Detecting cosmic voids via maps of geometric-optics parameters Boud Roukema¹ + Marius Peper¹ + Krzysztof Bolejko² ¹Institute of Astronomy NCU ²School of Natural Sciences UTasmania</sup>

24 Oct 2024 Rubin-LSST meeting 2024@CAMK

(日) (日) (日) (日) (日) (日) (日) (日)

Overview

- 1. aim: detect cosmic voids via spacetime curvature instead of by stellar luminosity
- galaxy image distortion maps = effect of curvature \Rightarrow blind detection of voids
- Rubin-LSST: excellent photometric survey
- 2. method heuristic algorithm proposed
- 3. results
- Peper, Roukema & Bolejko 2023 (MNRAS, <u>ArXiv:2304.00591</u>)

1.1 Physics: GR

SDSS J1138+2754 (C) 2018 ESA/Hubble Judy Schmidt CC BY

1.2 Sky plane

 weak lensing formalism – simplified model of curvature effect on distant galaxies

surface overdensity $\boldsymbol{\Sigma}$

mean tangential shear $\overline{\gamma_{\perp}}$

 geometric optics – model – closer to first principles

Sachs expansion θ

Sachs shear modulus $|\sigma|$

2.1 Reproducibility

- in principle, full simulation + results + final
 pdf reproducible from 740 kB source package
 lensing-ddbb4ac-snapshot.tar.gz
 (md5sum
 66e4a9bbb0320393ee35f4a69cb84a15)
- https://zenodo.org/record/8103985

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2.2 Ab initio simulation pipeline

- 1993/1997 hybrid method (updated)
- initial conditions MPGRAFIC
- ► DM *N*-body simulation RAMSES
- DM halo detection + merger history trees -ROCKSTAR + CONSISTENT-TREES
 - $\parallel\,$ semi-analytical gal formation recipes $_{\rm SAGE}$

 \parallel void detection – REVOLVER

2.3 3D gal voids vs 2D curvature voids

 REVOLVER – watershed algorithm in comoving 3D space

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▶ 2D - how?

2.4 Heuristic for 2D void detection

- Σ void-like profile
- →
 ¬
 →
 ¬
 ¬
 ¬
 0 at centre, negative (dip) at void wall
 and then rise
- Sachs parameters: θ, |σ| qualitatively Σ-like profile

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 algorithms derived by bio-neural semantic iteration

3.1 Sachs expansion θ : image

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ(で)

3.1 Sachs expansion θ : profiles

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

3.1 Sachs expansion θ : matches X

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3.1 Sachs expansion θ : matches Z

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

3.1 Sachs expansion θ : matches R

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

3.2 Sachs shear modulus $|\sigma|$: image

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ(で)

3.2 Sachs shear modulus $|\sigma|$: profiles

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

3.2 Sachs shear modulus $|\sigma|$: matches X

▲ロト▲舂▶▲恵▶▲恵▶ 恵 のなぐ

3.2 Sachs shear modulus $|\sigma|$: matches Z

▲ロト▲舂と▲臣と▲臣と 臣 のなぐ

3.2 Sachs shear modulus $|\sigma|$: matches R

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

3.3 Numbers of detections

Table: Numbers of intrinsic 3D voids detected with REVOLVER, N_{3D} , and in the 2D grid, N_{2D}^{Σ} , N_{2D}^{γ} , N_{2D}^{θ} , and N_{2D}^{σ} , using the surface overdensity Σ , the weak-lensing shear $\overline{\gamma_{\perp}}$, the Sachs expansion θ , and the modulus of the Sachs shear $|\sigma|$, respectively.

N_{3D}	N_{2D}^{Σ}	N_{2D}^{γ}	N_{2D}^{θ}	N_{2D}^{σ}
46	28	29	34	39

3.4 Significant detections?

Table: Probability that the matches between 3D and 2D voids are no better than for random 2D voids, $P_{xz}^X(3D|2D)$ when given 2D voids; or $P_{xz}^X(2D|3D)$ when given 3D voids; and probability that the Spearman rank correlation coefficient for the radii of matched 3D and 2D voids could be that for randomly paired values, $P_R^X(3D|2D)$ when given a 2D void; and $P_R^X(2D|3D)$ when given a 3D void.

Χ	$P_{x,z}(3D 2D)$	$P_{x,z}(2D 3D)$	$P_R(3D 2D)$	$P_R(2D 3D)$
Σ	0.027	0.0038	0.89	0.94
$\overline{\gamma_{\perp}}$	0.010	$3.0 imes10^{-5}$	0.85	1.0
θ	0.00050	$3.0 imes10^{-5}$	0.25	0.16
$ \sigma $	0.00014	$1.0 imes10^{-5}$	0.27	0.61

Conclusion

- voids in principle detectable by lensing distortion maps
- best by Sachs θ and $|\sigma|$
- confusion: near-concentric-in-sky-plane voids
- photometric survey should give falsifiable predictions of 3D voids
- Peper, Roukema & Bolejko 2023 (MNRAS, <u>ArXiv:2304.00591</u>)