnetic field in the vacuum for the Au-Au collision 

One-sided Fourier transformation

B(ω, k) = 4πZe e−ik⋅r0
k × v

(ω2 − k2)(ω − k ⋅ v + i0+)
+ i

k × E0(k)
ω2 − k2

+ i
k2 B0(k)

ω(ω2 − k2)
+

i
ω

B0(k)

B(t, k) = − 4πiZe
k × v

(k ⋅ v)2 − k2
e−i(k⋅vt+k⋅r0)

• We used the Cauchy’s integral formula 
with poles at  and 

, and the parameter  
ω = k ⋅ v − i0+

ω = ± |k | σ = 0+



Magnetic field in the medium
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One-sided Fourier transformation

εT = 1 −
ω2

p

ω2

B(ω, k) = 4πZe e−ik⋅r0
k × v

(ω2 − k2 − ω2
p)(ω − k ⋅ v + i0+)

+ i
k × E0(k)

ω2 − k2 − ω2
p

+i
k2 B0(k)

ω(ω2 − k2 − ω2
p)

+
i
ω

B0(k)

B(t, k) = − i4πZe e−ik⋅r0[ e−i k2 + ω2
p t

2 k2 + ω2
p ( k2 + ω2

p − k ⋅ v)
+

ei k2 + ω2
p t

2 k2 + ω2
p ( k2 + ω2

p + k ⋅ v)

+
e−ik⋅vt

(k ⋅ v)2 − k2 − ω2
p

+
e−i k2 + ω2

p t − ei k2 + ω2
p t

2 k2 + ω2
p

k ⋅ v
(k ⋅ v)2 − k2

+( −
1

k2 + ω2
p

+
e−i k2 + ω2

p t + ei k2 + ω2
p t

2(k2 + ω2
p) ) k2

(k ⋅ v)2 − k2
+

1
(k ⋅ v)2 − k2 ]k × v



Future plans

• Finding a method to integrate highly oscillatory functions

• Calculating the magnetic field for the model more complex than that using 
point-like charges
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