Constraints on the properties of vMSM dark matter using the satellite galaxies of the Milky Way

Oliver Newton

Centre for Theoretical Physics Polish Academy of Sciences

+ M. R. Lovell, C. S. Frenk, A. Jenkins, J. C. Helly, S. Cole, A. J. Benson

What is the vMSM*?

*Neutrino Minimal extension of the Standard Model

What is the vMSM*?

*Neutrino Minimal extension of the Standard Model

- Introduces three massive sterile neutrinos
- Two (N₂ and N₃) are ~GeV scale
 - Unstable/short-lived
 - Decay into anti-leptons (lepton asymmetry)
- One (N₁) ~keV scale

Higgs boson

spin 0

- Satisfies most requirements for DM
 candidates
 - Long-lived but unstable. Can
 radiatively decay into photon and
 active neutrino:

 $N_1 \rightarrow \gamma v_{\alpha}$

~ monochromatic line in X-rays +----

Unexplained problems the vMSM could solve

- Small active neutrino masses
- Leptogenesis
 - Lepton asymmetry resonantly enhances production of sterile neutrinos
 - Parametrized as effective mixing angle, θ_e
- Baryogenesis
 - Lepton asymmetry converts to baryon asymmetry
- Could explain 3.55 keV X-ray excess
 - Observed emanating from DM-dominated systems
 - No known astrophysical origin*
 - JAXA XRISM has better resolution

Adapted from Bulbul et al. (2014); arXiv: 1402.2301

Substructure and warm DM

Lovell et al. (2014); arXiv: 1308.1399

Assessing DM model viability

Need two ingredients:

- Total number of satellite galaxies around Milky Way (LSST will tell us this!)
 - Current surveys incomplete in depth and sky coverage
 - Model survey response and correct for incomplete observations to infer total population

Newton et al. (2018); arXiv: 1708.04247

- Predictions of the number of satellite galaxies in a Milky Way mass halo in a given DM model
 - Extended Press-Schechter formalism
 - Prescriptions to populate substructure with galaxies
 - a. Assume all substructure hosts a galaxy
 - b. Apply galaxy formation models

Constraints from substructure counts

- Assumptions
 - $N_{\text{sat}}^{\text{MW}} = 124_{-27}^{+40}$ (68% confidence; Newton+2018)
 - $M_{200}^{\text{MW}} = 1.17^{+0.21}_{-0.15} \times 10^{12} \text{ M}_{\odot}$ (68% confidence; Callingham+2019)
 - All substructure hosts a galaxy
- Independent of galaxy formation physics
- Shaded area ruled out with $\geq 95\%$ confidence
- More stringent constraints at lower M_{200}^{MW}
- Cannot exclude 7.1 keV vMSM (favoured by X-ray flux

measurements) using satellite counts alone

O. Newton et al.; arXiv: 2408.16042

Constraints from galaxy formation

- Populate subhaloes with galaxies using Lacey+(2016)
 Galform model
- Reionization parametrized by:
 - z_{reion} : Redshift at which reionization is complete
 - $V_{\rm cut}$: Gas cooling shuts down in haloes with $V_{\rm circ} < V_{\rm cut}$ at $z < z_{\rm reion}$
- Fiducial choices: $z_{reion} = 7$, $V_{cut} = 30 \text{ km s}^{-1}$
 - Rule out part of favoured $M_s = 7.1$ keV parameter space with satellite counts alone
- Can explore how changing reionization affects constraints

Changing reionization

Sensitivity to number of MW satellites

- Several recent estimates of $N_{\text{sat}}^{\text{MW}}$ exist (Newton+2018; Nadler+2020)
- Nadler+2021
 - Subhalo Abundance Matching + analytic prescriptions to obtain thermal relic constraints
 - Convert thermal relic constraints to vMSM by matching halfmode mass between models
 - Compute vMSM power spectra based on Venumadhav+2016 momentum distributions
 - Systematically warmer than what we use (Ghiglieri & Laine 2015)
 - Differences in the number of orphans recovered

Conclusions

- Non-linear regime is a powerful discriminator of viable DM models
 - Satellite count constraints will be affected by future LSST discoveries
- vMSM is a physically motivated extension to Standard Model. Explains:
 - Small masses of active neutrinos
 - Primordial lepton & baryon asymmetries
 - 3.55 keV X-ray excess
- We exclude parametrizations of MSM with:
 - $M_{\rm s} \leq 1.4$ keV independently of galaxy formation physics
 - $M_{\rm s} \leq 4$ keV assuming $z_{\rm reion} = 7$ and $V_{\rm cut} = 30$ km s⁻¹
 - $M_{\rm s} = 7.1 \text{ keV}$ and $\sin^2 2\theta_e \le 4 \times 10^{-11} \text{ or } \sin^2 2\theta_e \ge 10^{-9}$
- JAXA XRISM satellite will confirm (or refute) existence of the 3.55 keV line

Requirements for dark matter candidates*

*Assuming a single particle species

Astrophysics

- Interacts via gravity
- No dependence on any other long-range forces on large astrophysical scales
- Must match observed relic abundance
- Non-relativistic at matter-radiation equality
- Dissipationless and collisionless (maybe)
- Large-scale behaviour similar to that predicted by ACDM/observed

Particle physics

- Very long-lived
- Electrically and colour-neutral
- Very weakly interacting with Standard Model particles
- Self-interactions/annihilations allowed
- Non-relativistic at early times

Resonant production

- Oscillation parameters of active neutrinos in a medium diverge from those in vacuo
 - Mikheyev–Smirnov–Wolfenstein (MSW) effect
- Analogous mechanism affects active-sterile mixing
 - Controlled by size of lepton asymmetry in primordial plasma

$$L_6 = 10^6 \frac{\left(n_{\nu_e} - n_{\overline{\nu}_e}\right)}{s}$$

- Alternatively, can parametrize this as an *effective* mixing angle, θ_e
- Lepton asymmetry resonantly enhances sterile neutrino production
- Can affect momentum distribution of sterile neutrinos

Estimates of substructure abundance

Sensitivity to number of MW satellites

- Several recent estimates of N_{sat}^{MW} exist (Newton+2018; Nadler+2020)
- Nadler+2021
 - Subhalo Abundance Matching + analytic prescriptions to obtain thermal relic constraints
 - Convert thermal relic constraints to vMSM by matching halfmode mass between models

$$M_{\rm hm} = \frac{4\pi}{3} \bar{\rho} \left(\frac{\pi}{k_{\rm hm}}\right)^3$$

 $\bar{\rho}$: Average matter density of the Universe

$$\sqrt{\frac{P_{\rm WDM}(k_{\rm hm})}{P_{\rm CDM}(k_{\rm hm})}} = 0.5$$

- Compute vMSM power spectra based on Venumadhav+2016 momentum distributions
 - Consistently warmer than what we use

O. Newton et al.; arXiv: 2408.16042

Other work

- Estimate of $N_{\text{sat}}^{\text{MW}}$ too high (Nadler+2020)
- Dekker+2022
 - Use EPS —
 - Adopt conservative constraint (all subhaloes host galaxies) —
 - Also obtain power spectra using Venumadhav+2016 momentum distributions
 - Systematically warmer than ours

The problem with simulations

- Expensive
 - Illustris TNG50 required 130M CPUh (~15,000 years of compute time)
- Slow exploration of parameter space
 - vMSM has two-dimensional parameter space: M_s and mixing angle
 - Require a simulation for each combination
 - Would need to re-run all simulations for each change to the hydrodynamics scheme
- Overall: **computationally infeasible** to explore parameter space with simulations

vMSM momentum distribution

N Adapted from Boyarsky et al. (2009); arXiv: 0901.0011

q: Co-moving momentum; T_v : Temperature of active neutrinos

$$L_6 = 10^6 \frac{\left(n_{\nu_{\rm e}} - n_{\overline{\nu}_{\rm e}}\right)}{s}$$

- Non-resonant tails are self-similar at $q \ge 3$
- Non-monotonic behaviour with L_6 at fixed mass

Satellite galaxies in the Milky Way

- Bayesian approach
- Model satellite distribution using v_{peak} -selected subhaloes from Aquarius suite (Springel+2008)
- Use observations from SDSS and DES
 - Completeness characterized in the literature (Koposov+2008)
- Consistent with some follow-up estimates (e.g. Nadler+2020)

Setting the constraints

- Compare subhalo population with N_{sat}^{MW}
 - Independent of choice of galaxy formation physics
- Calculate fraction of systems with more subhaloes than is inferred from observations
- Rule out models with f < 0.05
- vMSM has 2-dimensional parameter space
 - Particle mass, *M*_s
 - Mixing angle, $\sin^2 2\theta$

Semi-analytic models of galaxy formation

- Rapidly explore different galaxy formation model prescriptions
- Based on DM halo merger trees
- Inexpensive compared to *N*–body/hydrodynamic simulations
- Implement many astrophysical processes
 - Shock heating/radiative cooling
 - Photoionization
 - Merging
 - Star formation (quiescent/burst)
 - Supernovae feedback (heating and winds)
 - AGN accretion and feedback
 - Chemical evolution
 - Stellar populations
 - Dust

