Studying vector-like fermions as candidates for New Physics from different perspectives

In collaboration with

Abhishek Chikkaballi

Gabriele Giacometti

Antonio Enrique Cárcamo Hernández

Wojciech Kotlarski

Kamila Kowalska

Huchan Lee

Daniel Litim

Enrico Maria Sessolo

Dario Zappala

(My last)

Graduate Seminar NCBJ

daniele.rizzo@ncbj.gov.pl

20/03/2025

daniele.rizzo@ncbj.gov.pl

Simple Slide: understandable by everyone, assuming you were paying attention to the previous "smiley" slides.

daniele.rizzo@ncbj.gov.pl

Simple Slide: understandable by everyone, assuming you were paying attention to the previous "smiley" slides.

Technical Slide:

this is your moment to check your phone because the slide is meant to be technical and not necessarily easy to follow.

daniele.rizzo@ncbj.gov.pl

Technical Slide:

this is your moment to check your phone because the slide is meant to be technical and not necessarily easy to follow.

Simple Slide: understandable by everyone, assuming you were paying attention to the previous "smiley" slides.

daniele.rizzo@ncbj.gov.pl

The Standard Model

Gauge Bosons

 $SU(3) imes SU(2)_L imes U(1)_Y$

Interactions

Strong

Electromagnetic

Flavor conserving neutral

Flavor conserving charged

Three generations, why?

Standard Model of Elementary Particles

daniele.rizzo@ncbj.gov.pl

Theoretical problems of The Standard Model

daniele.rizzo@ncbj.gov.pl

Mass generation

daniele.rizzo@ncbj.gov.pl

Mass generation

Dirac spinor in chiral representation

$$\psi_D = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$$

Lagrangian of a Dirac spinor

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi$$

daniele.rizzo@ncbj.gov.pl

Daniele Rizzo

00

Mass generation

Dirac spinor in chiral representation

$$\psi_D = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$$

Lagrangian of a Dirac spinor

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi$$

Vectorial

Axial

00

U(1) Transformation

$$\psi_D \to \mathrm{e}^{i\,\alpha}\psi_D$$

 $\psi_D \to \mathrm{e}^{i\,\gamma_5\,\beta}\psi_D$

daniele.rizzo@ncbj.gov.pl

Mass generation

Dirac spinor in chiral representation

$$\psi_D = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$$

Lagrangian of a Dirac spinor

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi$$

Vectorial

Axial

00

U(1) Transformation

$$\psi_D \to e^{i\,\alpha}\psi_D \qquad \qquad \psi_D \to e^{i\,\gamma_5\,\beta}\psi_D$$

Noether conserved current (massless particle)

$$J_V^{\mu} = \bar{\psi}\gamma^{\mu}\psi \qquad \qquad J_A^{\mu} = \bar{\psi}\gamma^{\mu}\gamma_5\psi$$

daniele.rizzo@ncbj.gov.pl

Mass generation

Dirac spinor in chiral representation

$$\psi_D = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$$

Lagrangian of a Dirac spinor

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi$$

Vectorial

Axial

U(1) Transformation

$$\psi_D \to e^{i\,\alpha}\psi_D \qquad \qquad \psi_D \to e^{i\,\gamma_5\,\beta}\psi_D$$

Noether conserved current (massless particle)

$$J_V^{\mu} = \bar{\psi}\gamma^{\mu}\psi \qquad \qquad J_A^{\mu} = \bar{\psi}\gamma^{\mu}\gamma_5\psi$$

Massive particle

$$\partial_{\mu}J_{V}^{\mu} = 0 \qquad \qquad \partial_{\mu}J_{A}^{\mu} = 2i\,m\,(\bar{\psi}\gamma_{5}\psi)$$

daniele.rizzo@ncbj.gov.pl Daniele Rizzo

Mass generation

Dirac spinor in chiral representation

$$\psi_D = \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$$

Lagrangian of a Dirac spinor

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi$$

Vectorial

Axial

U(1) Transformation

$$\psi_D \to e^{i\,\alpha}\psi_D \qquad \qquad \psi_D \to e^{i\,\gamma_5\,\beta}\psi_D$$

Noether conserved current (massless particle)

$$J_V^{\mu} = \bar{\psi}\gamma^{\mu}\psi \qquad \qquad J_A^{\mu} = \bar{\psi}\gamma^{\mu}\gamma_5\psi$$

Massive particle

daniele.rizzo@ncbj.gov.pl

Mass generation

daniele.rizzo@ncbj.gov.pl

Mass generation

 $\mathcal{L}_Y = y \, \bar{f} \, \phi \, f$

daniele.rizzo@ncbj.gov.pl

Mass generation

 $\phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v + H(x) \end{pmatrix}$

 $\mathcal{L}_Y = y \, \bar{f} \, \phi \, f$

daniele.rizzo@ncbj.gov.pl

Mass generation

$$\phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v + H(x) \end{pmatrix}$$

$$\mathcal{L}_{Y} = y \,\bar{f} \,\phi \,f$$

$$\downarrow$$

$$\mathcal{L}_{Y} = \frac{yv}{\sqrt{2}} \,\bar{f}f + \frac{y}{\sqrt{2}} \bar{f} \,H \,f$$

daniele.rizzo@ncbj.gov.pl

Mass generation

$$\phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v + H(x) \end{pmatrix}$$

daniele.rizzo@ncbj.gov.pl

Mass generation

$$\phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v + H(x) \end{pmatrix}$$

The seesaw mechanism

Mass generation

10

daniele.rizzo@ncbj.gov.pl

The seesaw mechanism

 $A = \begin{pmatrix} 0 & M \\ M & B \end{pmatrix}$

The seesaw mechanism

Mass generation

$$A = \begin{pmatrix} 0 & M \\ M & B \end{pmatrix} \quad \begin{aligned} \lambda_{-} &= \frac{B - \sqrt{B^2 + 4M^2}}{2} \approx \frac{M^2}{B} + O\left(\frac{2M^2}{B}\right) \\ \lambda_{+} &= \frac{B + \sqrt{B^2 + 4M^2}}{2} \approx B + \frac{M^2}{B} + O\left(\frac{2M^2}{B}\right) \end{aligned}$$

daniele.rizzo@ncbj.gov.pl

daniele.rizzo@ncbj.gov.pl

Phenomenologically

daniele.rizzo@ncbj.gov.pl

Phenomenologically

daniele.rizzo@ncbj.gov.pl

Mix of the two

Theoretically

daniele.rizzo@ncbj.gov.pl

Daniele Rizzo

- Build a model (most likely extension of the SM)
- Impose physical conditions (*i.e.* the model must reproduce the SM at low energy)
- Scan the remaining parameter space in the IR

6

Phenomenologically

- Build a model (most likely extension of the SM)
- Impose physical conditions (*i.e.* the model must reproduce the SM at low energy)
- Scan the remaining parameter space in the IR

I will put these in the top-right corner of the slide so you know where we are!!

daniele.rizzo@ncbj.gov.pl

Daniele Rizzo

Phenomenologically

Field	Q_{iL}	u_{iR}	d_{iR}	L_{iL}	e_{iR}	Q_{kL}	u_{kR}	d_{kR}	L_{kL}	e_{kR}	$ u_{kR}$	\widetilde{Q}_{kR}	\widetilde{u}_{kL}	\widetilde{d}_{kL}	\widetilde{L}_{kR}	\widetilde{e}_{kL}	$\widetilde{\nu}_{kR}$	ϕ	H_u	H_d
$SU(3)_C$	3	3	3	1	1	3	3	3	1	1	1	3	3	3	1	1	1	1	1	1
$SU(2)_L$	2	1	1	2	1	2	1	1	2	1	1	2	1	1	2	1	1	1	2	2
$U(1)_Y$	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	1	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	0	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$
U(1)'	0	0	0	0	0	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	-1

- Build a model
- Impose physical conditions

00

Daniele Rizzo

Scan the parameter space

daniele.rizzo@ncbj.gov.pl

Field	Q_{iL}	u_{iR}	d_{iR}	L_{iL}	e_{iR}	Q_{kL}	u_{kR}	d_{kR}	L_{kL}	e_{kR}	$ u_{kR}$	\widetilde{Q}_{kR}	\widetilde{u}_{kL}	\widetilde{d}_{kL}	\widetilde{L}_{kR}	\widetilde{e}_{kL}	$\widetilde{ u}_{kR}$	ϕ	H_u	H_d
$SU(3)_C$	3	3	3	1	1	3	3	3	1	1	1	3	3	3	1	1	1	1	1	1
$SU(2)_L$	2	1	1	2	1	2	1	1	2	1	1	2	1	1	2	1	1	1	2	2
$U(1)_Y$	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	1	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	0	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$
U(1)'	0	0	0	0	0	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	-1

- Build a model
- Impose physical conditions

00

Daniele Rizzo

• Scan the parameter space

daniele.rizzo@ncbj.gov.pl

Field	Q_{iL}	u_{iR}	d_{iR}	L_{iL}	e_{iR}	Q_{kL}	u_{kR}	d_{kR}	L_{kL}	e_{kR}	$ u_{kR}$	\widetilde{Q}_{kR}	\widetilde{u}_{kL}	\widetilde{d}_{kL}	\widetilde{L}_{kR}	\widetilde{e}_{kL}	$\widetilde{\nu}_{kR}$	ϕ	H_u	H_d
$SU(3)_C$	3	3	3	1	1	3	3	3	1	1	1	3	3	3	1	1	1	1	1	1
$SU(2)_L$	2	1	1	2	1	2	1	1	2	1	1	2	1	1	2	1	1	1	2	2
$U(1)_Y$	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	1	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	0	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$
U(1)'	0	0	0	0	0	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	-1

- Build a model
- Impose physical conditions

00

Daniele Rizzo

Scan the parameter space

daniele.rizzo@ncbj.gov.pl

9

_																					
	Field	Q_{iL}	u_{iR}	d_{iR}	L_{iL}	e_{iR}	Q_{kL}	u_{kR}	d_{kR}	L_{kL}	e_{kR}	$ u_{kR}$	\widetilde{Q}_{kR}	\widetilde{u}_{kL}	\widetilde{d}_{kL}	\widetilde{L}_{kR}	\widetilde{e}_{kL}	$\widetilde{ u}_{kR}$	ϕ	H_u	H_d
	$SU(3)_C$	3	3	3	1	1	3	3	3	1	1	1	3	3	3	1	1	1	1	1	1
	$SU(2)_L$	2	1	1	2	1	2	1	1	2	1	1	2	1	1	2	1	1	1	2	2
	$U(1)_Y$	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	1	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	0	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$
	U(1)'	0	0	0	0	0	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	-1
=																					

- Build a model
- Impose physical conditions
- Scan the parameter space

daniele.rizzo@ncbj.gov.pl

Daniele Rizzo

00

											Sean the parameter space									
Field	Q_{iL}	u_{iR}	d_{iR}	L_{iL}	e_{iR}	Q_{kL}	u_{kR}	d_{kR}	L_{kL}	e_{kR}	$ u_{kR}$	\widetilde{Q}_{kR}	\widetilde{u}_{kL}	\widetilde{d}_{kL}	\widetilde{L}_{kR}	\widetilde{e}_{kL}	$\widetilde{\nu}_{kR}$	ϕ	H_u	H_d
$SU(3)_C$	3	3	3	1	1	3	3	3	1	1	1	3	3	3	1	1	1	1	1	1
$SU(2)_L$	2	1	1	2	1	2	1	1	2	1	1	2	1	1	2	1	1	1	2	2
$U(1)_Y$	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	1	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	0	$\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$
U(1)'	0	0	0	0	0	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	-1

Mass Matrix for the fermions

CKM matrix analytically computed for the first time in our work

Daniele Rizzo

This element is 0

in the up and charged lepton mass matrices

daniele.rizzo@ncbj.gov.pl

9

The model

- Build a model
- Impose physical conditions
- Scan the parameter space

Global analysis of a vector-like extension with extra scalars

Daniele Rizzo

daniele.rizzo@ncbj.gov.pl

8

Global analysis of a vector-like extension with extra scalars

The model was studied for the first time in

S.F.King, JHEP 09, 069 (2018)

Global analysis of a vector-like extension with extra scalars

Daniele Rizzo

The model was studied for the first time in

S.F.King, JHEP 09, 069 (2018)

and then later again with different type of experimental motivations

- A.Cárcamo Hernández, S.F.King, H.Lee, S.J.Rowley, Phys. Rev. D 101, 115016 (2020)
- A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)
- A.C.Hernández, S.F.King, H.Lee, Phys. Rev. D 105, 015021 (2022)
- H.Lee, A.Cárcamo Hernández, 2207.01710 (2022)
Global analysis of a vector-like extension with extra scalars

The model was studied for the first time in

S.F.King, JHEP 09, 069 (2018)

and then later again with different type of experimental motivations

- A.Cárcamo Hernández, S.F.King, H.Lee, S.J.Rowley, Phys. Rev. D 101, 115016 (2020)
- A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)
- A.C.Hernández, S.F.King, H.Lee, Phys. Rev. D 105, 015021 (2022)
- H.Lee, A.Cárcamo Hernández, 2207.01710 (2022)

However, many things were not entirely correct ...

daniele.rizzo@ncbj.gov.pl

Global analysis of a vector-like extension with extra scalars

Daniele Rizzo

The model was studied for the first time in

S.F.King, JHEP 09, 069 (2018)

and then later again with different type of experimental motivations

- A.Cárcamo Hernández, S.F.King, H.Lee, S.J.Rowley, Phys. Rev. D 101, 115016 (2020)
- A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)
- A.C.Hernández, S.F.King, H.Lee, Phys. Rev. D 105, 015021 (2022)
- H.Lee, A.Cárcamo Hernández, 2207.01710 (2022)

However, many things were not entirely correct ...

In this work, we **re-assess** the previous analysis and add some **new results**.

daniele.rizzo@ncbj.gov.pl

Phenomenological problems of The Standard Model

daniele.rizzo@ncbj.gov.pl

Daniele Rizzo

7

New Physics contributions to g-2

- Build a model
- Impose physical conditions
- Scan the parameter space

Contributions given by this diagram have **not** been considered in previous works

Contributions given by these diagrams have been computed already in previous works

Loop mediated by neutrinos and charged scalar

Loop mediated by charged lepton and neutral scalar

daniele.rizzo@ncbj.gov.pl

New Physics contributions to g-2

- Build a model
- Impose physical conditions
- Scan the parameter space

Daniele Rizzo

Contributions to $\Delta a_{\mu} \times 10^9$										
Charged scalars				CP-even scalars						
Loop	BP1	BP2	BP3	Loop	BP1	BP2	BP3			
$h^{\pm}, N_{1,2}$	-1.076	-0.792	-0.942	h_1, E_1	-0.003	-0.001	-0.009			
$h^{\pm}, N_{3,4}$	3.300	2.898	3.153	h_1, E_2	0.003	0.001	0.009			
$h^{\pm}, N_{\rm tot}$	2.225	2.106	2.211	h_2, E_1	-0.409	-0.520	-0.969			
CP-odd scalars				h_2, E_2	0.437	0.548	0.994			
a_1, E_1	0.425	0.528	0.938	h_{3}, E_{1}	0.018	0.115	0.076			
a_1, E_2	-0.544	-0.611	-1.529	h_3, E_2	-0.017	-0.127	-0.076			
a_2, E_1	-0.033	-0.135	-0.071	$h, E_{\rm tot}$	0.032	0.027	0.025			
a_2, E_2	0.110	0.196	0.621	Total						
$a, E_{\rm tot}$	-0.015	-0.023	-0.041	Δa_{μ}	2.215	2.101	2.196			

The deviation from the experimental measurement of g-2 can be explained within this model.

The main contribution to g-2 in mediated by **charged scalars** and **neutrinos**!

daniele.rizzo@ncbj.gov.pl

New Physics Spectra

- Build a model
- Impose physical conditions
 Scan the parameter space

VL Leptons

Can be tested in Run 3

Daniele Rizzo

daniele.rizzo@ncbj.gov.pl

13

LHC Bounds on vector-like fermions

- Build a model
- Impose physical conditions
- Scan the parameter space

Leptons

Our leptons decay predominantly to muons, but there are **no** dedicated experimental analysis.

The best we can do is study:

ATLAS: JHEP 07, 118 (2023) CMS: Phys. Rev. D 100, 052003 (2019)

BR(LL $\rightarrow \tau\tau$) < 10% and x-section is 3-4 orders of magnitude **smaller** than current bounds.

Can **not** be tested in Run 3

Quarks

Two possible channels can be studied:

ATLAS: Eur. Phys. J. C 83, 719 (2023) CMS: JHEP 07, 020 (2023)

The x-section is one order of magnitude smaller than the current bounds.

Can be tested in Run 3

daniele.rizzo@ncbj.gov.pl

Mix of the two

Theoretically

daniele.rizzo@ncbj.gov.pl

I will put these in the top-right corner of the slide so you know where we are!!

- Build a toy-model
- Perform non-perturbative calculations
- Look for UV Fixed Points in the couplings' running

daniele.rizzo@ncbj.gov.pl

The Litim-Sannino (LiSa) Model

- Build a toy-modelNon-perturbative calculations
- Look for UV Fixed Points •

daniele.rizzo@ncbj.gov.pl

Daniele Rizzo

The Litim-Sannino (LiSa) Model

- Build a toy-model
- Non-perturbative calculations
- Look for UV Fixed Points

Gauge
$$F^a_{\mu
u}\,(a=1,...,N^2_C-1)$$

Fermions $Q_i (i = 1, ..., N_F)$

Scalars $H \in N_F \times N_F$

The couplings in the theory are

 $(g,\,y,\,u,\,v)$

The Lagrangian of the model:

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} F_{\mu\nu} F^{\mu\nu} + \operatorname{Tr} \left(\partial_{\mu} H^{\dagger} \partial^{\mu} H \right) + \operatorname{Tr} \left(\bar{Q} \, i \not D \, Q \right)$$
$$-y \operatorname{Tr} \left(\bar{Q}_{L} H Q_{R} + \bar{Q}_{R} H^{\dagger} Q_{L} \right) - u \operatorname{Tr} \left(H^{\dagger} H \right)^{2} - v \left(\operatorname{Tr} H^{\dagger} H \right)^{2}$$

Litim, Sannino (2014)

daniele.rizzo@ncbj.gov.pl

Running of Coupling Constants

In quantum field theory coupling constants are not constant, they depend on the energy scale of the process under consideration

Beta Function

 $\beta(g)$

At low energies, the interaction between quarks and gluons is incredibly strong

> At high energies, quarks and gluons do not interact

daniele.rizzo@ncbj.gov.pl

Asymptotic Behaviors

$$\beta(g) \equiv \frac{dg}{d\log\mu} = A g^2$$

daniele.rizzo@ncbj.gov.pl

Asymptotic Behaviors

Landau pole

daniele.rizzo@ncbj.gov.pl

Asymptotic Behaviors

Landau pole

Asymptotic freedom

daniele.rizzo@ncbj.gov.pl

$$\beta(g) \equiv \frac{dg}{d\log\mu} = A g^2 + B g^3$$

daniele.rizzo@ncbj.gov.pl

Daniele Rizzo

$$\beta(g) \equiv \frac{dg}{d\log\mu} = A g^2 + B g^3$$

There is a specific value $g^* = -B/A$ $\beta(g^*) = 0$

daniele.rizzo@ncbj.gov.pl

$$\beta(g) \equiv \frac{dg}{d\log\mu} = A g^2 + B g^3$$

There is a specific
value
$$g^* = -B/A$$

 $\beta(g^*) = 0$
Fixed Point!

16

daniele.rizzo@ncbj.gov.pl

$$\beta(g) \equiv \frac{dg}{d\log\mu} = A g^2 + B g^3$$

daniele.rizzo@ncbj.gov.pl

The Litim-Sannino (LiSa) Model

- Build a toy-model
- Non-perturbative calculations
- Look for UV Fixed Points

Veneziano

parameter

 $\bullet \ \epsilon \equiv \frac{N_F}{N_C} - \frac{11}{2}$

 $0 < \epsilon \ll 1$

Gauge
$$F^a_{\mu
u} \left(a=1,...,N^2_C-1
ight)$$

Fermions
$$Q_{i} \left(i=1,...,N_{F}
ight)$$

Scalars $H \in N_F \times N_F$

AT THE FP THE WHOLE MODEL DEPENDS ONLY ON THE VENEZIANO PARAMETER

The couplings in the theory are

 $(g,\,y,\,u,\,v)$

The Lagrangian of the model:

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} F_{\mu\nu} F^{\mu\nu} + \operatorname{Tr} \left(\partial_{\mu} H^{\dagger} \partial^{\mu} H \right) + \operatorname{Tr} \left(\bar{Q} \, i \not D \, Q \right)$$
$$-y \operatorname{Tr} \left(\bar{Q}_{L} H Q_{R} + \bar{Q}_{R} H^{\dagger} Q_{L} \right) - u \operatorname{Tr} \left(H^{\dagger} H \right)^{2} - v \left(\operatorname{Tr} H^{\dagger} H \right)^{2}$$

Litim, Sannino (2014)

daniele.rizzo@ncbj.gov.pl

Under perturbative expansion, the theory has an ultraviolet Fixed Point:

$$g^* = +0.456\epsilon + 0.781\epsilon^2 + 6.610\epsilon^3 + \mathcal{O}(\epsilon^4)$$

$$y^* = +0.211\epsilon + 0.508\epsilon^2 + 3.322\epsilon^3 + \mathcal{O}(\epsilon^4)$$

$$u^* = +0.200\epsilon + 0.440\epsilon^2 + 2.693\epsilon^3 + \mathcal{O}(\epsilon^4)$$

$$v^* = -0.137\epsilon - 0.632\epsilon^2 - 4.313\epsilon^3 + \mathcal{O}(\epsilon^4)$$

Litim, Sannino (2014)

Litim, Riyaz, Stamou, Steudtner (2023)

Bond, Litim, Vazquez, Steudtner (2017)

daniele.rizzo@ncbj.gov.pl

Conformal Window

Is the conformal window closing because of Vacuum Stability or a Fixed Point merger?

Plot kindly shared by Nahzaan Riyaz.

daniele.rizzo@ncbj.gov.pl

Beyond marginal operators

19

- Build a toy-model
- Non-perturbative calculations
- Look for UV Fixed Points

$$v \left(\operatorname{Tr} H^{\dagger} H \right)^{2} \quad \frac{\partial_{t} U \left(\operatorname{Tr} H^{\dagger} H \right)}{}$$

$$\sum_{n} \gamma_n (\mathrm{Tr} H^{\dagger} H)^{n-2} (\mathrm{Tr} H^{\dagger} H)^2$$
$$U(\mathrm{Tr} H^{\dagger} H)$$

$$u \operatorname{Tr} (H^{\dagger} H)^2 \quad \frac{\partial_t C(\operatorname{Tr} H^{\dagger} H)}{}$$

$$\frac{\sum_{m} \alpha_m (\mathrm{Tr} H^{\dagger} H)^{m-2}}{C(\mathrm{Tr} H^{\dagger} H)} \mathrm{Tr} (H^{\dagger} H)^2$$

$$y \operatorname{Tr}(\bar{Q}HQ) \qquad \frac{\partial_t Y(\operatorname{Tr}H^{\dagger}H)}{I} \qquad \sum_l Y_l (\operatorname{Tr}H^{\dagger}H)^l \operatorname{Tr}(\bar{Q}HQ) \\ -Y(\operatorname{Tr}H^{\dagger}H)$$

daniele.rizzo@ncbj.gov.pl

Daniele Rizzo

00

• Build a toy-model

Non-perturbative calculations

Look for UV Fixed Points

Fixed Point

Coupling	FP	Coupling	FP	Coupling	FP
γ_1	$+0.199781\epsilon$	α_1	$+0.0625304\epsilon$	y_0	$+0.458831\sqrt{\epsilon}$
γ_2	$-0.404135\epsilon^{3}$	α_2	$-0.0844283\epsilon^{3}$	y_1	$+0.318417\sqrt{\epsilon^5}$
γ_3	$+0.558651\epsilon^4$	α_3	$+0.0721923\epsilon^4$	y_2	$-0.468528\sqrt{\epsilon^7}$
γ_4	$-0.812282\epsilon^5$	α_4	$-0.0699564\epsilon^5$	y_3	$+0.626392\sqrt{\epsilon^9}$
γ_5	$+1.16104\epsilon^{6}$	α_5	$+0.0706016\epsilon^{6}$	y_4	$-0.798058\sqrt{\epsilon^{11}}$
	:		ł		÷

daniele.rizzo@ncbj.gov.pl Daniele Rizzo

Under perturbative expansion, the theory has an ultraviolet Fixed Point:

daniele.rizzo@ncbj.gov.pl

- Build a model (most likely extension of the SM)
- Impose physical conditions (*i.e.* the model must reproduce the SM at low energy)
- Scan the remaining parameter space in the IR

Phenomenologically

Theoretically

- Build a toy-model
- Perform non-perturbative calculations
- Look for UV Fixed Points in the couplings' running

daniele.rizzo@ncbj.gov.pl

- Build a model (most likely extension of the SM)
- Impose physical conditions (*i.e.* the model must reproduce the SM at low energy)
- Scan the remaining parameter space in the IR

Mix of the two

Phenomenologically

- Build a model
- Assume non-perturbative calculations allow for a UV Fixed Point in the couplings' running

Theoretically

- Build a toy-model
- Perform non-perturbative calculations
- Look for UV Fixed Points in the couplings' running

daniele.rizzo@ncbj.gov.pl

- Build a model (most likely extension of the SM)
- Impose physical conditions (*i.e.* the model must reproduce the SM at low energy)
- Scan the remaining parameter space in the IR

Mix of the two

Phenomenologically

- Build a model
- Assume non-perturbative calculations allow for a UV Fixed Point in the couplings' running
- Predict the couplings' value in the IR

Theoretically

- Build a toy-model
- Perform non-perturbative calculations
- Look for UV Fixed Points in the couplings' running

daniele.rizzo@ncbj.gov.pl

I will put these in the top-right corner of the slide so you know where we are!!

Mix of the two

- Build a model
- Assume non-perturbative calculations allow for a UV Fixed Point in the couplings' running
- Predict the couplings' value in the IR

daniele.rizzo@ncbj.gov.pl

- Build a model
- Assume a UV Fixed Point
- Predict the couplings' value

daniele.rizzo@ncbj.gov.pl

- Build a model
- Assume a UV Fixed Point
- Predict the couplings' value

Renormalization Group Equations in the Sub-Planckian regime

$$\beta_g = \beta_g^{\rm SM+NP}$$
$$\beta_y = \beta_y^{\rm SM+NP}$$

daniele.rizzo@ncbj.gov.pl

- Build a model
- Assume a UV Fixed Point
- Predict the couplings' value

Renormalization Group Equations in the Sub-Planckian regime

$$\beta_g = \beta_g^{\rm SM+NP}$$

$$\beta_y = \beta_y^{\rm SM+NP}$$

Renormalization Group Equations in the Trans-Planckian regime

Daniele Rizzo

21

daniele.rizzo@ncbj.gov.pl

- Build a model
- Assume a UV Fixed Point
- Predict the couplings' value

Renormalization Group Equations in the Sub-Planckian regime

$$\beta_g = \beta_g^{\rm SM+NP}$$

$$\beta_y = \beta_y^{\rm SM+NP}$$

Renormalization Group Equations in the Trans-Planckian regime

Daniele Rizzo

In our approach they are determined by matching the low-energy data.

daniele.rizzo@ncbj.gov.pl

- Build a model
- Assume a UV Fixed Point
- Predict the couplings' value

$$\mathcal{L} \supset -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{\epsilon}{2}B_{\mu\nu}X^{\mu\nu}$$

daniele.rizzo@ncbj.gov.pl

- Build a model
- Assume a UV Fixed Point
- Predict the couplings' value

Daniele Rizzo

$$\mathcal{L} \supset -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{\epsilon}{2}B_{\mu\nu}X^{\mu\nu}$$

Gauge couplings 0.60 0.55 $M_{\rm PL}$ 0.50 g_Y 0.45 8d 0.40 -ge 0.35 0.30 0.25 0.20 20 40 60 80 100 120 $Log_{10}[\mu/GeV]$

daniele.rizzo@ncbj.gov.pl

- Build a model
- Assume a UV Fixed Point
- Predict the couplings' value

Daniele Rizzo

daniele.rizzo@ncbj.gov.pl

22

- Build a model
- Assume a UV Fixed Point
- Predict the couplings' value

Daniele Rizzo

daniele.rizzo@ncbj.gov.pl

- Build a model
- Assume a UV Fixed Point
- Predict the couplings' value

 $V M (z U^*)^{\dagger} I$

$$\mathcal{L} \supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\epsilon}{2} B_{\mu\nu} X^{\mu\nu}$$

$$\mathcal{L} \supset -Y_{\nu}N \left(\tilde{\epsilon}H^*\right)^{\dagger} L - \frac{1}{2}Y_N SNN + \text{H.c.}$$

22

daniele.rizzo@ncbj.gov.pl

- Assume a UV Fixed Point
- Predict the couplings' value

$$\mathcal{L} \supset -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{\epsilon}{2}B_{\mu\nu}X^{\mu\nu}$$

 $\mathcal{L} \supset -Y_{\nu}N \left(\tilde{\epsilon}H^*\right)^{\dagger} L - \frac{1}{2}Y_N SNN + \text{H.c.}$

22

daniele.rizzo@ncbj.gov.pl

$$\mathcal{L} \supset -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{\epsilon}{2}B_{\mu\nu}X^{\mu\nu}$$

- Build a model
- Assume a UV Fixed Point
- Predict the couplings' value

$$\mathcal{L} \supset -Y_{\nu}N \left(\tilde{\epsilon}H^*\right)^{\dagger} L - \frac{1}{2}Y_N SNN + \text{H.c.}$$

Yukawa couplings

22

daniele.rizzo@ncbj.gov.pl

Daniele Rizzo

$$\mathcal{L} \supset -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{\epsilon}{2}B_{\mu\nu}X^{\mu\nu}$$

Phenomenology!

cf. e.g. Chikkaballi, Kotlarski, Kowalska, DR, Sessolo JHEP (2023).

daniele.rizzo@ncbj.gov.pl

An example: ASQG to explain flavour anomalies

Particle content

 $S: (\mathbf{1}, \mathbf{1}, 0, Q_S)$ $Q: (\mathbf{3}, \mathbf{2}, 1/6, Q_S)$ $Q': (\mathbf{\bar{3}}, \mathbf{\bar{2}}, -1/6, -Q_S)$ $L: (\mathbf{1}, \mathbf{2}, -1/2, Q_L)$ $L': (\mathbf{1}, \mathbf{\bar{2}}, 1/2, -Q_L)$.

Interaction

$$\mathcal{L} \supset (-\lambda_{Q,i} S Q' q_i + \text{H.c.}) - M_Q Q' Q.$$

$$\mathcal{L} \supset \lambda_{L,i} S^{(*)} L' l_i + m_L L' L + \text{H.c.},$$

SM: $g_3, g_2, g_Y, y_t, y_b, V_{33},$ NP: $g_D, g_{\epsilon}, \lambda_{Q,2}, \lambda_{Q,3}, \lambda_{L,2},$

Kowalska, Kumar, Sessolo. arXiv: 1903.10932

daniele.rizzo@ncbj.gov.pl

How robust are particle physics predictions in asymptotic safety?

$$\mathcal{L} \supset -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{\epsilon}{2}B_{\mu\nu}X^{\mu\nu}$$

1 - Computations of the beta functions are performed at 1-loop level.

 $\mathcal{L} \supset -Y_{\nu}N \left(\tilde{\epsilon}H^*\right)^{\dagger} L - \frac{1}{2}Y_N SNN + \text{H.c.}$

Sources of uncertainties

- 2 Planck scale is set arbitrarily at 10^{19} GeV.
- 3 Gravity decouples instantaneously at the Planck scale.

daniele.rizzo@ncbj.gov.pl

Higher loops computations: Gauge Sector

600

Renormalization Group Equations:

At the fixed point, the ratio of gauge couplings does not depend on f_g :

$$r_{g,d}^*(n \text{ loops}) \equiv \frac{g_d^*}{g_Y^*}(n \text{ loops}) \approx \frac{2\tilde{b}_Y}{\sqrt{4\tilde{b}_Y\tilde{b}_d - \tilde{b}_\epsilon^2}} \qquad r_{g,\epsilon}^*(n \text{ loops}) \equiv \frac{g_\epsilon^*}{g_Y^*}(n \text{ loops}) \approx -\frac{\tilde{b}_\epsilon}{\sqrt{4\tilde{b}_Y\tilde{b}_d - \tilde{b}_\epsilon^2}}$$

Uncortaintion	$\delta g_Y^*/g_Y^*$	$\delta g_d^*/g_d^*$	$\delta g_\epsilon^*/g_\epsilon^*$	$\delta g_d/g_d(M_t)$	$\delta g_{\epsilon}/g_{\epsilon}(M_t)$
Uncertainties:	0.3%	-0.1%	-0.1%	-0.4%	-0.5%

daniele.rizzo@ncbj.gov.pl

In progress projects not mentioned for time reasoning

In collaboration with K. Kowalska; E.M. Sessolo

FRG beta function of QCD at 2-loop using Proper-time regulatisation

In collaboration with G. Giacometti; D. Zappala

Gauge independent FRG calculations in Quantum Gravity with matter

In collaboration with G. Giacometti; K. Kowalska; E.M. Sessolo; D. Zappala

daniele.rizzo@ncbj.gov.pl

Conclusions

- Vector-like fermions are a type of fermions that can "naturally" be much heavier than the SM fermions, which makes them the perfect candidates for physics beyond the Standard Model.
- During My PhD I have studied vector-like fermions within three type of approaches: a purely phenomenological approach, a more theoretical one, and a mixture of the two.
- In the phenomenological approach we performed the scan of the parameter space of an extension of the SM with scalars and vector-like fermions.
- In the theoretical approach we used the assumption of Asymptotic Safety and the non-perturbative technology of the Functional Renormalization Group to study a model of quarks and gluons at the Fixed Point.
- In the mixed approach we used Asymptotic Safety induced by Quantum Gravity to put constraints on the parameter space of an extension of the standard model.

25

daniele.rizzo@ncbj.gov.pl

Conclusions

- Vector-like fermions are a type of fermions that can "naturally" be much heavier than the SM fermions, which makes them the perfect candidates for physics beyond the Standard Model.
- During My PhD I have studied vector-like fermions within three type of approaches: a purely phenomenological approach, a more theoretical one, and a mixture of the two.
- In the phenomenological approach we performed the scan of the parameter space of an extension of the SM with scalars and vector-like fermions.
- In the theoretical approach we used the assumption of Asymptotic Safety and the non-perturbative technology of the Functional Renormalization Group to study a model of quarks and gluons at the Fixed Point.
- In the mixed approach we used Asymptotic Safety induced by Quantum Gravity to put constraints on the parameter space of an extension of the standard model.

Thank for your attention

daniele.rizzo@ncbj.gov.pl

daniele.rizzo@ncbj.gov.pl Daniele Rizzo

The Higgs Mechanism

Mass generation

daniele.rizzo@ncbj.gov.pl

The Higgs Mechanism

daniele.rizzo@ncbj.gov.pl Daniele Rizzo

5

The Higgs Mechanism

Mass generation

Fermion	Mass~(GeV)	$y_f = \sqrt{2} m_f / v$
Electron (e)	0.000511	$\approx 2.9 \times 10^{-6}$
Muon (μ)	0.10566	$\approx 6.1 \times 10^{-4}$
Tau (τ)	1.77686	$pprox 1.0 imes 10^{-2}$
Up (u)	~ 0.0022	$\approx 1.3 \times 10^{-5}$
Charm (c)	~ 1.27	$pprox 7.3 imes 10^{-3}$
Top (t)	~ 173	≈ 1.0
Down (d)	~ 0.0047	$pprox 2.7 imes 10^{-5}$
Strange (s)	~ 0.096	$\approx 5.5 \times 10^{-4}$
Bottom (b)	~ 4.18	$\approx 2.4 \times 10^{-2}$

daniele.rizzo@ncbj.gov.pl

The seesaw mechanism

$$m_t \approx \frac{1}{\sqrt{2}} \frac{y_{43}^u x_{34}^Q v_\phi v_u}{\sqrt{(x_{34}^Q v_\phi)^2 + 2(M_4^Q)^2}}$$

$$m_c \approx \frac{y_{24}^u x_{42}^u v_\phi v_u}{2 M_4^u}$$

daniele.rizzo@ncbj.gov.pl

S.F.King, JHEP 09, 069 (2018)

Perturbativity & g-2

- Build a model
- Impose physical conditions
- Scan the parameter space

$$g, y(\text{NP}) < \sqrt{4\pi}$$
$$\lambda(\text{NP}) < 4\pi$$

11

daniele.rizzo@ncbj.gov.pl

Daniele Rizzo

00

Perturbativity & g-2

Build a model
Impose physical conditions
Scan the parameter space

We define the cutoff energy for the model by requiring that any New Physics wrt the model is at such an energy scale that the corrections to g-2 are negligible.

$$\Delta a_{\mu}^{\Lambda} \sim \frac{1}{16\pi^2} \frac{m_{\mu} v}{\Lambda^2} y_L(\Lambda) y_R(\Lambda)$$

$$g, y(\mathrm{NP}) < \sqrt{4\pi}$$

 $\lambda(\mathrm{NP}) < 4\pi$

11

daniele.rizzo@ncbj.gov.pl

Perturbativity & g-2

Build a model
Impose physical conditions
Scan the parameter space

We define the cutoff energy for the model by requiring that any New Physics wrt the model is at such an energy scale that the corrections to g-2 are negligible.

$$\Delta a^{\Lambda}_{\mu} \sim \frac{1}{16\pi^2} \frac{m_{\mu} v}{\Lambda^2} y_L(\Lambda) y_R(\Lambda)$$

 $\rightarrow \Lambda \geq 50 \text{ TeV}$

By requiring that such correction is smaller than 3σ and in the most pessimistic scenario

$$y_L(\Lambda) = y_R(\Lambda) = \sqrt{4\pi}$$

$$g, y(\text{NP}) < \sqrt{4\pi}$$

$$g, y(\text{NP}) \lesssim 1$$

$$\lambda(\text{NP}) \lesssim 4\pi$$

$$\lambda(\text{NP}) \lesssim 2$$

All benchmark point from previous works are this way excluded.

daniele.rizzo@ncbj.gov.pl

Conformal Window

$$g^* = +0.456\epsilon + 0.781\epsilon^2 + 6.610\epsilon^3 + \mathcal{O}(\epsilon^4)$$

$$y^* = +0.211\epsilon + 0.508\epsilon^2 + 3.322\epsilon^3 + \mathcal{O}(\epsilon^4)$$

$$u^* = +0.200\epsilon + 0.440\epsilon^2 + 2.693\epsilon^3 + \mathcal{O}(\epsilon^4)$$

$$v^* = -0.137\epsilon - 0.632\epsilon^2 - 4.313\epsilon^3 + \mathcal{O}(\epsilon^4)$$

Let us be a little bit more quantitative and ask the questions:

- For what values of the Veneziano parameter do we actually have a fixed point?
- What can cause a fixed point to disappear?

The values of the Veneziano parameter for which the fixed point exist is called

CONFORMAL WINDOW

daniele.rizzo@ncbj.gov.pl

Vacuum Stability

The conformal window can "close" because of vacuum stability.

18

daniele.rizzo@ncbj.gov.pl

Fixed Point Merger

$$A + B g + g^2 = 0 \qquad \qquad g_{\pm}^* = \frac{-B \pm \sqrt{B^2 - 4A}}{2}$$

- If the expression inside the squared root is negative, we have a pair of complex conjugate poles.
- On the other hand, if the expression inside squared root is positive, we have two real solutions, with a split given by the squared root term.

daniele.rizzo@ncbj.gov.pl

Functional Renormalisation

- Build a toy-model
- Non-perturbative calculations
- Look for UV Fixed Points

$\partial_t U(\mathrm{Tr}H^{\dagger}H)$

$\partial_t C(\mathrm{Tr} H^{\dagger} H)$

$\partial_t Y(\mathrm{Tr} H^{\dagger} H)$

00

Wetterich equation

$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{STr} \left[\partial_t R_k \cdot \left(\Gamma_k^{(2)} + R_k \right)^{-1} \right]$$

19

daniele.rizzo@ncbj.gov.pl

Functional Renormalisation

19

- Build a toy-model
- Non-perturbative calculations
- Look for UV Fixed Points

 $\partial_t U(\mathrm{Tr} H^{\dagger} H) \qquad \qquad \partial_t C(\mathrm{Tr} H^{\dagger} H)$

$\partial_t Y(\mathrm{Tr} H^{\dagger} H)$

00

Wetterich equation

$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{STr} \left[\partial_t R_k \cdot \left(\Gamma_k^{(2)} + R_k \right)^{-1} \right]$$

Regulator

$$R_{k} = Z_{k} \left(k^{2} - q^{2}\right) \Theta(k^{2} - q^{2})$$

daniele.rizzo@ncbj.gov.pl

Running of Beyond Marginal Operators

• Build a toy-model

Non-perturbative calculations

Look for UV Fixed Points

$$\partial_t u = -4u + (2+\eta_H)\rho u' + \frac{1}{2} \left(\frac{1}{1+u'+4\rho c} + \frac{1}{1+u'} \right) - \frac{2N_C}{N_F} \frac{1}{1+\rho y^2}$$

$$\begin{aligned} \partial_t c &= 2\eta_H c + (2+\eta_H)\rho c' - \frac{2N_C}{N_F} \frac{y^4}{(1+\rho y^2)^3} \\ &+ \frac{1}{2} \left(-\frac{128\rho^3 c^5}{(1+u')^3 (1+4\rho c+u')^3} + \frac{64\rho^2 c^3 (c-\rho c')}{(1+u')^2 (1+4\rho c+u')^3} - \frac{8\rho c c'}{(1+4\rho c+u')^3} \right. \\ &- \frac{48\rho^2 c^2 c'}{(1+u') (1+4\rho c+u')^3} + \frac{16c^2}{(1+4\rho c+u')^3} - \frac{2c'}{(1+4\rho c+u')^2} \right) \end{aligned}$$

Tuğba Büyükbeşe, PhD Thesis

00

$$\partial_t y = -3\alpha_g y(0) + \frac{1}{2}(2\eta_\psi + \eta_H)y + (2 + \eta_\phi)\rho y' - \frac{1}{2}\left(\frac{y'}{(1 + 4\rho c + u')^2} + \frac{y'}{(1 + u')^2}\right) \\ + \frac{y^3}{2(1 + \rho y^2)(1 + 4\rho c + u')}\left(\frac{1}{1 + 4\rho c + u'} + \frac{1}{1 + \rho y^2}\right) - \frac{y^3}{2(1 + u')(1 + \rho y^2)}\left(\frac{1}{1 + \rho y^2} + \frac{1}{1 + u'}\right)$$

Daniele Rizzo

daniele.rizzo@ncbj.gov.pl

20

daniele.rizzo@ncbj.gov.pl

Resummation

20

Daniele Rizzo

At leading order in ϵ a re-summation of the couplings can be performed:

$$u^{*}(\rho) = \alpha_{1}^{*}\rho^{2} + \frac{A^{2}\rho^{2}}{4}\log(1+A\rho) + \frac{B^{2}\rho^{2}}{4}\log(1+B\rho) - \frac{N_{c}}{N_{F}}D^{2}\rho^{2}\log(1+D\rho)$$

⁵⁰

⁶⁰

⁶⁰

daniele.rizzo@ncbj.gov.pl

Higher loops computations: Yukawa Sector

Known from experiments

$$\begin{array}{ll} \text{Renormalization} & \frac{dy_1}{dt} = \frac{y_1}{16\pi^2} \left(a_1^{(1)} y_1^2 + a_2^{(1)} y_2^2 - a'^{(1)} g_1^2 + \sum_{n \ge 2} \widetilde{\Pi}_n^{(1)} \right) - f_y y_1, \\ \text{Group} \\ \text{Equations:} & \frac{dy_2}{dt} = \frac{y_2}{16\pi^2} \left(a_1^{(2)} y_1^2 + a_2^{(2)} y_2^2 - a'^{(2)} g_1^2 + \sum_{n \ge 2} \widetilde{\Pi}_n^{(2)} \right) - f_y y_2. \end{array}$$

At the fixed point, solve the first equation for the gravity parameter f_y and insert it in the second equation to get:

$$y_{2}^{*}(2 \text{ loops}) \approx \left[\frac{\left(a_{1}^{(2)} - a_{1}^{(1)}\right)y_{1}^{*2}(1 \text{ loop}) + \left(a'^{(1)} - a'^{(2)}\right)g_{1}^{*2}}{a_{2}^{(1)} - a_{2}^{(2)}} + \frac{\left(a_{1}^{(2)} - a_{1}^{(1)}\right)\delta y_{1}^{*2} + \left(\widetilde{\Pi}_{2}^{(2)*} - \widetilde{\Pi}_{2}^{(1)*}\right)}{a_{2}^{(1)} - a_{2}^{(2)}}\right]^{1/2}$$

daniele.rizzo@ncbj.gov.pl Da

Higher loops computations: Yukawa Sector - Large Yukawa

$$\begin{split} & \underbrace{O(1)}_{y_2^*(2 \text{ loops})} \approx \left[\frac{\left(a_1^{(2)} - a_1^{(1)}\right) y_1^{*2} (1 \text{ loop}) + \left(a'^{(1)} - a'^{(2)}\right) g_1^{*2}}{a_2^{(1)} - a_2^{(2)}} + \frac{\left(a_1^{(2)} - a_1^{(1)}\right) \delta y_1^{*2} + \left(\widetilde{\Pi}_2^{(2)*} - \widetilde{\Pi}_2^{(1)*}\right)}{a_2^{(1)} - a_2^{(2)}} \right]^{1/2} \end{split}$$

Higher loops are negligible \rightarrow predictions are very stable.

$\delta y_t^*/y_t^*$	$\delta y^*_ u/y^*_ u$	$\delta y_N^*/y_N^*$
-6.0%	-3.3%	-1.4%

Focusing in the infrared \rightarrow uncertainties are reduced.

$$\delta y_{\nu}/y_{\nu}(M_t) = \delta y_N/y_N(M_t) -1.4\% = -0.8\%$$

11

daniele.rizzo@ncbj.gov.pl

Higher loops computations: Yukawa Sector - Small Yukawa

$$\begin{split} & \underset{y_2^*(2 \text{ loops}) \approx \left[\frac{\left(a_1^{(2)} - a_1^{(1)}\right) y_1^{*2} (1 \text{ loop}) + \left(a'^{(1)} - a'^{(2)}\right) g_1^{*2}}{a_2^{(1)} - a_2^{(2)}} + \frac{\left(a_1^{(2)} - a_1^{(1)}\right) \delta y_1^{*2} + \left(\widetilde{\Pi}_2^{(2)*} - \widetilde{\Pi}_2^{(1)*}\right)}{a_2^{(1)} - a_2^{(2)}} \right]^{1/2}}{a_2^{(1)} - a_2^{(2)}} \end{split}$$

Higher loops are important \rightarrow predictions are unstable.

$\delta y_t^*/y_t^*$	$\delta y^*_{ m LQ}/y^*_{ m LQ}$
-8.8%	-24.5%

Focusing in the infrared \rightarrow uncertainties are reduced.

 $\frac{\delta y_{\rm LQ}/y_{\rm LQ}(M_t)}{-14.3\%}$

12

daniele.rizzo@ncbj.gov.pl

The Scalar Potential

- Build a model
- Impose physical conditionsScan the parameter space

$$V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_{\phi}^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2}) + \frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) - \frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$$

3 massive CP-Even

Spectrum: 2 massive CP-Odd + 1 Goldstone

1 massive charged + 1 Goldstone

Alignment limit:

 $\lambda_{2} = \lambda_{3} + \tan^{2} \beta (\lambda_{1} - \lambda_{3}) \qquad \qquad \lambda_{8} = -\tan \beta (\lambda_{7} \tan \beta + \lambda_{5})$ $\lambda_{3} \approx \lambda_{1} + \mathcal{O}(1/\tan^{2} \beta) \qquad \qquad \lambda_{7} \sim \mathcal{O}(1/\tan^{2} \beta) \qquad \qquad \lambda_{5} \sim \mathcal{O}(1/\tan \beta)$

daniele.rizzo@ncbj.gov.pl

The Scalar Potential

- Build a model
- Impose physical conditionsScan the parameter space
- 600

$$V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_{\phi}^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2}) + \frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) - \frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$$

"Boundedness from below"

$$\lambda_{3} + \sqrt{\lambda_{2}\lambda_{1}} > 0$$

$$\lambda_{8} + \sqrt{\lambda_{2}\lambda_{6}} > 0$$

$$-\frac{1}{4} \frac{(\operatorname{Re}\lambda_{5})^{2} + (\operatorname{Im}\lambda_{5})^{2}}{\lambda_{a}} + \lambda_{4} > 0$$

$$\lambda_{3} + \lambda_{4} + \sqrt{\lambda_{2}\lambda_{1}} > 0$$

$$\lambda_{7} + \sqrt{\lambda_{1}\lambda_{6}} > 0$$

$$4\lambda_{b}^{2} - (\operatorname{Re}\lambda_{5})^{2} + \operatorname{Re}\lambda_{5}\operatorname{Im}\lambda_{5} > 0$$

$$4\lambda_{b}^{2} - (\operatorname{Im}\lambda_{5})^{2} + \operatorname{Re}\lambda_{5}\operatorname{Im}\lambda_{5} > 0$$
These were already
implemented in
previous works
These conditions were
not considered in
previous work

daniele.rizzo@ncbj.gov.pl Daniele Rizzo

2

