

Spin-orbit coupling in QCD

Yoshitaka Hatta

BNL/RIKEN BNL

2404.04208; 2404.04209 with Shohini Bhattacharya, Renaud Boussarie,

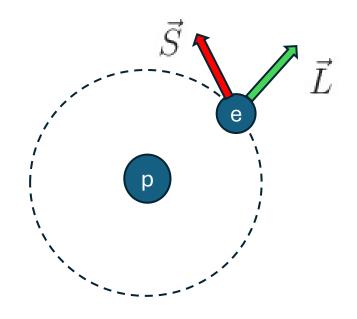
2404.18872 with Jakob Schoenleber

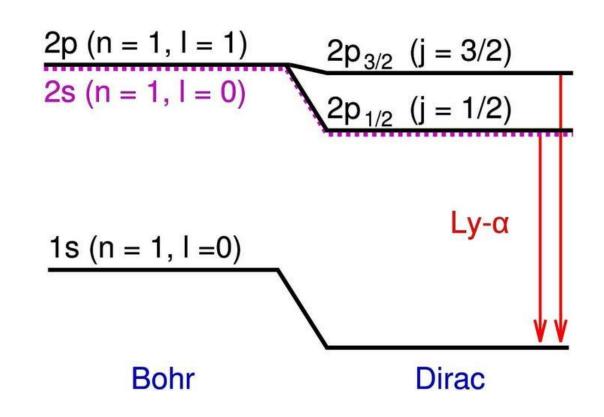
2410.16082 with Jake Montgomery

2505.xxxxx with Sanjin Benic

Spin-orbit coupling in atoms

$$V = -\frac{\mu_B e}{mc^2 r^3} \vec{S} \cdot \vec{L}$$





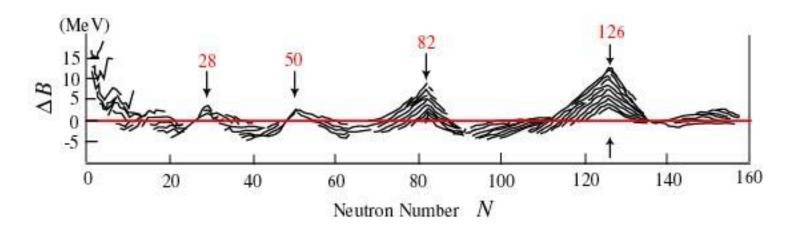
 $\vec{\mu} \cdot \vec{B}$ in the electron rest frame + relativistic effects contributes to the fine structure of atoms

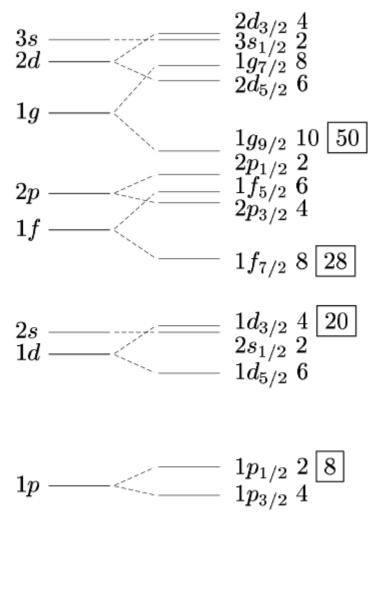
Spin-orbit coupling in nuclei

In the nuclear shell model, nucleons orbiting inside a nucleus feel a spin-orbit force

Strong spin-orbit coupling → magic numbers

Mayer & Jensen Nobel prize (1963)





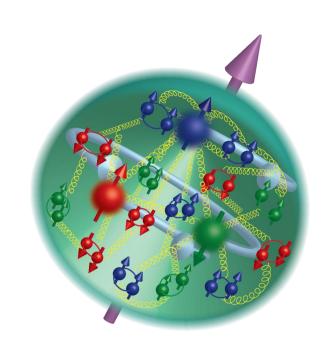
$$1s - 1s_{1/2} 2 \boxed{2}$$

Spin-orbit coupling in nucleons?

Quarks and gluons carry spin and OAM. Naturally there is spin-orbit coupling

- The number of quarks and gluons indefinite
 Gluon spin and OAM need to be carefully defined
- → Go to infinite momentum frame
- → Gauge invariant canonical OAM

$$\frac{1}{2} \ = \ \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g$$
 spin spin orbit orbit



Consider the product S^zL^z , an analog of $ec{S}\cdotec{L}$ in nonrelativistic systems

Quark spin-orbit correlation

Polarized quark GTMD

Meissner, Metz, Schlegel (2008)

$$\tilde{f}_{q}(x,\xi,k_{\perp},\Delta_{\perp}) = \int \frac{d^{3}z}{2(2\pi)^{3}} e^{ixP^{+}z^{-}-ik_{\perp}\cdot z_{\perp}} \langle p's'|\bar{q}(-z/2)W_{\pm}\gamma^{+}\gamma_{5}q(z/2)|ps\rangle
= \frac{-i}{2M}\bar{u}(p's') \left[\frac{\epsilon_{ij}k_{\perp}^{i}\Delta_{\perp}^{j}}{M^{2}}G_{1,1}^{q} + \frac{\sigma^{i+}\gamma_{5}}{P^{+}}(k_{\perp}^{i}G_{1,2}^{q} + \Delta_{\perp}^{i}G_{1,3}^{q}) + \sigma^{+-}\gamma_{5}G_{1,4}^{q}\right] u(ps)$$

Quark spin-orbit correlation

$$C_q(x) = \int d^2k_\perp \frac{k_\perp^2}{M^2} G_{1,1}^q(x,k_\perp,0) \ \sim \left\langle S^z L^z \right\rangle \qquad \text{Lorce, Pasquini (2011)}$$

 $C_q>0\,$ if helicity and OAM are aligned, $\,C_q<0\,$ if they are anti-aligned

Nonvanishing even when the parent hadron is unpolarized/spinless

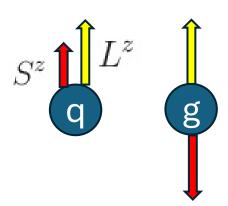
Gluon spin-orbit correlation

Polarized gluon GTMD

$$x\tilde{f}_{g}(x,\xi,k_{\perp},\Delta_{\perp}) = i \int \frac{d^{3}z}{(2\pi)^{3}P^{+}} e^{ixP^{+}z^{-}-ik_{\perp}\cdot z_{\perp}} \langle p'|\tilde{F}^{+\mu}(-z/2)\widetilde{W}_{\pm}F^{+}_{\mu}(z/2)|p\rangle$$

$$= \frac{-i}{2M}\bar{u}(p') \left[\frac{\epsilon_{ij}k^{i}\Delta^{j}}{M^{2}}G^{g}_{1,1} + \frac{\sigma^{i+}\gamma_{5}}{P^{+}}(k^{i}G^{g}_{1,2} + \Delta^{i}G^{g}_{1,3}) + \sigma^{+-}\gamma_{5}G^{g}_{1,4} \right] u(p)$$

$$xC_g(x) = \int d^2k_{\perp} \frac{k_{\perp}^2}{M^2} G_{1,1}^g(x, k_{\perp}, 0)$$



$$C_g(x)$$
 is odd. The first moment vanishes $\int dx C_g(x) = 0$

Orbital angular momentum and spin-orbit correlation

unpol Wigner

polarized Wigner

$$L_q(x) = \int dk_{\perp} db_{\perp} b_{\perp} \times k_{\perp} f_q(x, k_{\perp}, b_{\perp}) \qquad C_q(x) = \int dk_{\perp} db_{\perp} b_{\perp} \times k_{\perp} \tilde{f}_q(x, k_{\perp}, b_{\perp})$$

$$C_q(x) = \int dk_{\perp}db_{\perp}b_{\perp} \times k_{\perp}\tilde{f}_q(x,k_{\perp},b_{\perp})$$

 γ_5 rotation

$$L_q(x) = x \int_x^{\epsilon(x)} \frac{dx'}{x'} (H_q(x') + E_q(x')) - x \int_x^{\epsilon(x)} \frac{dx'}{x'^2} \tilde{H}_q(x') \qquad \text{Wandzura-Wilczek part}$$

$$-x \int_x^{\epsilon(x)} dx_1 \int_{-1}^1 dx_2 \Phi_F(x_1, x_2) \mathcal{P} \frac{3x_1 - x_2}{x_1^2 (x_1 - x_2)^2}$$

$$-x \int_x^{\epsilon(x)} dx_1 \int_{-1}^1 dx_2 \tilde{\Phi}_F(x_1, x_2) \mathcal{P} \frac{1}{x_1^2 (x_1 - x_2)}.$$
 genuine twist-3

YH, Yoshida (2012)

genuine twist-3

Twist structure of spin-orbit correlation

$$C_{q}(x) = x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} x' \Delta q(x') - x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} q(x')$$

$$-x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} \frac{\Psi_{qF}(x_{1}, x_{2})}{x_{1} - x_{2}} P \frac{3x_{1} - x_{2}}{x_{1}^{2}(x_{1} - x_{2})}$$

$$-x \int_{x}^{\epsilon(x)} dx_{1} \int_{-1}^{1} dx_{2} \tilde{\Psi}_{qF}(x_{1}, x_{2}) P \frac{1}{x_{1}^{2}(x_{1} - x_{2})},$$

YH, Schoenleber (2024)

See also, Rajan, Engelhardt, Liuti (2018)

$$C_{g}(x) = x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} x' \Delta G(x') - 2x \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{2}} G(x') - 4x \sum_{q} \int_{x}^{\epsilon(x)} \frac{dx'}{x'^{3}} \int dX \tilde{\Psi}_{qF}(X, x')$$

$$+4x \int_{x}^{\epsilon(x)} dx_{1} \int dx_{2} P \frac{\tilde{N}_{F}(x_{1}, x_{2})}{x_{1}^{3}(x_{1} - x_{2})} + 4x \int_{x}^{\epsilon(x)} dx_{1} \int dx_{2} \frac{N_{F}(x_{1}, x_{2})}{x_{1}^{3}(x_{1} - x_{2})} P \frac{2x_{1} - x_{2}}{x_{1} - x_{2}}$$

Unexpected connection to $g_T(x)$

$$C_q(x) = \underbrace{\tilde{g}^q(x)}_2 - x \int_x^{\epsilon(x)} \frac{dx'}{x'^2} q(x') + \cdots$$

$$\mathbf{g}_T^q(x) = -\frac{1}{2x} \underbrace{\tilde{g}^q(x)}_2 - \frac{1}{2x} \int dx' \frac{\tilde{G}_{Fq}(x,x') + G_{Fq}(x,x')}{x - x'} + \frac{m_q}{M} \frac{h_1^q(x)}{x}$$

`kinematical twist-3 part' of the $g_T(x)$ distribution

2 spin sum rules, 1 momentum sum rule?

$$\frac{1}{2} = \frac{1}{2} \sum_{\sigma} (A_{q+\bar{q}} + B_{q+\bar{q}}) + \frac{1}{2} (A_g + B_g)$$
 Ji (1996)
$$= \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g$$
 Jaffe, Manohar (1990)

Momentum

$$1 = \sum_{q} A_{q+\bar{q}} + A_g$$
 Feynman (1969)

2 spin sum rules, 1 momentum sum rule?

$$\frac{1}{2} = \frac{1}{2} \sum_{\sigma} (A_{q+\bar{q}} + B_{q+\bar{q}}) + \frac{1}{2} (A_g + B_g)$$
 Ji (1996)
$$= \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g$$
 Jaffe, Manohar (1990)

Momentum

$$1 = \sum_{q} A_{q+\bar{q}} + A_g \qquad \text{Feynman (1969)}$$

Momentum version of Jaffe-Manohar

$$= -3C_q^{(2)} - \frac{3}{2}C_g^{(2)} + \frac{3}{2}\int_{-1}^1 dx dx' \left[\Lambda_q(x, x') + \frac{2x\tilde{\Lambda}_q(x, x') + \tilde{\Lambda}_G(x, x')}{x - x'} \right]$$

YH, Schoenleber (2024)

Physical meaning of the new momentum sum rule

YH, Schoenleber (2024)

$$1 = -3C_q^{(2)} - \frac{3}{2}C_g^{(2)} + \frac{3}{2}\int_{-1}^1 dx dx' \left[\Lambda_q(x,x') + \frac{2x\tilde{\Lambda}_q(x,x') + \tilde{\Lambda}_G(x,x')}{x - x'}\right]$$
 kinetic energy

$$\langle p'|\bar{q}\gamma^+F^{+i}q|p\rangle \approx i\Delta^i \int dx dx' \Lambda_q(x,x')$$

Transverse force & potential

$$F_a^{+i} = \frac{1}{\sqrt{2}} (\vec{E} + \vec{v} \times \vec{B})_a^i$$

color Lorentz force

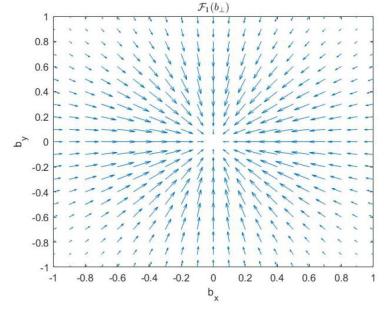
Burkardt (2008)

dual color Lorentz force

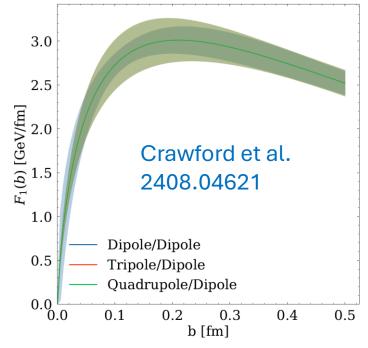
 $\tilde{F}_a^{+i} = -\frac{1}{\sqrt{2}} (\vec{B} - \vec{v} \times \vec{E})_a^i$

Force → gradient of a potential

orce ${\cal F}_q^i(b_\perp) \equiv -rac{\partial}{\partial b^i} V_q(b_\perp)$



Aslan, Burkardt, Schlegel (2019)



$$\frac{3}{2} \int dx dx' \Lambda_q(x, x') = \int d^2 b_{\perp} V_q(b_{\perp})$$

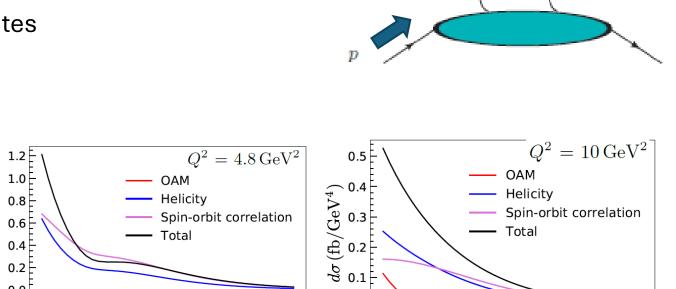
Measuring spin-orbit correlation at the EIC

Longitudinal double spin asymmetry in diffractive dijets → signal of gluon OAM

> Bhattacharya, Boussarie, YH (2022); Kovchegov, Manley (2024)

Gluon spin-orbit correlation also contributes

Bhattacharya, Boussarie, YH, (2024)

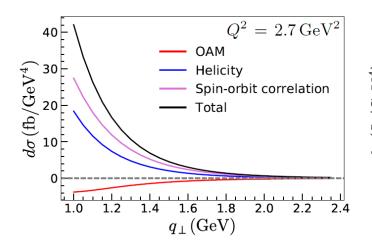


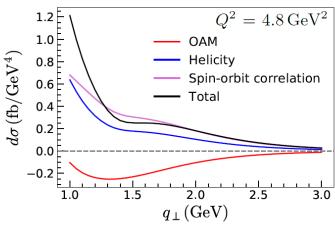
0.0

1.0

 $q_{\perp} ({\rm GeV})$

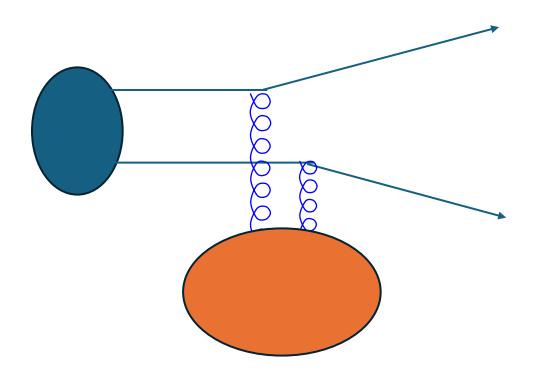
3.0





Directed flow v_1 in pp and pA from spin-orbit coupling

Benic, YH, to appear



$$\frac{dN}{d\phi_1 d\phi_2} \sim \cos(\phi_1 - \phi_2)$$

Double helicity parton distribution in the projectile $\langle P|\bar{\psi}\gamma^+\gamma_5\psi\bar{\psi}\gamma^+\gamma_5\psi|P\rangle$

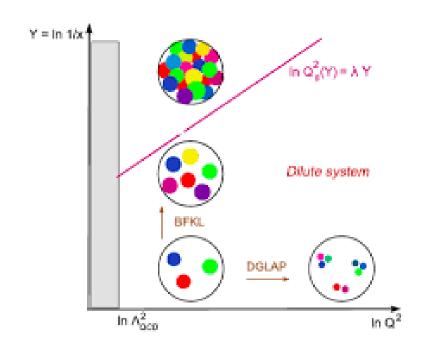
$$(\vec{k}_1 \times \vec{b}_1)(\vec{k}_2 \times \vec{b}_2) \rightarrow \vec{k}_1 \cdot \vec{k}_2$$

Previously v1 was shown to arise from QCD Odderon

Boer, van Daal, Mulders, Petreska (2018)

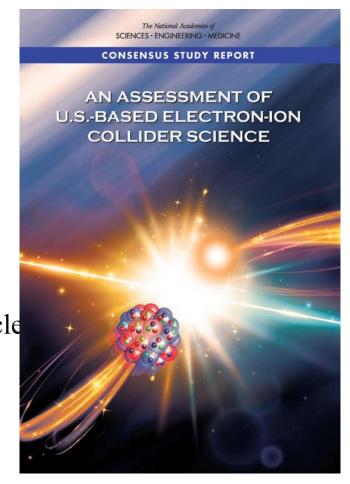
Spin-orbit coupling at small-x

Gluon saturation at small-x: one of the core topics of EIC



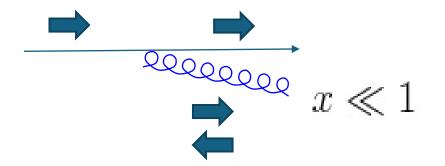
Finding 1: An EIC can uniquely address three profound questions about nucle protons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?



Intuitive argument

Imagine a very energetic quark emits a soft gluon



Quark spin and momentum (and OAM) unchanged.

From angular momentum conservation, the total angular momentum of the emitted gluon must be zero

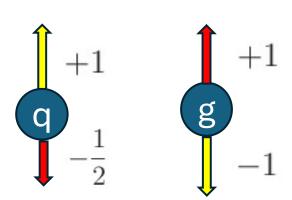
$$(s^z, l^z) = (\pm 1, \mp 1)$$

Imagine the emitted soft gluon further splits into a $\,qar{q}\,$ pair

$$(s^z,l^z)=(1,-1) \qquad \qquad \left(\frac{1}{2},-1\right) \qquad \text{Same handedness, same OAM}$$

Helicity and OAM are always in opposite directions

Remarkably, only $L^z=\pm 1$ states appear in this argument



Semi-classical calculation at small-x

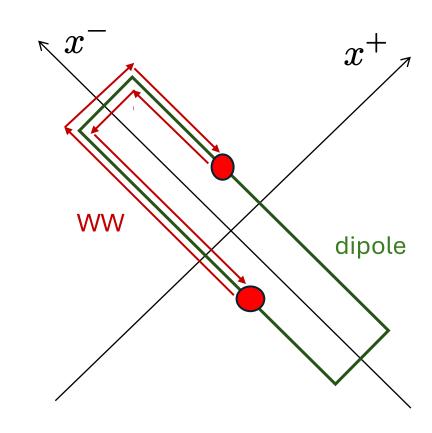
$$\frac{i}{x} \int \frac{d^3z}{(2\pi)^3 P^+} e^{ixP^+z^- - ik_\perp \cdot z_\perp} \langle p' | 2\text{Tr}[W_+ \tilde{F}^{+\mu}(-z/2) W_\pm F_\mu^+(z/2)] | p \rangle = -i \frac{\epsilon_{ij} k_\perp^i \Delta_\perp^j}{M^2} C_g^{[+\pm]}(x, \xi, k_\perp, \Delta_\perp),$$

There are two inequivalent configurations of Wilson lines

Weiszacker-Williams type Dipole type

Bomhof, Mulders, Pijlman (2006) Dominguez, Marquet, Xiao, Yuan (2011)

Approximate $e^{ixP^+z^-} \approx 1$ (eikonal approximation)



Dipole gluon

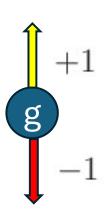
$$\frac{xC_g^{\text{dip}}(x,k_{\perp})}{M^2} = -\frac{2N_c}{\alpha_s} \int \frac{d^2w_{\perp}d^2z_{\perp}}{(2\pi)^4} e^{-ik_{\perp}\cdot(z_{\perp}-w_{\perp})} \frac{\langle p|\frac{1}{N_c}\text{Tr}U(w_{\perp})U^{\dagger}(z_{\perp})-1|p\rangle}{\langle p|p\rangle}$$

cf. Boer, van Daal, Mulders, Petreska (2018)

WW gluon

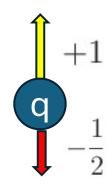
$$k_{\perp}^{2} \frac{C_{g}^{WW}(x, k_{\perp})}{M^{2}} = -f_{g}^{WW}(x, k_{\perp}) - \frac{C_{F}}{\pi \alpha_{s} x} \int \frac{d^{2}b_{\perp} d^{2}r_{\perp}}{(2\pi)^{3}} e^{-ik_{\perp} \cdot r_{\perp}} \partial_{i}^{r} D(r_{\perp}) \partial_{i}^{r} \left(\frac{1 - e^{\frac{N_{c}}{C_{F}}D(r_{\perp})}}{D(r_{\perp})} \right)$$

$$C_g^{\mathrm{dip}}(x) = C_g^{\mathrm{WW}}(x) = -G(x)$$



$$-1 \times 1 = -1$$
 times the number of gluons

Quark spin-orbit coupling at small-x

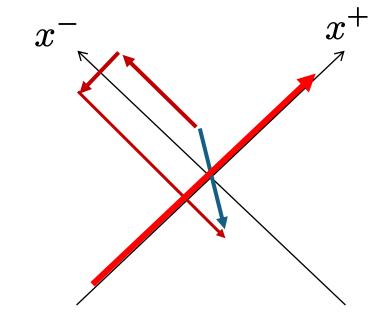


$$\int \frac{d^3z}{2(2\pi)^3} e^{ixP^+z^- - ik_{\perp} \cdot z_{\perp}} \langle p' | \bar{\psi}(-z/2) \gamma^+ \gamma_5 W_{\pm} \psi(z/2) | p \rangle = -i \frac{\epsilon_{ij} k_{\perp}^i \Delta_{\perp}^j}{M^2} C_q(x, \xi, k_{\perp}, \Delta_{\perp})$$

$$\frac{C_q(x, k_{\perp})}{M^2} = \frac{N_c S_{\perp}}{8\pi^4 x k_{\perp}^2} \int d^2 k_{g\perp} (k_{\perp} - k_{g\perp}) \cdot k_{\perp} \frac{\ln \frac{k_{\perp}^2}{(k_{\perp} - k_{g\perp})^2}}{k_{\perp}^2 - (k_{\perp} - k_{g\perp})^2} \frac{\langle p | \left(\frac{1}{N_c} \text{Tr} U U^{\dagger} - 1\right) (k_{g\perp}) | p \rangle}{\langle p | p \rangle}$$

$$C_q(x) = -\frac{1}{2}q(x)$$

$$-\frac{1}{2} \times 1 = -\frac{1}{2}$$
 times the number of quarks



Quantum entanglement of spin and OAM

Bhattacharya, Boussarie, YH (2024)

$$s^z=\pm 1$$
 qubit (Alice) $l^z=\pm 1$ qubit (Bob)

Perfect spin-orbit anti-correlation at small-x -> `Bell states'

$$|\Psi^{+}\rangle = \frac{1}{\sqrt{2}} (|+\rangle_{s}|-\rangle_{l} + |-\rangle_{s}|+\rangle_{l}), \qquad |\Psi^{-}\rangle = \frac{1}{\sqrt{2}i} (|+\rangle_{s}|-\rangle_{l} - |-\rangle_{s}|+\rangle_{l})$$

Every single quark and gluon at small-x is a maximally entangled Bell state

$$\langle S^z \rangle = \langle L^z \rangle = 0$$
 but $\langle S^z L^z \rangle = -1$

True nature of the system encoded in correlations

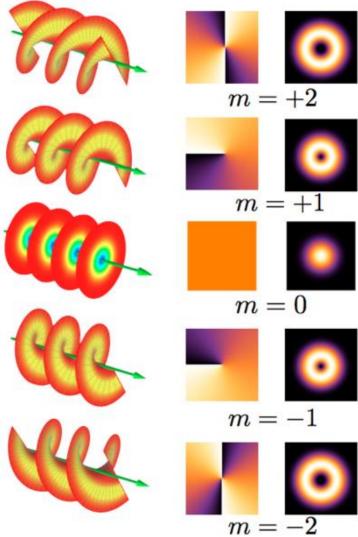
QED example

Photon OAM

$$|\pm\rangle_l \sim e^{\pm i\phi}$$

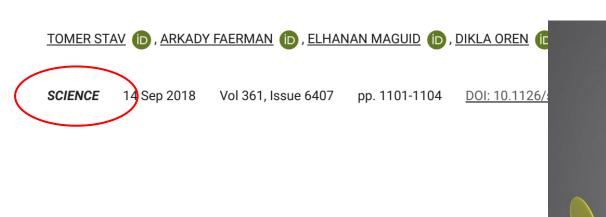
e.g., Laguerre-Gaussian beam

$$|\Psi^{+}\rangle \sim (1,i)e^{-i\phi} + (1,-i)e^{i\phi} \sim (\cos\phi,\sin\phi)$$



$$|\Psi^{-}\rangle \sim -i\left((1,i)e^{-i\phi} - (1,-i)e^{i\phi}\right) \sim (-\sin\phi,\cos\phi)$$

Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials



Abstract

Metamaterials constructed from deep subwavelen phenomena ranging from negative refractive inde

eral relativity, and superresolution imaging. More recently, metamaterials have been suggested as a new platform for quantum optics. We present the use of a dielectric metasurface to generate entanglement between the spin and orbital angular momentum of photons. We demonstrate the genera-

In QCD, maximal entanglement is a default property of soft partons!

Extension to arbitrary 0 < x < 1

Bell states in the limit $x \to 0$, both quarks and gluons

$$|\Phi\rangle \approx |\Phi_{\pm}\rangle = \frac{1}{\sqrt{2}} \Big(|+\rangle|-1\rangle \pm |-\rangle|1\rangle \Big)$$

What happens when $x = \mathcal{O}(1)$?

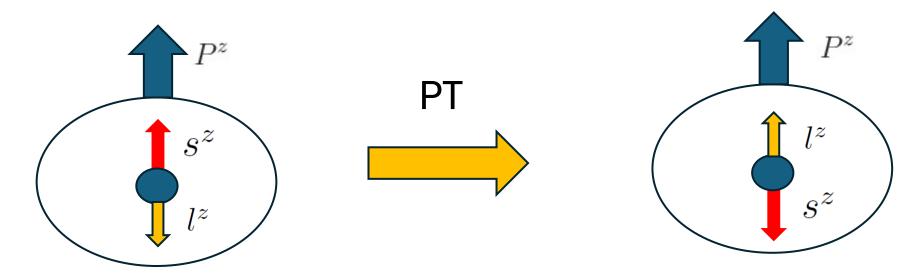
One can no longer argue that only $l^z=\pm 1$ are relevant

qubit
$$l^z=\pm 1$$
 qudit $l^z=0,\pm 1,\pm 2,\cdots$

$$|\Phi\rangle = |+\rangle \{a_1|1\rangle + a_0|0\rangle + a_{-1}|-1\rangle + \cdots \} + |-\rangle \{b_1|1\rangle + b_0|0\rangle + b_{-1}|-1\rangle + \cdots \}$$

Parton as an entangled system of a qubit and a qudit

Parity & time-reversal

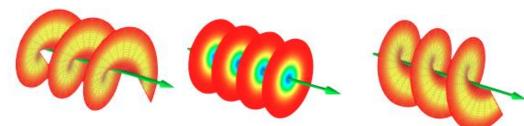


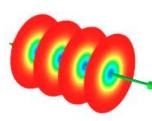
$$|\Phi\rangle = |+\rangle \{a_1|1\rangle + a_0|0\rangle + a_{-1}|-1\rangle + \cdots \} + |-\rangle \{b_1|1\rangle + b_0|0\rangle + b_{-1}|-1\rangle + \cdots \}$$

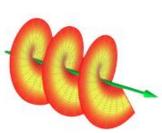
$$PT|\Phi\rangle = e^{i\varphi}|\Phi\rangle$$
 $b_l = e^{-i\varphi}(-1)^l a_{-l}^*$

Caveat: The argument works only for gluons, not quarks (Kramers degeneracy)

Qutrit







Restrict to
$$l^z=0,\pm 1,\pm 2,\cdots$$

$$l^z = 1 \qquad l^z = 0$$

$$l^z = 0$$

$$l^{z} = -1$$

$$|l^z| \sim |\vec{k} \times \vec{b}| \sim 1$$
 $|\vec{k}| \lesssim \Lambda_{QCD} \sim 200 \text{ MeV}$

$$|\vec{k}| \lesssim \Lambda_{QCD} \sim 200 \text{ MeV}$$

$$|\vec{b}| \lesssim 1 \text{ fm}$$

$$|\Phi\rangle = |+\rangle \{a_1|1\rangle + a_0|0\rangle + a_{-1}|-1\rangle + \cdots \} + |-\rangle \{b_1|1\rangle + b_0|0\rangle + b_{-1}|-1\rangle + \cdots \}$$

$$|a_1|^2 + |a_0|^2 + |a_{-1}|^2 = \frac{1}{2}$$
 $\langle S^z L^z \rangle \sim C_g(x)$

$$\langle S^z L^z \rangle \sim C_g(x)$$

Maximal entanglement

Want to determine $(a_1,a_0,a_{-1},b_1,b_0,b_{-1})$ as a function of `time' $\,\mathscr{X}\,$

Most general evolution of a qubit-qutrit system \rightarrow U(6)

PT & norm conservation

$$|a_1|^2 + |a_0|^2 + |a_{-1}|^2 = \frac{1}{2}$$
 \rightarrow U(3) x U(2)

Local unitary transformation conserves entanglement entropy

Maximally entangled when $x \to 0$ \rightarrow Maximally entangled for any 0 < x < 1

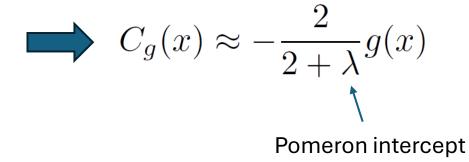
OAM conditional probability

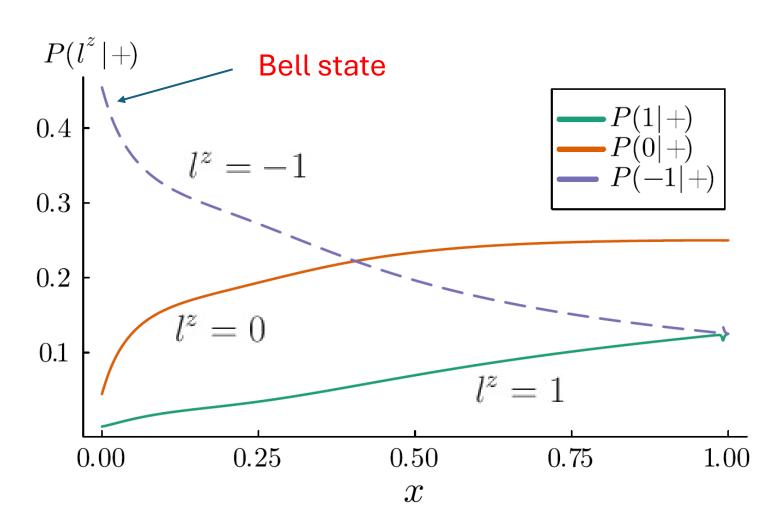
Gedanken experiment: Pick a gluon with $s^z = 1$.

What are the probabilities that different values of ℓ^z are realized?

$$C_g(x) \approx -2x \int_x^1 \frac{dz}{z^2} g(z)$$

$$g(x) \propto \frac{1}{x^{1+\lambda}}$$





Conclusions

Spin-orbit coupling: ubiquitous phenomena in atomic physics, chemistry, and QCD

New momentum sum rule: momentum version of Jaffe-Manohar

New QCD-QIS connection:

Maximal entanglement between spin and OAM quark: small-x

gluon: any x

Finding 1: An EIC can uniquely address three profound questions about nucleons-protons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?