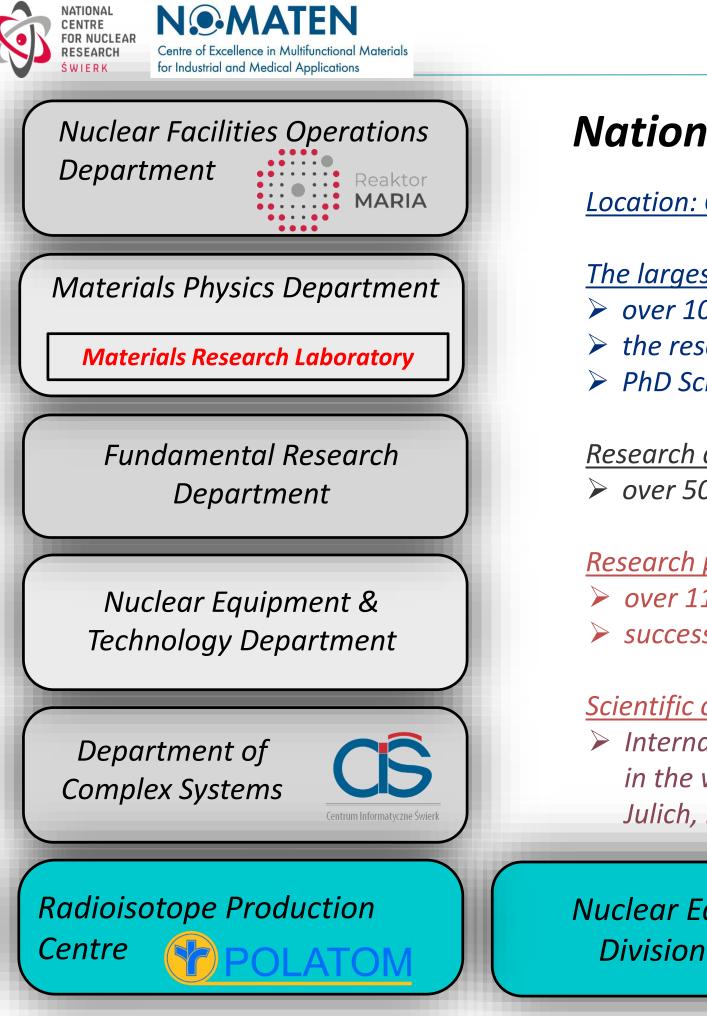
Research competencies of CoE NOMATEN Materials Research Laboratory at National Centre for Nuclear Research Poland

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 857470



Centre of Excellence in Multifunctional Materials for Industrial and Medical Applications

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

National Centre for Nuclear Research Poland (NCBJ)

Location: Otwock / Świerk 35 km from Warsaw

The largest Research Institute in Poland:

- > over 1000 Employees,
- the research staff includes 76 Professors & 200 PhDs
- > PhD School ca. 80 Students

Research achievements:

> over 500 reviewed papers, with over 16 000 citations/year

Research projects:

- > over 117 projects funded by H2020, EURATOM, NCN, NCBR, FNP, RPO
- success rate for EU projects ca. 35%

Scientific cooperation:

International cooperation with the largest Laboratories in the world JRC, CERN, DESY, Grenoble, JParc, FAIR, Julich, ESS, JINR, T2K, XFEL and many Universities...

Nuclear Equipment Division (HITEC)

Science and Technology Park (PNT)

CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research

Scientific and Industry Centres

ΝͺϿ·ΜΑΤΕΝ

Centre of Excellence in Multifunctional Materials for Industrial and Medical Applications

NOMATEN Centre of Excellence

The NOMATEN Centre of Excellence has been created at the Poland's National Centre for Nuclear Research Poland as a new research organization in which international world-class research teams design, develop and assess innovative multifunctional materials – combining advanced structural and functional properties – for industrial and medical applications.

CoE NOMATEN will develop a Long-term Science and Innovation Strategy and will be the Self-Driven Laboratory SDL in Multifunctional materials by focusing on two strategic research and innovation topics

> Novel high-temperature, corrosion and radiation resistant materials for industrial applications

Material synthesis – to develop key materials for High-Temperature applications and be able to connect to leading partner and other groups for providing samples and establishing collaborations

Functional properties of materials – to investigate materials range from heat resistance to mechanical properties as friction, resistance to chemical environments and radiation and finally to their combined multiphysics effects

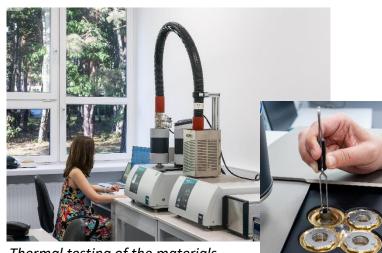
Analytics and characteriztion – to quantify the properties of materials after synthesis and characterizing advanced functional materials *important for high-end customers*

European unds

Republic of Poland

Novel high-temperature, corrosion and radiation resistant materials for industrial applications topic is focused on:

European Union European Regional Development Fund



Materials Research Laboratory MRL

MRL conducts following materials research:

- Re-approval and diagnostic works on construction materials (MARIA Reactor)
- Assesment of welded joints (Accredited Procedures >> Macro- Microstructure)
- Research in the field of widely understood materials science, using destructive and non- \geq destructive methods.
- Mechanical testing (Accredited Procedures >> ISO, BS, ASTM) \succ
- Thermal testing
- Non-irradiated and irradiated materials testing
- Quality assurance testing of the materials and weldments \succ
- Materials components testing for qualification procedures
- Consulting in materials testing and materials physics & surface science

Thermal testing of the materials

Non-destructive Testing

Structural characterization

CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research

MRL actively cooperates with the Polish Ministries and National Technical Inspection Units, which supports the development of new research methods and allows for the maintenance of modern scientific equipment, including the only group of 12 Hot Cells in Poland with a protection of 100 Ci, 3.7 TBq

For more than thirty years, MRL have been accredited by the Polish Center for Accreditation (PCA) and signatory to multilateral agreements within the framework of international organizations active in the field of accreditation, viz: EA MLA, IAF MLA and ILAC MRA.

ALTRAD

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

CoE NOMATEN Materials Research Laboratory Non Destructive Testing – NDT Services

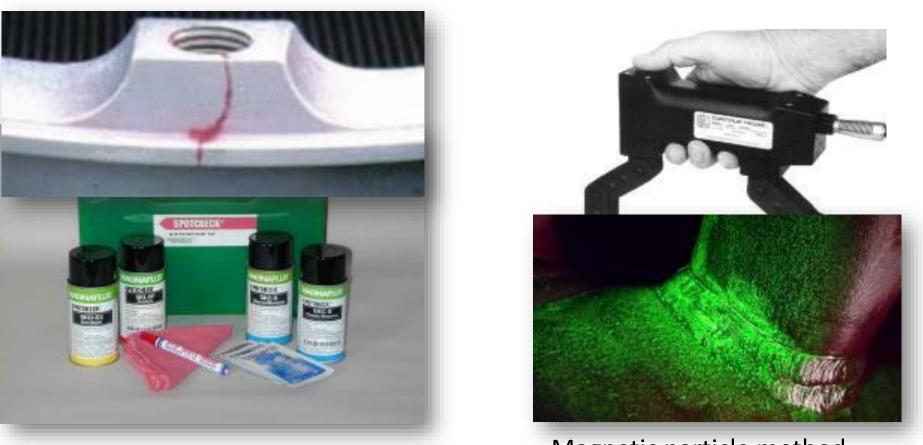
Non-Destructive Testing NDT Division – Research Infrastructure

The non-destructive testing division carries out tests with using following methods:

- Visual test method (VT)
- Penetration testing method (PT)
- Magnetic particle method (MT)
- Ultrasonic method (UT)
- Eddy current method (ET)
- Magnetic permeability testing

Accredited NDT Testing **Polish Centre for Accreditation** Accreditation number AB 025

Financed by **PROJECT HTGR**



VT Flexible Videoendoscope Mentor Visual iQ - Waygate Technologies

UT Defectoscope Olympus OMNISCAN MX2

Penetrant method

CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research

NDT Testing Research Infrastructure

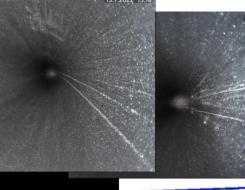
ET Defectoscope Olympus NORTEC 600D

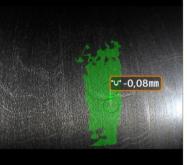
Foerster MAGNETOSCOP 1.069

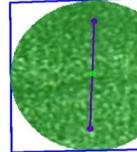
Magnetic particle method



Non-Destructive Testing NDT Division – NDT Expertise works and testing


AISI 316L seamless pipes NDT testing for ITER Blanket System components (First wall panels cooling system) – commissioned by ITER's supplier BIMO TECH



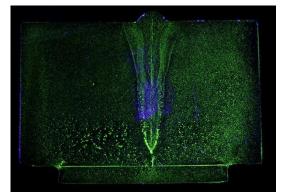

Accredited NDT tests realized according to:

X2CrNiMo17-12-2, (AISI 316L) First Wall Panels for ITER Blanket System Specification

Visual Testing VT – visual inspection outer / inner surface **Ultrasound tchickness test UTT** – wall tchickness **Direct meaurements** – pipes dimensions

Cold drawing effects depth measurements Analysed by VT Flexible Videoendoscope

Magnetic Permeability Test according to IEC 60404-15 and ASTM A342M

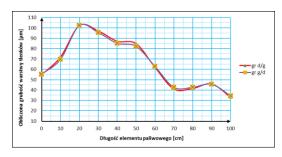

EUROFER 97 after Electron Beam Welding NDT testing in cooperation with Karlsruher Institut für Technologie

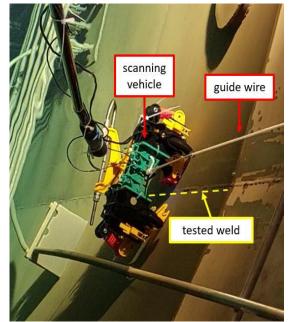
Ultrasound testing UT

Magnetic particle inspection MT

CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research

MARIA Reactor NDT Inspections



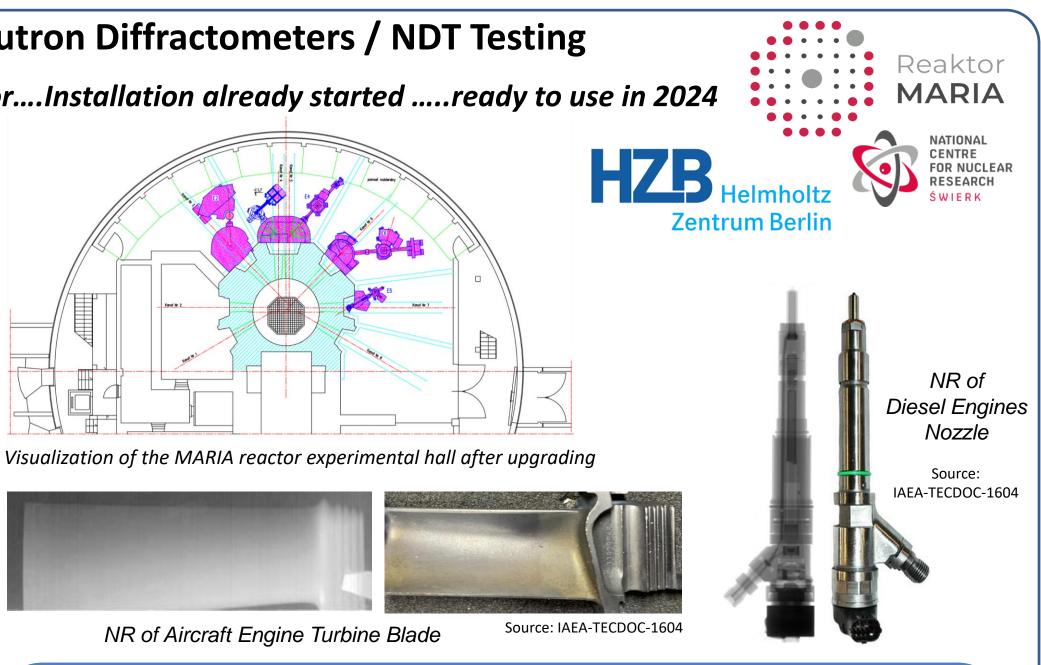

Welded joints on secondary circuit piping with UT, VT, MT

*Thickness evaluation of Al*₂O₃ *layer of* the fuel element shells, Eddy Current Testing

VT, UT reactor pool weld joints inspection



MARIA reactor weld joints UT scanning vehicle designed by Reactor and MRL engineers



Research Nuclear Reactor MARIA upgrade – Neutron Diffractometers / NDT Testing

New Large-Scale Scientific Instruments for the MARIA reactor....Installation already startedready to use in 2024 NCBJ cooperation with Helmholtz-Zentrum Berlin

11	
	500 B 2
	5

Materials Research with new Neutron Infrastructure

- Measurements of highly-textured elements

H1	Thermal neutron	Spectrometer		
H2	Flat Cone	Diffractometer		
H3	Residual	Stress Analysis Diffractometer		
H4	Two-Axis	Diffractometer		
H5	Four-Circle	Diffractometer		
H6	Focusing	Diffractometer		

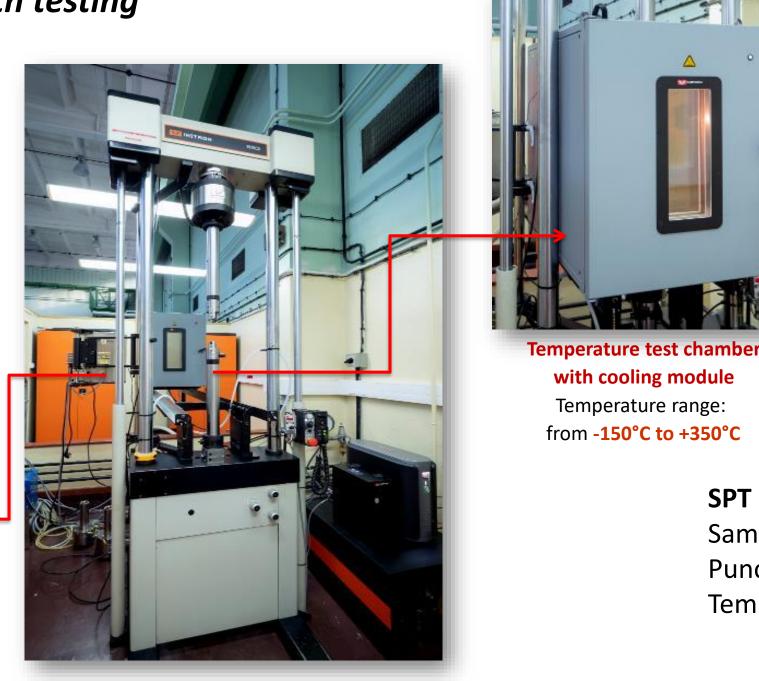
CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research

Neutron Radiography NR – NDT Testing of ready elements i.e. Microcracks analysis, Porosity after casting, Weldments quality control etc. Analysis of internal and residual stresses deep within a crystalline material Determination of the atomic and magnetic structure of a crystalline solids, gasses, liquids or amorphous materials.

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

CoE NOMATEN Materials Research Laboratory Mechanical Testing Services

Mechanical Testing Division – Research Infrastructure


Static and dynamic strength testing

INSTRON Universal Testing Machine

- Servohydraulic (static/dynamic testing)
- \blacktriangleright Load capacity ± 100 kN
- Class 0.5 starting from 200 N
- Clip-on extensometers class 0.5
- > AlignPRO Alignment Fixture provides full angularity and concentricity adjustment while load is applied to the specimen
- Additional 1kN load cell

Three-Heating zone split furnace Nominal maximum specimen temperature: **1000°C**

Mechanical Testing Division

- Test samples miniaturization
- Testing of mm samples at HT with non-contact DIC extensometer !!!

CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research

Accredited Mechanical Testing Polish Centre for Accreditation Accreditation number AB 025

AB 025

Mechanical Testing Division realizes:

- > Tensile testing
- Compression testing
- \succ Fracture toughness testing K_{ic} , critical CTOD, J_{ic} (CT25, SENB)
- > Determination of the rate of fatigue crack growth da/dN
- Small Punch Test (SPT)

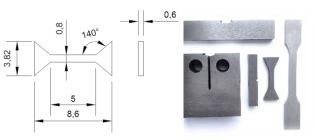
All tests according to International Standards ISO, ASTM, BS...

SPT Small Punch Test:

Samples: ϕ 3 x 0,25 mm discs Punch: Ball $\phi = 1 \text{ mm}$ Temperature of test: ambient

Mechanical Testing Division – Research Infrastructure

Materials hardness testing at micro- / nanoscale


Semi-automatic Zwick/Roell DuraVision

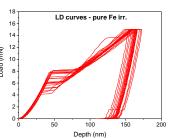
G5 hardness tester

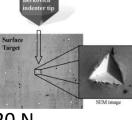
- Low-load hardness testing
- Load range 0.3-250 kg
- Brinell HB according to ISO 6506 (ASTM E10) 2.5/5 mm ball
- Vickers HV according to ISO 6507 (ASTM E-92)
- Rockwell HR.. according to ISO 6508 (ASTM E-18)
 - A,B,C,L,N,T scales

Miniaturized samples testing

Dynamic testing machine (± 10-15 kN)

Resonance system CT1/2", CT1/4" and SENB <100 mm samples Alignment Fixture




Static testing machine (20 kN)

Electromechanical 0.5 class starting from 20 N Furnace up to 1000 °C Non-contact extensometer DIC software Sub-sized tensile specimens **Alignment Fixture**

Nanohardness tester NanoTest Vantage by Micro Materials Ltd., Wrexham UK

- Berkovich, Vickers, Cube Corner and Conical type indenters available for RT testing
- HT measurements with diamond (up to 450°C) and \geq cBN (up to 750°C) indenter Measurements under controlled argon atmosphere
- Humidity cell
- Coupled Atomic Force Microscope
- Optical microscope (up to 40x mag.)
- Convers range forces from 0.1 mN to 20 N
- Load or depth-controlled mode
- Single forces or Load Partial Unload

25J and 450J Pendulum **Impact Testing Machines**

Mechanical Testing Division realizes:

- Tensile testing \geq
- Compression testing
- \succ Fracture toughness testing $K_{\mu\nu}$ critical CTOD, J_{IC} (CT25, SENB)
- > Determination of the rate of fatigue crack growth da/dN
- Small Punch Test (SPT)

According to International Standards ISO, ASTM, BS...accredited tests !

Mechanical testing of the high-speed railways in cooperation with Polish Railway Institute

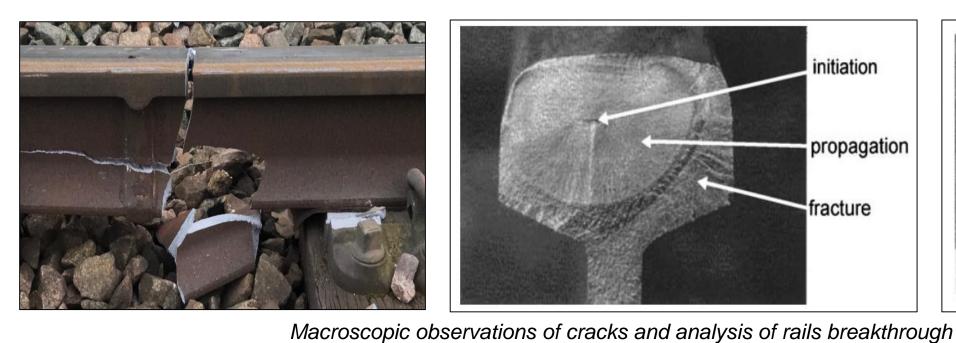
High-speed railways with speeds over 200 km/h, are one of the most demanding systems that must several requirements as: Safety, Durability and cost efficiency, Minimum acoustic impact

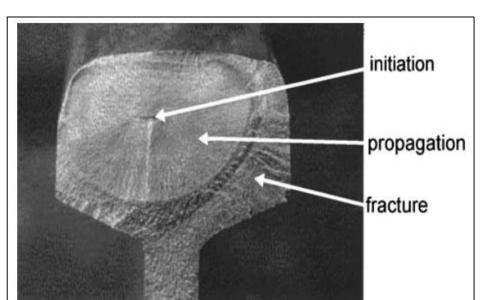
To achieve these objectives, the high-speed rail manufacturing process aims to meet the following requirements:

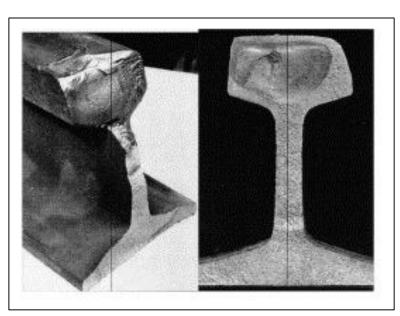
- Fracture mechanics involves the initiation and growth of a crack, which can cause the material to break at a stress below its ultimate strength in the crack-free condition.
- Chemical, mechanical and structural homogeneity
- Uniformity of dimensions
- Absence of surface and internal defects

N. MATEN

- Impact strength, wear and fatigue resistance
- Residual stresses

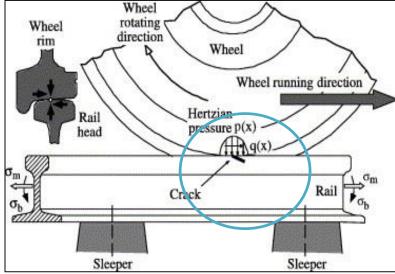

ENTRE


OR NUCLEAR ESEARCH


Good Weldability

We realize the complex fracture mechanics accredited tests for railway systems since 2004...

- We measure the Rate of crack propagation (da/dN) acc. ISO 12108 \checkmark
- We evaluate the Critical stress intensity factor K_{IC} at lowered temperature acc. ASTM E399 \checkmark



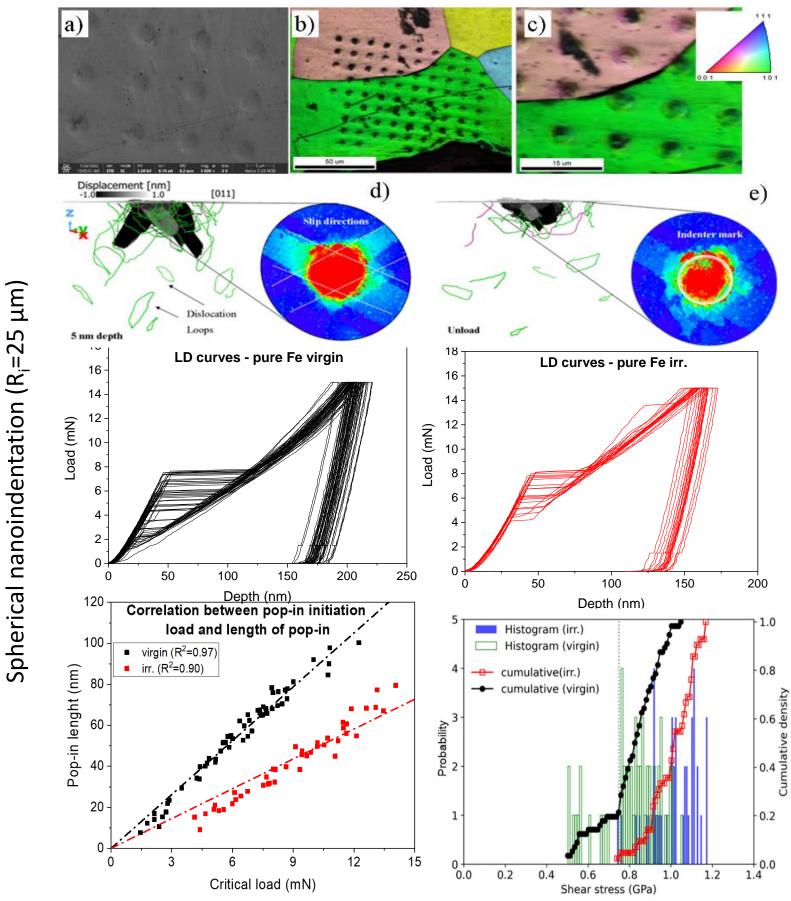
Accredited Mechanical Testing Polish Centre for Accreditation Accreditation number AB 025

> PCA DLSKIE CENTRUM B BADANIA AB 025

Sleeper Cracking mechanism and testing of railways

CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research

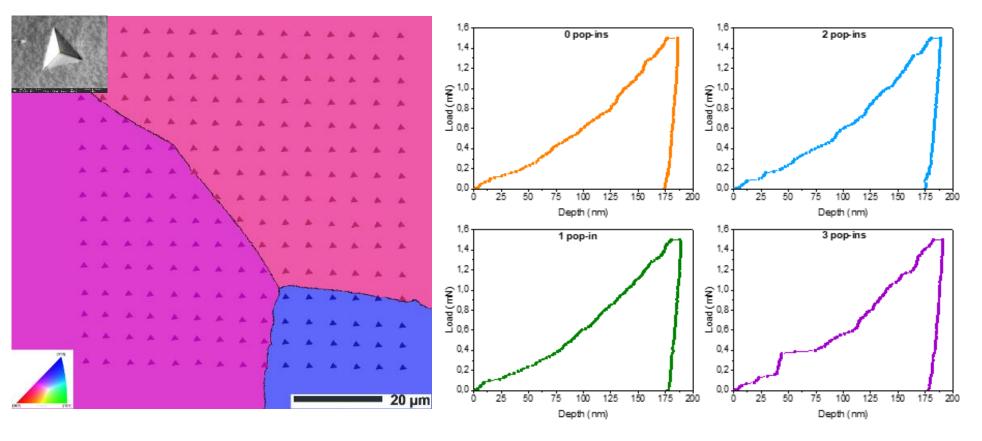
High-Speed ICE Pendolino train, max. speed 250 km/h


High-Speed ICE train disaster, Eschede, (Germany, 1998)

Stresses and Bielajew's point analysis

Mechanical Testing Division – Research Activities

Studying effect of ion irradiation and temperature on the properties of Ferritic / Martensitic steels


Samples: Pure Fe; Fe9%Cr; Fe9%Cr-NiSiP, Eurofer 97 **Ion irradiation** in HZDR up to 8MeV Fe ions, 5 dpa, temp. 300 (and 450°C) **Techniques:** Nanoindentation at rT and HT; SEM+FIB/EBSD & TEM; XRD & MD simulations

Results:

- initiation
- \succ

Mechanisms to consider:

- boundaries, slip transfer?
- Do we see the impact of crystal orientation?

CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research

N.MATEN Centre of Excellence in Multifunctional Materials for Industrial and Medical Applications

> Elastic analysis based on the Hertz revealed that the first pop-in is typically caused by plasticity

Calculated shear stress is about 3 GPa (theoretical strength) Interstitial atoms like C influence pop-in behaviour by blocking preexisting dislocations

Dislocation nucleation at neighboring grain, unlocking pinned by C atoms dislocations at grain

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

CoE NOMATEN Materials Research Laboratory Structure Analysis and Corrosion Research Services

Metallographic samples preparation and analysis

Metallographic sample prepartion section

- Cut-off machines (precision cutting)
- Manual or automatic grinder / polisher
- Manual or automatic, electrochemical (0-100V) and vibropolishing (60 120 Hz)
- Electrochemical polishing and etching (0-25V) / possibility of electrolytic polishing in cool temperature mode
- Hot Mounting Press

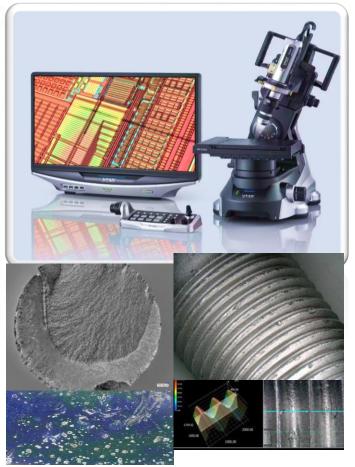
QATM Opal 410 press

STRUERS – LectroPol electrochemical polishing / etching system

QATM Saphir Vibro polisher

QATM Saphir 250 M2 automatic grinder / polisher

Microstructure characterization – Light Microscopy


- Leica DM IL Inverted Metallurgical Microscope
- Olympus BX53M Metallurgical Microscope
- Keyence VHX-7000 Optical Microscope

 \checkmark

- Light microscopy contrast methods such as Brightfield BF,
- Darkfield DF, Polarized light POL, and Differential Interference Contrast DIC
- Olympus licensed software for determining average grain size according to international standards
- (i.a. ASTM E112, ISO 643) and phase analysis

Olympus BX53M Metallurgical Microscope

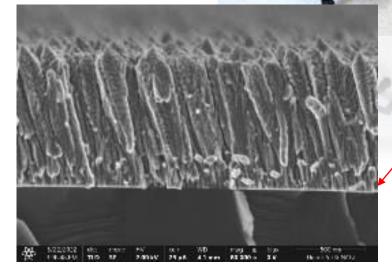
KEYENCE VHX-7000 Optical Microscope ¹⁶

Samples preparation and microstructure analysis

SEM/TEM Laboratory financed by

SEM microscope Helios 5 UX DualBeam (Thermo Fisher Scientific)

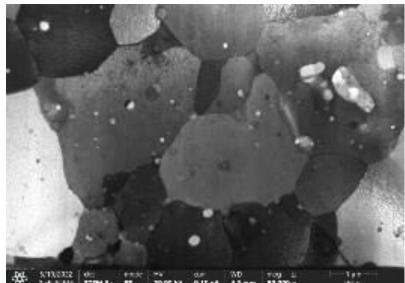
The Extreme High Resolution (XHR) Field Emission Scanning Electron Microscope (FE SEM) equipped with:


- □ FIB (Focused Ion Beam) technology
- **EDS** (Energy Dispersive X-ray Spectroscopy)
- **EBSD** (Electron Backscatter Diffraction)

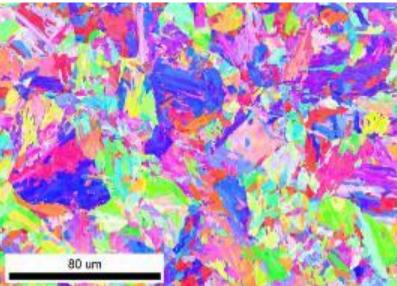
Ion Beam Precision Etching System

The PECS II and PIPS II (Gatan) is used to polish surfaces and remove without damage with two broad argon beams. This method is powerful for producing high-quality samples:

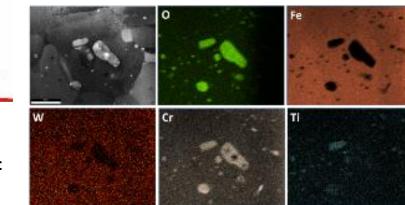
- for scanning electron microscope (SEM) observations
- for SEM imaging and EDS mapping
- for EBSD analysis,
- for STEM, TEM observation etc.



High resolution SEM imaging Acceleration voltage: 350V – 30kV Resolution: 0.6 nm (2 - 15kV), 0.7 nm (1 kV) Detectors: ETD, TLD, ICD, MD, ICE

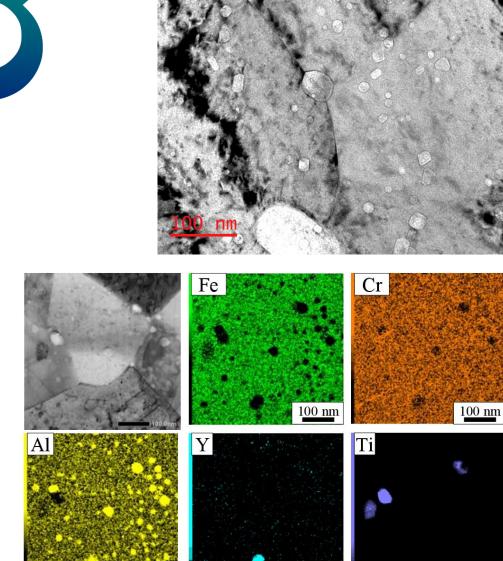

EDS Chemical composition analysis **Octane Elite Plus EDS System** SSD detector, area: 30mm2, resolution: 125eV, Si3N4

CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research


N.MATEN unctional Materials for Industrial and Medical Applications

STEM imaging **Recractable STEM 3+ detector**

Crystal orientation mapping Hikari Super EBSD Camera, 1400 fps Operation down to 100 pA/5kV

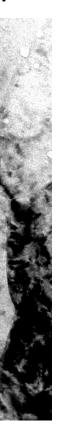


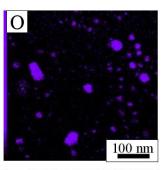
Samples preparation and microstructure analysis

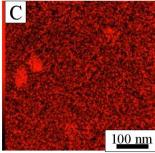
TEM Microscopy

STEM-EDS chemical composition analyses of nanometric precipitates in FeCrAl-Y2O3-Ti ODS alloy

Transmission Electron Microscopy TEM – JOEL F200 Microscope

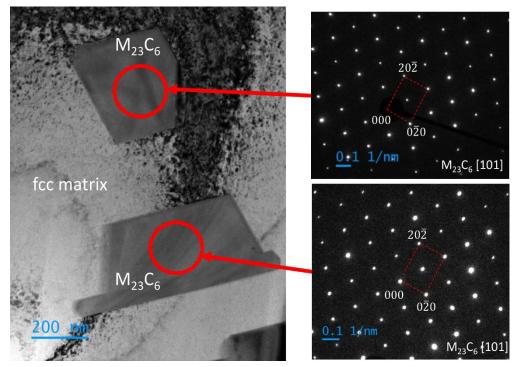

TEM with STEM, HAADF, EDS, BEI, BF and ABF detectors Equipped with in-situ tensile and HT annealing up to 1000°C holders




CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research

SEM/TEM Laboratory financed by

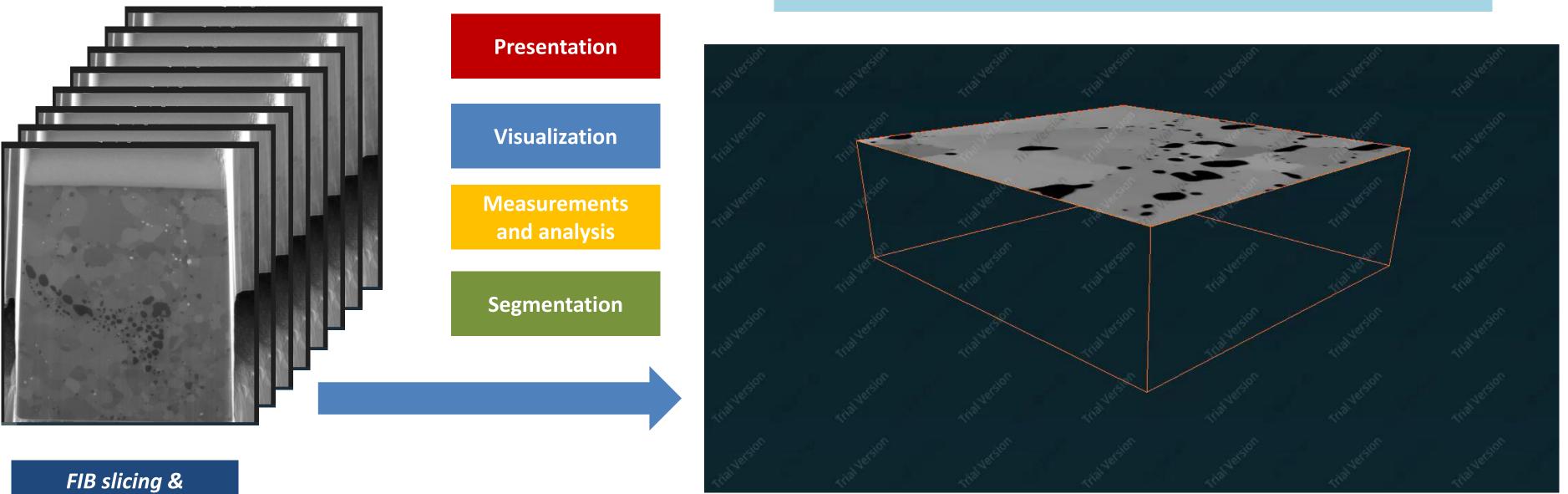
N.MATEN Centre of Excellence in Multifunctional Materials for Industrial and Medical Applications



100 nm

SafeG Project Inconel produced in collaboration with the University of Sheffield - Nuclear Advanced Manufacturing Research Centre)

TEM image and SAED patterns of M23C6 carbide in additively manufactured Inconel 617 alloy



Structure and Corrosion Research Division – Research Infrastructure

Samples preparation and microstructure analysis

SEM-FIB 3D Reconstruction

FIB slicing & SEM imaging

SEM/TEM Laboratory financed by

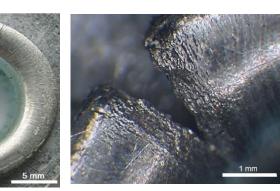
N. MATEN

Centre of Excellence in Multifunctional Materials for Industrial and Medical Applications

Reconstructed Material Microstructure in volume mode

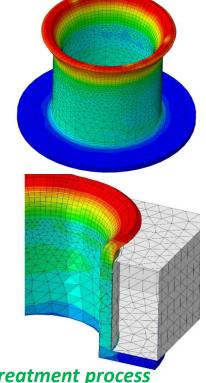
Structure and Corrosion Research Division – Expertise works for automotive

Materials fatigue analysis for Automotive Indsutry

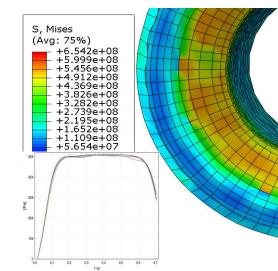

Problem to solve: Cracking of tubular rivets for clamping Knee-Airbag modules

Production losses: 1 Airbag module cost ca. 200 EUR...ca. 60 losses / 24h 24h lost: 12 000 EUR 10 days until decision to stop the production line Total lost: 120 000 EUR + production downtime

- > We realized metallographic analysis of the low-carbon steel, macroscopic, LM and SEM observations and EDS analysis
- We showed that material cooling after heat treatment was realized wrongly – tertiary cementite in the grain boundaries
- > We finally selected the proper heat treatment parameters of the rivets and estimated the optimal clamping force with FEM analysis



Knee – Airbag module



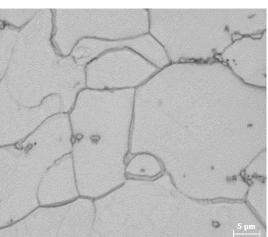
Macroscopic observation of the cracking area of the rivets

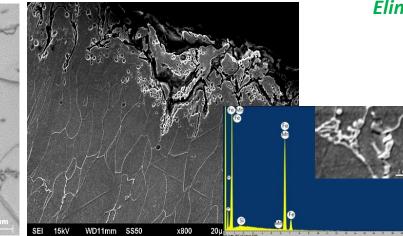
FEM analysis of riveting process – clamping force

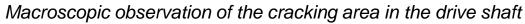
Result: Heat treatment process improvement Elimination of production losses

Problem to solve: Induction hardening optimization Cracking of the drive shafts during straightening at quality control stage

- We analyzed the material after each production stage (rod delivery state > machining > induction hardening)
- We realized metallographic analysis of the low-alloy steel (macroscopic observations of breakthrough, LM and SEM observations, hardened case depth analysis)
- > We showed that material after induction hardening tends to crack at the surface > We optimzed heat treatment with adding stress relief stage after machining and set proper induction hardening parameters incl. low-tempering after hardening







Macroscopic observation of breakthrough

Microstructure analysis of the low-carbon steel - tertiary cementite in the grain boundaries

Microstructure analysis of low-alloy steel - surface ckracking effects after induction hardening

Result: Full eilimination of the cracks Quality control report: 100% Drive shafts OK **10 000 pieces**

NATIONAL CENTRE FOR NUCLEAR ESEARCH WIFRK

COE NOMATEN Materials Research Laboratory Phase Analysis and Chemical Composition Research Services

Phase analysis Laboratory NOMATEN XRAYLAB – Research Infrastructure

X-ray diffraction phase analysis

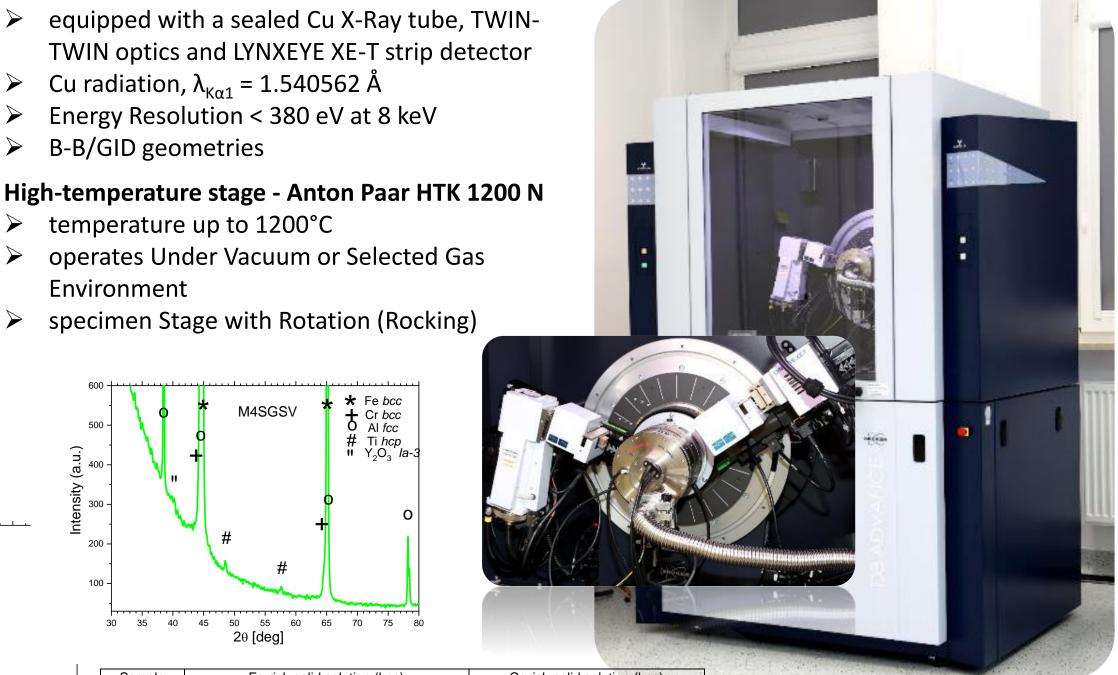
Key X-ray research abilities:

X-ray powder diffraction (XRPD)

- Identification of crystalline and amorphous phases and determination of specimen purity
- > Quantitative analysis of both crystalline and amorphous phases in multi-phase mixtures
- Microstructure analysis (crystallite size, microstrain, disorder...)
- > Bulk residual stress resulting from thermal treatment or machining in manufactured components
- Texture (preferred orientation) analysis
- Indexing, ab-initio crystal structure determination and crystal structure refinement

Analysis of amorphous, poorly crystalline, nano-crystalline or nano-structured materials

- Phase identification
- > Structure determination and refinement
- Nano particle size and shape


Thin Films and Coatings high quality analyses

- Grazing incidence diffraction
- X-Ray Reflectometry
- High resolution X-ray diffraction
- Reciprocal space mapping

- Cu radiation, $\lambda_{\kappa \alpha 1} = 1.540562$ Å
- Energy Resolution < 380 eV at 8 keV
- **B-B/GID** geometries

- temperature up to 1200°C
- Environment

Fe-rich solid solution (bcc)				Cr-rich solid solution (bcc)			
Lattice	Crystallite	Strain	Phase	Lattice	Crystallite	Strain	
constant	Size	parameter	content	constant	Size	parameter	
[Å]	[nm]			[Å]	[nm]		
2.868	28	0.0049	74	2.891	14	0.0057	
2.866	23	0.0048	87	2.889	11	0.0051	
2.869	23	0.0047	79	2.891	14		
2.868	23	0.0047	87	2.891	14	0.0057	
	Lattice constant [Å] 2.868 2.866 2.869	Lattice Crystallite constant Size [Å] [nm] 2.868 28 2.866 23 2.869 23	Lattice constantCrystallite Size [Å]Strain parameter[Å][nm]0.00492.868280.00492.866230.00482.869230.0047	Lattice constantCrystallite Size [Å]Strain 	Lattice constant [Å] Crystallite Size [nm] Strain parameter Phase content Lattice constant 2.868 28 0.0049 74 2.891 2.866 23 0.0048 87 2.889 2.869 23 0.0047 79 2.891	Lattice constantCrystallite Size [Å]Strain parameterPhase contentLattice constantCrystallite Size [Å]2.868280.0049742.891142.866230.0048872.889112.869230.0047792.89114	

FeCrAl-ODS alloys powders analysis

20 [deg]

60 70 80

6000

(a.u.)

Intensity (

2000

CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research

X-Ray Laboratory financed by ΝΘ.ΜΔΤΕΝ

Centre of Excellence in Multifunctional Materials for Industrial and Medical Applications

Spectroscopic phase and chemical composition analysis

Raman Spectroscopy

Research Features

- Obtaining qualitative to semi-quantitative information on material phase composition (Raman imaging)
- Determination of stress distribution
- Examination of phase transition and corrosion of materials
- Observations of structural changes after ion implantation - \succ defects type and amount determination

Alpha 300R **Raman Spectrometer**

High temperature stage (up to 1000 C)

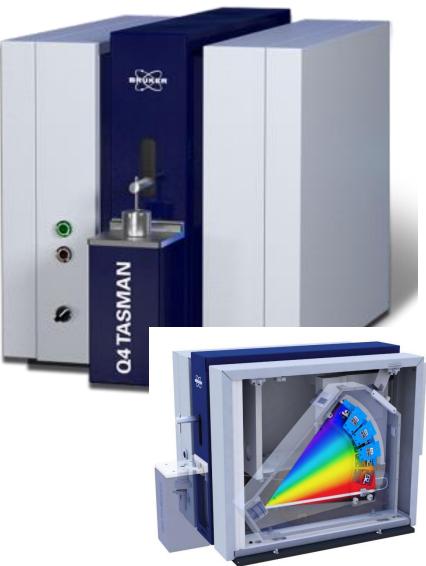
Ultra-high throughput spectrometer (UHTS), for high speed and high resolution Raman imaging.

Optical microscope: Zeiss Neofluar objectives magnification x10, x50, x100

Research features:

- Quantitative elemental analysis

- delivers improved analytical precision and shorter time-to-result. robust Paschen Runge mount, multi-chip systems with
- Digital Spark Source Dual optics concept with


CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research

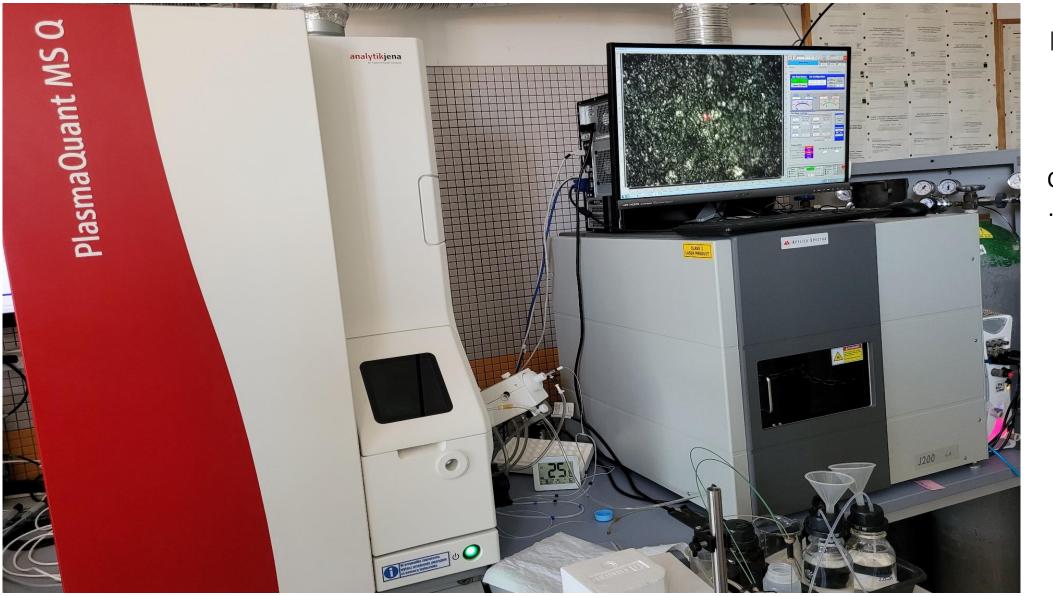
Spark Optical Emission Spectroscopy OES

BRUKER Q4 TASMAN Series 2

- Improved precision and stability
- High accuracy and
 - sensitivity levels, full
 - capabilities including C,
 - P, S, Sb, Te

temperature stabilization

4 Analytical Bases Fe, Al, Ni and Ti alloys


30 CRM Materials with ISO 17034 Standard

ICP-MS integrated with Laser Ablation LA and LIBS spectrometer

Analytik Jena Plasma Quant MS Q <> Applied Spectra J200 LA system with LIBS

<0.3

Ultra High

<0.001 < 0.00

< 0.001

<0.001

High Purity Graphite

0.018

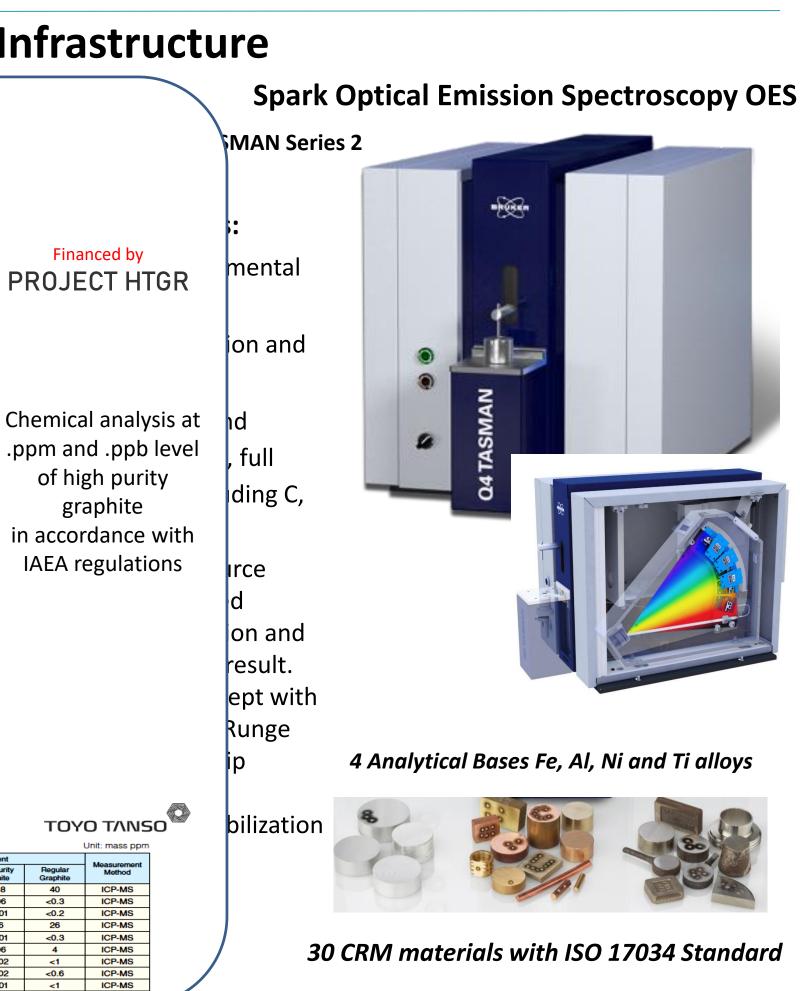
0.006

< 0.001

0.06

<0.001

0.006


Other research plans:

- solid samples inpurities analysis
- C,H,O,N detection in materials (LIBS) \succ
- MARIA reactor water analysis

Impurity Analysis Example

Element	Content			Management		
	Ultra High Purity Graphite	High Purity Graphite	Regular Graphite	Measurement Method		Eleme
Li	<0.001	<0.001	<0.03	ICP-MS		v
в	0.10	0.15	3	ICP-MS		Cr
Na	<0.002	<0.002	<0.5	ICP-MS		Mn
Mg	<0.001	0.004	0.2	ICP-MS		Fe
AI	<0.001	0.012	14	ICP-MS		Co
Si	<0.1	<0.1	2	VU		Ni
ĸ	<0.03	0.04	2	FL-AAS		Cu
Ca	<0.01	0.08	6	FL-AAS		Zn
Ti	<0.001	<0.001	33	ICP-MS		Pb

CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research

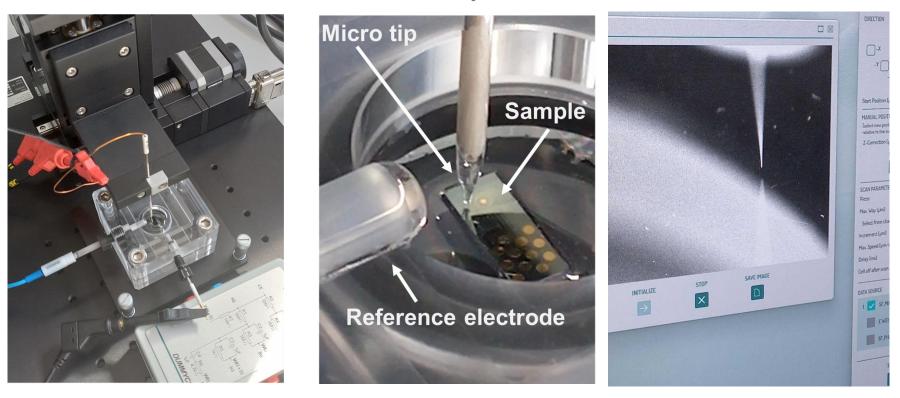
Structure and Corrosion Research Division – Research Activities

Corrosion and Electrochemistry Laboratory

Workplace 1: Setup for standard and long-term corrosion monitoring

Potentiostat/galvanostat a Metrohm VIONIC

Potentiostat/galvanostat a Metrohm AUTOLAB 302N


Raman electrochemical cell Redox me

Selected capabilities:

- **Polarization (LSV, CV)** tests according to the **ASTM** regulations (corrosion rate [mm/year], tendency to pitting corrosion)
- Electrochemical Impedance Spectroscopy (EIS) tests (testing coatings/paint systems, */oxide layers, corrosion monitoring)*
- All electrochemical tests can be performed in controlled temperature/flowing rate of the electrolyte
- Monitoring of the surface changes and corrosion resistance simultaneously in situ Raman spectroscopy

Workplace 2: Setup for corrosion tests in microscale

Local, separate corrosion response from:

- Particularly oriented grains in materials
- Different phases of materials
- Interfaces: precipitates/grain boundaries
- Parts of the welded joints (welded metal/HAZ)
- Surface features

CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research

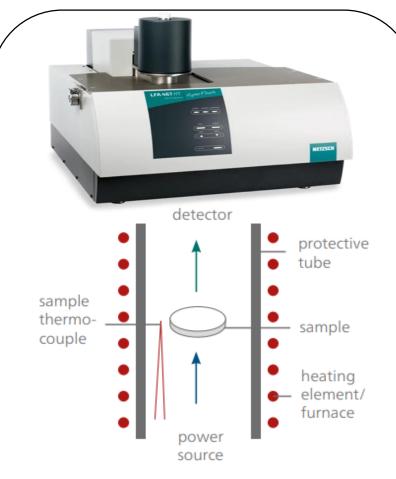
Scanning electrochemical microscope (SECM) equipped with the Shear-Force and High-Res modules

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

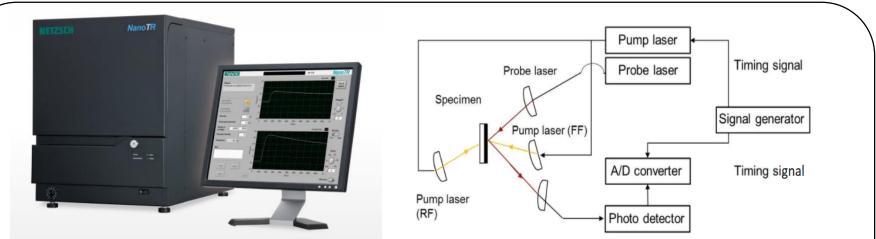
CoE NOMATEN Materials Research Laboratory Thermal Properties Analysis Services

Thermal Properties Testing Laboratory – Research Infrastructure

The Thermal Laboratory enables full characterization of the thermal properties of advanced materials


The laboratory equipment includes:

- high-temperature dilatometer (I)
- device for measuring of thermal diffusivity of volumetric materials, (||)
- device for measuring of thermal diffusivity of thin films, (111)
- a set for simultaneous thermal analysis (IV)
- a thermal mass spectrometer. (V)



High-temperature Dilatometer Netzsch DIL402 Operates in horizontal mode within the temperature range from RT to 1600°C.

The load on the sample is in the range from 50mN to 3N, with measurement of cylindrical samples and cuboidal samples with an accuracy of 1 nm and in the range of measuring 10 mm.

Netzsch LFA 467 HT HyperFlash[®] allows for measurement of thermal diffusivity and thermal conductivity between RT and 1250°C with Xenon Flash

CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research

Thermal Research Laboratory Financed by Project HTGR

PROJECT HTGR

NanoTR enables measurements of thermal diffusivity of metallic, ceramic and composite layers in the range from 0.01 to 1000 mm^2/s with an accuracy of 5%.

Netzsch STA 449 F3 Jupiter[®]

STA instrument combines two measuring techniques: Thermogravimetry (TG) and Differential Scanning Calorimetry (DSC) for a single sample.

The device includes two high-temperature furnaces:

- High-temperature furnace enabling operation in a protective atmosphere (in the range of RT to 1600°C)
- High-temperature furnace enabling operation in a water vapour atmosphere (in the RT to 1250°C range, at a relative humidity in the range of 5-90%.).

Netzsch Mass Spectrometer QMS 403 Aëolos Quadro useful tool for obtaining the chemical and analytical information about the products causing the weight changes of the different materials during heat treatment.

We invite you to cooperate with us...!!!

- We have a research laboratories with high-end infrastructure, which is fully equipped and operational
- We have a management system under PN-EN ISO/IEC 17025 norm and we can realize accredited testing in line with international research and materials standards ISO, ASTM, BS...
- We have a young Staff of Engineers who continue to expand and develop their competencies...

FOR NUCLEAR

Save the Date for 2nd Edition of NOMATEN Innovation Days 2024!

Date: 22th Ocotber 2024

Session and Lectures:

Industrial Cooperation Session Nuclear Materials Session Non-nuclear Materials Session Materials Research Examples

Technical Visists to:

MARIA Reactor NOMATEN Laboratories **POLATOM** Company CERAD Cyclotrone CentriX Laboratory

For more info please visit our website: https://nomaten.ncbj.gov.pl/

MARIA Reactor hall

CERAD Cyclotrone Infrastracture

CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research

Harizan 202

European Unio umnean Sening

Over 120 Participants in 2023!

Acknowledgements

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 857470

European Commission

Horizon 2020 European Union funding for Research & Innovation

Infrastructure and Research support for National Centre for Nuclear Research Materials Research Laboratory is provided by The Ministry of Education and Science in consultation with The Ministry of Climate and Environment within the Project HTGR High-Temperature Gas Cooled Reactor

Ministry of Education and Science

"Funding from the undertaking of the Minister of Science and Higher Education "Support for the activities of Centers of Excellence established under Horizon 2020"

CoE NOMATEN Materials Research for Industry, National Centre for Nuclear Research

Ministerstwo Aktywów Państwowych

Ministry of State Assets

Ministry of Climate and Environment

NATIONAL CENTRE FOR NUCLEAR RESEARCH Ś W I E R K

THANK YOU FOR YOUR INTEREST

Contact Persons:

Professor Jacek Jagielski

Head of the NOMATEN TEAMING for Excellence Project Director of Material Physics Department National Centre for Nuclear Research e-mail: Jacek.Jagielski@ncbj.gov.pl phone: +48 22 273 1443

Łukasz Kurpaska, D.Sc., Assoc. Prof.

Director of NOMATEN CoE Materials Research Laboratory National Centre for Nuclear Research e-mail: Lukasz.Kurpaska@ncbj.gov.pl Phone: +48 22 273 10 61 / Mobile: +48 796 768 038

Jarosław Jasiński, D.Sc., Assoc. Prof.

NOMATEN CoE Industry Liason Group Member Materials Research Laboratory National Centre for Nuclear Research e-mail: Jaroslaw.Jasinski@ncbj.gov.pl Phone +48 22 273 10 62 / Mobile: +48 507 941 657

