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Globular clusters



Globular clusters

Figure 1: 47Tuc globular star cluster,

one of the biggest and oldest in the

Milky Way.

• very old (age comparable to the age of the Universe)

• size up to around 100 ly

• a core is clearly visible – best place for creating of

many exotic objects: cataclysmic variables, X-ray

binaries, black holes, intermediate-mass black holes,

blue stragglers

• great laboratories for studying stellar evolution and

dynamical interactions between stars

• Milky Way GCs: 50% GC within 5 kpc, the most

distant 130 kpc

2



Dynamical modelling – importance

• may provide basic information to understand the formation and then the evolution of

exotic objects within star clusters (e.g. hard binaries)

• dynamical interactions between stars may lead to perturbations, disruptions, collisions
and mass transfers between stars

• e.g. this may lead to decrease the semi-major axes and allow mergers which would now

happen otherwise

• may lead to formation of exotic binaries, supernova explosions (especially in the initial phase

when many of massive stars are present), formation of black holes

• dynamical interactions in GCs may eject a lot of binaries that could be potential sources

of GWs
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What are blue stragglers?

Figure 2: Example BSs in NGC2419

• BSs defined as stars which are brighter

and bluer (hotter) than the main sequence

turn-off point

• BSs lie along an extension of the main

sequence in CMD

• it suggests that these objects got some

additional mass

• BSs are present essentially in all star

clusters
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Two channels of formation: mass transfer and collisions

Figure 3: Mass transfer and collisional scenarios of

BSs formation

• mass transfer (MT):

• only for binaries (strong dependence on

IMF)

• BSs exceed only slightly turn-off (mostly)

• MT leads to merger, which can create

BSs too

• collisions (COLL):

• dynamical interactions

• important only for some star clusters
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Method



MOCCA – features

• one of the most advanced codes for simulations of real-size star clusters

• based on Monte Carlo method (a few simplifications in comparison to N-body codes, e.g.

one radial position)

• agrees very well with N-body codes (Wang et al. 2016)

• provides almost as much details about stars as N-body codes

• simulating the real clusters (M22, M4, 47Tuc etc.)

• exotic objects: blue stragglers, IMBHs, CVs...

• “observations” of simulations vs. real observations (COCOA)

• MOCCA can now handle dynamical evolution of multiple population

• very fast, which allows to test whole range of possible initial conditions

(MOCCA-SURVEYs)

• data analysis with BEANS
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BEANS code

Figure 4: http://BEANScode.net

• interactive, distributed data analysis

• web-based

• open source

• data analysis in a form of notebooks (like

Jupyter)

• Apache Pig (Apache Hadoop)

• connectors to MOCCA, NBODY codes

• Python, AWK, Gaia plugins

• access to all simulations from all

different mocca-survey from BEANS

• motivation: ML plugin
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BEANS code

Figure 5: BEANS example notebook (computing histories for all WDs from all MOCCA simulations). 8



MOCCA-SURVEYs (Survey1, Survey2, and more models in progress

Figure 6: Grid of all MOCCA models from different mocca-survey. All accessible from BEANS

(http://beans.moccacode.net/)
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Milky Way coverage of initial conditions (mocca-survey-2)

 0.01

 0.1

 1

 10

 100

 3  3.5  4  4.5  5  5.5  6  6.5  7

r c
 [

p
c]

GC mass [LOG10 MSun]

Milky Way GCs
MOCCA TF

MOCCA TuF

 1

 10

 3  3.5  4  4.5  5  5.5  6  6.5  7

r h
l [

p
c]

GC mass [LOG10 MSun]

Milky Way GCs
MOCCA TF

MOCCA TuF

Figure 7: MOCCA simulation rc , and rhl coverage of Milky Way GCs. MOCCA simulations cover proper

ranges of values of Milky Way GCs – it gives some confidence that the results of our work are well representing

Milky Way GCs
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Machine learning plugin for

BEANS



Core collapse excess of blue stragglers number – 1 Gyr
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Figure 8: Core collapse vs. dynamical blue straggler excess 11



Core collapse excess of blue stragglers number – 3 Gyr
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Figure 9: Core collapse vs. dynamical blue straggler excess 12



Core collapse excess of blue stragglers number – 6 Gyr
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Figure 10: Core collapse vs. dynamical blue straggler excess 13



Core collapse excess of blue stragglers number – 11 Gyr
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Figure 11: Core collapse vs. dynamical blue straggler excess 14



Core collapse excess of blue stragglers number for Milky Way
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Figure 12: Dynamical BSSs to evolution BSSs

fractions function of the half-mass relaxation time

• mocca simulations divided into two

groups: more massive clusters (green

points, > 100kM⊙), and less massive

clusters (red points, < 100kM⊙

• low and high mass GCs have clearly

different slopes for the excess of

dynamical BSSs

• motivation 1: ML to find the core collapse

automatically
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BEANS ML plugin

Figure 13: BEANS ML plugin

• ML plugin added to BEANS

• now we have access to our > 2000

MOCCA simulations

• currently we are using scikit-learn

• e.g. Random Forest Classifier

• Apache Mahout in plans

• one can easily define which column to use

for learning which helps non-technical

users

• the output are immediately accessible in

BEANS for further analysis
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Finding the core collapse time - 1. Using ML for predictions

Figure 14: Finding core collapse in automatic/ML way
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2. Computing cumulative distributions for predictions

Figure 15: Apache Pig computes cumulative distributions for all MOCCA simulations for collapsed

and not collapsed points.
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2. Computing cumulative distributions for predictions

Figure 16: Cumulative plots showing collapsed and not collapsed parts for one MOCCA simulation.

The core collapse is when not collapsed closes to 1.0, and not collapsed is still small.
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Did it work?
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Figure 17: Core collapsed time found by ML
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ML accuracy

 0.001

 0.01

 0.1

 1

 10

 0  5000  10000  15000  20000  25000  30000

Prediction OK
Prediction ERR

R c
 [p

c]

Time [Myr]

Figure 18: Qualitative ML accuracy for predicting core collapse for a few MOCCA simulations 21



Current step – testing different classifiers

Nearest Neighbors ’n neighbors’: 3: accuracy=68.59% precision=37.56% recall=49.07% train time=18.12333s

predict time=528.67222s

...

Decision Tree ’max depth’: 10: accuracy=67.49% precision=35.26% recall=44.43% train time=18.15583s

predict time=0.11338s

...

Random Forest ’max depth’: 10, ’max features’: ’sqrt’, ’n estimators’: 10: accuracy=67.97% precision=36.28% recall=46.44%

train time=102.94294s predict time=1.12742s

...

Naive Bayes ’var smoothing’: 1e-07: accuracy=95.29% precision=90.63% recall=89.36% train time=0.99014s

predict time=0.31822s

QDA ’reg param’: 0.0: accuracy=85.84% precision=79.14% recall=54.67% train time=2.08210s predict time=0.48526s

...

Gradient Boosting ’learning rate’: 0.01, ’n estimators’: 50: accuracy=67.49% precision=35.26% recall=44.43%

train time=1294.12376s predict time=2.26932s

...
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Next steps

• check different GCs parameters (or subset of them) to asses whether the predictions would

be equally good

• check other ML classifiers:

• Nearest Neighbors, Decision Tree, Random Forest (different params), Naive Bayes, QDA,

Gradient Boosting

• future: use ML to predict CC, nCC, IMBH-GC, BHs-GC clusters
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Conclusions

MOCCA

Figure 19: MOCCA, AMU,

NCN

• core collapse in GCs does increases the number of blue

stragglers

• BEANS – it is a nice cool toy which allow us to do the full

data analysis (+ML) on TBs of data from one place

• machine learning is unbelievable powerful

• machine learning can automatize many efforts really easily

• it can be actually easy applied

Arkadiusz Hypki — ahypki@amu.edu.pl — MOCCAcode.net — BEANScode.net
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