Distributed data analysis of Big Data and machine learning applied on a large number of detailed MOCCA numerical simulations

Arkadiusz Hypki, Warsaw, The Rubin-LSST Polish Consortium Annual Meeting 2024 2024.10.23

¹ Faculty of Mathematics and Computer Science of Adam Mickiewicz University

Globular clusters

Blue stragglers stars

Method

 $\mathsf{MOCCA} \ \mathsf{code}$

BEANS code

Machine learning plugin for BEANS

Globular clusters

Globular clusters

Figure 1: 47Tuc globular star cluster, one of the biggest and oldest in the Milky Way.

- very old (age comparable to the age of the Universe)
- size up to around 100 ly
- a core is clearly visible best place for creating of many exotic objects: cataclysmic variables, X-ray binaries, black holes, intermediate-mass black holes, blue stragglers
- great laboratories for studying stellar evolution and dynamical interactions between stars
- Milky Way GCs: 50% GC within 5 kpc, the most distant 130 kpc

- may provide basic information to understand the **formation and then the evolution of exotic objects** within star clusters (e.g. hard binaries)
- dynamical interactions between stars may lead to **perturbations**, **disruptions**, **collisions and mass transfers** between stars
 - e.g. this may lead to decrease the semi-major axes and allow mergers which would now happen otherwise
 - may lead to formation of exotic binaries, supernova explosions (especially in the initial phase when many of massive stars are present), formation of black holes
- dynamical interactions in GCs may eject a lot of binaries that could be potential **sources** of GWs

What are blue stragglers?

- BSs defined as stars which are brighter and bluer (hotter) than the main sequence turn-off point
- BSs lie along an extension of the main sequence in CMD
- it suggests that these objects got some additional mass
- BSs are present essentially in all star clusters

Figure 2: Example BSs in NGC2419

Two channels of formation: mass transfer and collisions

Figure 3: Mass transfer and collisional scenarios of BSs formation

- mass transfer (MT):
 - only for binaries (strong dependence on IMF)
 - BSs exceed only slightly turn-off (mostly)
 - MT leads to merger, which can create BSs too
- collisions (COLL):
 - dynamical interactions
 - important only for some star clusters

Method

MOCCA – features

- one of the most advanced codes for simulations of real-size star clusters
- based on Monte Carlo method (a few simplifications in comparison to N-body codes, e.g. one radial position)
- agrees very well with N-body codes (Wang et al. 2016)
- provides almost as much details about stars as N-body codes
- simulating the real clusters (M22, M4, 47Tuc etc.)
- exotic objects: blue stragglers, IMBHs, CVs...
- "observations" of simulations vs. real observations (COCOA)
- MOCCA can now handle dynamical evolution of multiple population
- very fast, which allows to test whole range of possible initial conditions (MOCCA-SURVEYs)
- data analysis with BEANS

BEANS code

E Q Dashboard		4 <mark>9</mark> X	==
ashboard			
1982 Datasets More Info	39966 Tables More info		
184 Notebooks More info	26 Users More info		
Notebooks	Search		۹
Name		Last edit	
Checking if we have 9, 10 types of kicks for BH-BH binaries in interactions		2023-08-22 17:38	
WDs - Survey 5		2023-08-13 21:23	
Searching for cases when in inter-binevol a binary get > 1.e^10 values		2023-08-07 15:15	

• interactive, distributed data analysis

- web-based
- open source
- data analysis in a form of notebooks (like Jupyter)
- Apache Pig (Apache Hadoop)
- connectors to MOCCA, NBODY codes
- Python, AWK, Gaia plugins
- access to all simulations from all different mocca-survey from BEANS
- motivation: ML plugin

Figure 4: http://BEANScode.net

BEANS code

Figure 5: BEANS example notebook (computing histories for all WDs from all MOCCA simulations).

MOCCA-SURVEYs (Survey1, Survey2, and more models in progress

Figure 6: Grid of all MOCCA models from different MOCCA-SURVEY. All accessible from BEANS (http://beans.moccacode.net/)

Milky Way coverage of initial conditions (mocca-survey-2)

Figure 7: MOCCA simulation r_c , and r_{hl} coverage of Milky Way GCs. MOCCA simulations cover proper ranges of values of Milky Way GCs – it gives some confidence that the results of our work are well representing Milky Way GCs

Machine learning plugin for **BEANS**

Core collapse excess of blue stragglers number – 1 Gyr

Figure 8: Core collapse vs. dynamical blue straggler excess

Core collapse excess of blue stragglers number – 3 Gyr

Figure 9: Core collapse vs. dynamical blue straggler excess

Core collapse excess of blue stragglers number - 6 Gyr

Figure 10: Core collapse vs. dynamical blue straggler excess

Core collapse excess of blue stragglers number – 11 Gyr

Figure 11: Core collapse vs. dynamical blue straggler excess

Figure 12: Dynamical BSSs to evolution BSSs fractions function of the half-mass relaxation time

- MOCCA simulations divided into two groups: more massive clusters (green points, $> 100 k M_{\odot}$), and less massive clusters (red points, $< 100 k M_{\odot}$
- low and high mass GCs have clearly different slopes for the excess of dynamical BSSs
- motivation 1: ML to find the core collapse automatically

BEANS ML plugin

BEANS refease	= Q Machine learning tests 🖓 🔅 🗰		
🧐 arkadiusz@hypki.net	x ¥ ↑ ↓ 00 +- 8- +-		
🗿 Dashboard	Predicting core collapse for one Survey1 mocca simulation		
📒 Notebooks 🗸 🗸	Training table(s)		
	Data from datasets from Tables		
	mach train		
📾 Datasets 🛛 <	Column names for training (separated by comma)		
👀 Extras 🖌 🤇	tphys, smt, r1, rchut2, rhob, vc		
🚍 Account 🔍 <	collapsed		
NOTEBOOK	Test table(s)		
	Data from datasets from Tables		
• View <	machine system d8cb7		
	Column names for testing should be the same as for learning and should exist in the test tables		
	Output table		
	Output table name with predictions		
	collapsed predicted full system survey1		
	Column name with predictions		
	collapsedpred		

- ML plugin added to BEANS
 - now we have access to our > 2000 MOCCA simulations
- currently we are using SCIKIT-LEARN
 - e.g. Random Forest Classifier
 - APACHE MAHOUT in plans
- one can easily define which column to use for learning which helps non-technical users
- the output are immediately accessible in BEANS for further analysis

Figure 13: BEANS ML plugin

Finding the core collapse time - 1. Using ML for predictions

Figure 14: Finding core collapse in automatic/ML way

2. Computing cumulative distributions for predictions

Figure 15: Apache Pig computes cumulative distributions for all MOCCA simulations for collapsed and not collapsed points.

2. Computing cumulative distributions for predictions

Figure 16: Cumulative plots showing collapsed and not collapsed parts for one MOCCA simulation. The core collapse is when not collapsed closes to 1.0, and not collapsed is still small.

Figure 17: Core collapsed time found by ML

ML accuracy

Figure 18: Qualitative ML accuracy for predicting core collapse for a few MOCCA simulations 21

Current step – testing different classifiers

Nearest Neighbors 'n_neighbors': 3: accuracy=68.59% precision=37.56% recall=49.07% train_time=18.12333s predict_time=528.67222s

Decision Tree 'max_depth': 10: accuracy=67.49% precision=35.26% recall=44.43% train_time=18.15583s predict_time=0.11338s

Random Forest 'max_depth': 10, 'max_features': 'sqrt', 'n_estimators': 10: accuracy=67.97% precision=36.28% recall=46.44% train_time=102.94294s predict_time=1.12742s

Naive Bayes 'var_smoothing': 1e-07: accuracy=95.29% precision=90.63% recall=89.36% train_time=0.99014s predict_time=0.31822s

QDA 'reg_param': 0.0: accuracy=85.84% precision=79.14% recall=54.67% train_time=2.08210s predict_time=0.48526s

Gradient Boosting 'learning_rate': 0.01, 'n_estimators': 50: accuracy=67.49% precision=35.26% recall=44.43% train_time=1294.12376s predict_time=2.26932s

- check different GCs parameters (or subset of them) to asses whether the predictions would be equally good
- check other ML classifiers:
 - Nearest Neighbors, Decision Tree, Random Forest (different params), Naive Bayes, QDA, Gradient Boosting
- future: use ML to predict CC, nCC, IMBH-GC, BHs-GC clusters

Conclusions

Figure 19: MOCCA, AMU, NCN

- core collapse in GCs does increases the number of blue stragglers
- BEANS it is a nice cool toy which allow us to do the full data analysis (+ML) on TBs of data from one place
- machine learning is unbelievable powerful
 - machine learning can automatize many efforts really easily
 - it can be actually easy applied

Arkadiusz Hypki — ahypki@amu.edu.pl — MOCCAcode.net — BEANScode.net