DES to HSC: Detecting LSBGs in Abell 194 with Transfer Learning

Hareesh Thuruthipilly, National Centre for Nuclear Research (NCBJ), Poland.

Collaborators: Dr. Junais, Prof. Jin Koda, Prof. Agnieszka Pollo, Prof. Masafumi Yagi, Prof. Katarzyna Małek

Outline

Overview.

02

What are LSBGs and why we need to find them ? Transformers & Transfer Learning.

03

Search for LSBGs and the properties of the new LSBG sample.

Thuruthipilly H. et al. (in prep.) Coming Soon!!

Height: about 3 meters, Weight: about 3 tons

3

Going from DES to HSC ? ROAD LINE TO LSST

DES vs HSC: Abell 194 Cluster as a Test Case

LOW SURFACE BRIGHTNESS GALAXIES

What is an LSBG ?

We classify galaxies with $\overline{\mu}(g) > 24.2 \text{ mag/arcsec}^2$ and r > 2.5'' (0.9 kpc) as LSBGs

6

(Greco+18; Tanoglidis+21)

Examples of LSBGs from Dark Energy Survey (DES) from Thuruthipilly et al. (2024)

Image taken from A. J. Benson et al. (2003).

LSBGs account for up to **50**% of the total population of galaxies.

Ultra-diffuse Galaxies

Ultra-diffuse galaxies (UDGs), are extended LSBGs with **effective** radii r > 1.5 kpc and central surface brightness μ_0 > 24.0 mag arsec⁻² (van Dokkum et al. 2015).

DF – 44: Extremely dominated by dark matter. Image credits : Teymoor Saifollahi and NASA/HST

NGC 1052-DF2 : Almost void of dark matter.

8

Image source : https://www.spacetelescope.org/images/heic1806

Finding LSBGs

Why it is hard to detect LSBGs

Need deep surveys.

Eliminating the sky background.

Separation of **artifacts** from LSBGs.

Dark Energy Survey (DES)

DES OBSERVING STRATEGY 300° 27.0° 240° 210 1 Ginnin manning DES (SN fields) DES (Y2)

Surveyed around ~ **5000** deg² of the sky.

Image taken from J. H. O'Donnell et al (2021)

LSST and EUCLID

The large-scale surveys, such as **LSST** and Euclid are expected to observe **10⁵+LSBGs**.

With the current techniques it means ~10⁵+artefacts.

Image taken from https://astronomy.com/news/2017/12/the-lsstand-big-data-science

13

Computer Vision

Part 2

Manual

Transformer?

14

Chat Generative Pretrained **Transformer**

LSBG Detection Transformer (LSBG DETR)

LSBG Vision Transformer

The Vision Transformer (ViT)

divides an image into a grid

of patches and feed it to a

transformer encoder layer

Transfer Learning

Transfer learning: The reuse of a pre-trained model on a new problem.

Images taken from https://www.linkedin.com/pulse/ai-atlas-3-transfer-learning-rudina-seseri

Search for LSBGs

PART 3

Image taken from http://www.wikisky.org/?object=NGC+45&img_source=GALEX

> DES covers Abell 194 cluster.

We made deep observations of the Abell 194 cluster in g and r-bands.

94 known LSBGs, insufficient for ML training.

Coverage of the Abell 194 Cluster observed with HSC. The red circle shows the virial radius of the cluster (~1Mpc).

Convert the raw data to a physical unit (micro jansky arcsec⁻²) to make the average pixel values in the image data similar for both surveys.

21

Performance in **DES**

Model name	Accuracy (%)	TPR	FPR	AUROC
LSBG VISION 1	95.58	0.96	0.05	0.9908
LSBG VISION 2	95.48	0.96	0.05	0.9906
LSBG VISION 3	95.58	0.97	0.06	0.9906
LSBG VISION 4	95.14	0.96	0.05	0.9895
LSBG VISION Ensemble	95.62	0.96	0.05	0.9911
LSBG DETR 1	95.68	0.96	0.04	0.9893
LSBG DETR 2	95.36	0.95	0.04	0.9887
LSBG DETR 3	95.48	0.96	0.05	0.9891
LSBG DETR 4	95.54	0.97	0.06	0.9904
LSBG DETR Ensemble	95.62	0.96	0.05	0.9903

$$TPR = \frac{N_{True \ positives}}{N_{True \ positives} + N_{False \ Negatives}}$$
$$FPR = \frac{N_{False \ positives}}{N_{False \ Positives} + N_{True \ Negaitves}}$$

For a perfect classifier AUROC = 1, TPR = 1 and FPR = 0.

22

LSBGs in A194 – Simplified Pipeline

Missing LSBGs !!

23

We missed **12 LSBGs** which were found with **visual inspection** and Galfit.

24 Why ?

Vey faint (g~22) and representative sample was not present in the training set.

Presence of a bright object near the center.

LSBGs & UDGs

> 171 LSBGs and 28 UDGs

> 93% recovery rate without fine tuning.

Examples of LSBGs and UDGs

Abell 194 **relaxed** UDG sample is based on the mean surface brightness rather than the central surface brightness in g-band.

Scaling Relation of UDGs

28

UDG number is proportional to the mass of the host cluster/group.

UDG number density is normalized by their cluster mass for comparison.

UDG Surface Number Density

UDGs vs Dwarf Galaxies

Color as a function of Projected Cluster-Centric distance

- Visible trends in FUV and NUV colors detected with GALEX.
- LSBGs near the cluster center
 tend to be redder than LSBGs in
 the outskirts which is more
 prominent in UV colors than in
 optical color.

Summary

- We successfully implemented transfer learning which could applied to LSST.
- Transformers trained on DES data identify 93% of LSBGs in the Abell 194 cluster from HSC data without fine-tuning.
- Future work: How much we can extrapolate (Deeper data, different PSF etc.)

171 LSBGs and 28 UDGs found in Abell 194, doubling known counts.

- New LSBGs are smaller and fainter. LSBGs near the cluster center are redder in UV color than those in the outskirts.
- > UDG abundance scale with cluster mass and they might be an extension of dwarf galaxies.

Thank You

33

QUESTIONS ?

Improved Masks!

Cluster-Centric distance

Morphological Properties as a function of Projected Cluster-Centric distance

Current Trend in Computer Vision

37

Image taken from https://paperswithcode.com/sota/image-classification-on-imagenet

LSBGs from DES DR1

Each attention head can be implemented in parallel

worker 3

IMAGE CREDITS :HTTPS://THEAISUMMER.COM/SELF-ATTENTION

Transformers and Self-Attention

Color-Magnitude Diagram

Attention in Action

42

LSBGs provides a robust platform to test different dark matter models and cosmological evolution scenarios.

Image Credit: L Jaramillo and O Macias, Virginia Tech