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Nuclear chirality as a part of nuclear 
physics

Adam Nałęcz-Jawecki
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Part 1 – Gamma 
spectroscopy as a 
way of exploring 
excited levels in 

nuclei 
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Nuclear physics

from Uppsala University 
website

from PhysicsWorld website
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Excited levels

Quantum oscilator:
● Well known energy 

states
● Eigenvalues of easy, 

well known 
Hamiltonian

● Excitation/
deexcitation by 
gaining/emitting 
energy
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Excited levels in nuclei

● Energies range from 100 keV to 10 MeV
● Excitation caused by nucleus nucleus collision or 

via decay
● Deexcitation by emitting photons
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178Hf excited states
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178Hf excited states
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178Hf excited states
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178Hf excited states
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178Hf excited states



  11 / 45

178Hf excited states
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Problems with nuclear excitations
● Hamiltonian can’t be obtained from basic laws of 

physics 
● Hamiltonian of precised number of nucleons – 

more than 20, but adding 1 or 2 nucleons 
change the Hamiltonian vastly

● Proton/neutron excitation levels
● Collective excitements (rotational, vibrational 

etc.)
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Rotational bands

● Grouping excited 
stated into the 
rotational bands

● Similar structure 
inside a band

● Lowest state in a band 
called a bandhead 
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Multiple rotational bands (178Hf)
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128Cs (πh11/2)(ν-1h11/2)
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128Cs (πh11/2)(ν-1h11/2)
● Probable structure 

known (excitation of a 
proton and a neutron 
hole both to h11/2 shell) 

● Lifetimes and 
transition probabilities

● Chirality
● Magnetic g-factor 

measurement of the 
9+ bandhead
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Detection setup
● EAGLE (3m 

high)
● 15 Ge 

detectors
● 20 ns time 

resolution 
for gamma-
gamma 
coincidences 
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Recoil Distance Doppler Shift – lifetime 
measurement

Thin, 0.5 um

E0=100-1000 keV

E’=E0(1+v*cos(Θ))

10B at 54 MeV

E0’=
E(1

+v*
co

s(
Θ))

128Cs v=0.006c

E0

Thick, 2.5 um

Stop peak Flight peak

● Flight time t=

● Probability of de-
excitation during 
flight  

● Minimal distance 
15 um

● v=0.006c=1.8*106m/s

● Minimal time 8 ps

d
v

d
v

e
−t
τ
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RDDM setup
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Part 2 – why 
chirality is 

examined and 
what it really is
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Chirality timetable



  22 / 45

136Nd – 5 doublets of chiral bands

Credit: 
C. Petrache



  23 / 45

Chirality – mirror reflection

Credit: 
E. Grodner

Source: mimuw.pl

Left (L) Right (R)Left (L)

Right (R) Left (L)
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Chirality – mirror reflection



  25 / 45

Core deformation

Ridha, Ali. (2009). Deformation parameters and nuclear radius of Zirconium (Zr) isotopes using 
the Deformed Shell Model. Wasiit Journall for Sciience & Mediiciine. 2. 115-125. 
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Chirality: nucleus
● Odd-odd nuclei
● 3 spins: core, 

proton and 
neutron

● 3 non-planar 
angular 
momentum 
pseudo-vectors 
leads to 2 
arrangements

|L> state |R> state

Credit: 
E. Grodner
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Chirality: standard & nuclear

● 3 or more different vectors
● Their order determine its L 

or R handed
● 2 identical states, 

transformed by space 
reflection + rotation

● 3 different pseudo-vectors
● 2 identical states, 

transformed by time 
reflection + rotation

Credit: 
E. Grodner
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Chirality: value
Knowing spins of a core, odd 
proton and odd neutron we can 
calculate how chiral the nucleus 
is:

nucleus is:
● o=0  spins are planar, no ↔

chirality
● o<0  |L> state↔

● o>0  |R> state↔Credit: 
E. Grodner
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Chirality: tunneling

|L> and |R> states are not 
eigenstates of Hamiltonian ==> 
unstable, tunneling to |+> and 
|->  states

|+> and |-> states differ slightly by 
their energies and have very similar 
propertiesCredit: 

E. Grodner



  30 / 45



  31 / 45

Part 3 – How 
chirality is 
examined?
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Transition probabilities B(M1)

spin
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Transition probabilities B(M1)

spin

● Calculated by lifetimes
● Gives some information 

about the internal structure 
of the band

● Experimentally measured 
just for few % of states
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B(M1) staggering
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B(M1) staggering
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My work
● Black states are 

chiral
● Red state is not 

chiral
● What about gray 

states?
● Let’s measure them! 
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● Black  line– 
measured 
transitions

● Blue dotted 
line - 
extrapolation 
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Lifetime prediction
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● 10+ over 65 ps
● 11+ under 1.5 ps
● 12+ over 5 ps
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Expected results vs 
measured results

Expected results:
● 10+ over 65 ps
● 11+ under 1.5 ps
● 12+ over 5 ps

Measured results:
● 10+  8.5 +- 1.0 ps
● 11+ under 3 ps
● 12+ 3.5 +- 1.5 ps
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B(M1) results

● 10+ 0.96+0.13-0.10 W.u.
● 11+ >0.24 W.u.
● 12+ 0.17+0.07-0.05 W.u.
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Another explanation

● Another model of 
those bands

● Predicts that 
staggering stops at 
spin 13

● Problems with side 
band



  42 / 45

Summary

● Gamma spectroscopy is a part of nuclear physics 
that examine excited levels in nuclei

● Excitation of a nuclei is caused by nucleus nucleus 
collision and observed by measuring energies of 
gammas

● Chirality is a phenomenon of left and right “hand”
● Measuring lifetime of states can identify a 

rotational band as chiral
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Staggering
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Chirality: nuclea
● Odd-odd triaxial 

nuclei
● 3 spins: core, proton 

and neutron
● 3 perpendicular 

angular momentum 
pseudovectors leads 
to 2 arrangements

|L> state |R> state

Credit: 
E. Grodner
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