Introduction to deep-inelastic scattering "Selected Topics" Warsaw, Poland

Richard Ruiz

Institute of Nuclear Physics - Polish Academy of Science (IFJ PAN)

18 September 2024

most important: these lectures are low-key; questions are great

I am literally here to tell you what I know

R RIII7 I	
I. I. UIZ (11 3 1 / (14)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lecture III:

- Pt1: modern motivation for deep-inelastic scattering
- Pt2: building a scattering formula for heavy nuclei
- Pt3: intuition and secrets
- Pt4: improving our scattering formula

Freedom at 15:30ish

Pt1. a bit of fun

R. Ruiz	(IFJ PAN)	
---------	-----------	--

a bit of motivation

R Run	7 /	
IX. IXIII.		

for the next 15+ years ('40s) we will be guided by high-energy, high-precision hadron-hadron collision data (ion-ion data, too!)

The high-luminosity program has a robust and exciting portfolio for Standard Model measurements and new physics searches

ongoing discussions on future programs at CERN (FCC!), e.g., European Strategy Update ('20); Snowmass ('21) [2209.14872];

new! SOI between USA and CERN "expresses intention by the United States to collaborate on FCC-ee" (April'24)

DD · · ·	

< ロ > < 同 > < 回 > < 回 > < 回 >

In the past few years, the LHC has been established as an intense (laboratory) source of TeV-scale ν (a remarkable expt. achievement!)

Candidate LHC neutrino event from FASER's pilot run

New programs (FASER, SND@LHC) now collecting ν -nucleus scattering data

ν fluxes from LHC (a) are large and (b) span 1-4 TeV in energy

Kling & Nevay (PRD'21)

Detectors at the the Forward Physics Facility, a proposed cavern alongside ATLAS, can see $O(10^6)$ TeV-scale ν DIS events [2203.05090]; Feb'24 meeting

CERN beyond the HL-LHC

Ongoing discussions on the future of CERN

- leading candidate is Future Circular Collider (FCC) program
- $-e^+e^-$ collisions $\rightarrow pp/p\mathcal{A}/\mathcal{A}\mathcal{A}$

European Strategy Update ('20), Snowmass ('21) [2209.14872]

9 / 82

3

イロト イポト イヨト イヨト

a more immediate future

	n · ·	D A A U
<u> </u>		DAN
		 FAIN

Continuous Electron Beam Accelerator Facility (CEBAF)

long-running e DIS program at Jefferson National Lab. in US

<u> </u>	D A A I
/	DAN
	 FAIN
· u · z · (

CEBAF outlook into '30s (possibly beyond)

Recap

	Present Design	Possible	Challenges
Luminosity increase	Hall A & C @11GeV Total < 85 μA (< 82 μA Each dump limit)	Hall A & C @11GeV Total < 140 μA (< 82 μA Each dump limit)	RF Beam LoadingDump CoolingBBU Instability
Positron option	Not Yet an Option	>100 nA Unpolarized Or >10 nA Polarized e+	 Target Design e+ Collection Beam dynamics, Injector and Main High Intensity e- Beam (~1 mA) Need Production Energy Choice and Design Gaining Experience
Energy increase	Up to 11 GeV to A, B, or C 12 GeV to D	20 – 24 GeV	 Scaling Up FFA Optics to Several GeVs Dump Cooling & Enviro. Evaluation Injector Energy increase ~ factor 4. BBU instability
The Future of CEBAF - Reza K	azimi (<i>DIS2022 May 3</i>)	23	Jefferson Lab

R. Ruiz (IFJ PAN)	Warsaw24	12 / 82	
-------------------	----------	---------	--

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

DUNE & Hyper-Kamiokande ('30s-ish-)

add +4ish years

DUNE and Hyper-K Timeline			
DUNE Hyper-K			
Cavern Excavation	2018 – 2020	2019 – 2024	
FD Construction	2022 – 2024	2024 – 2025	
FD Fill	2024 – 2025 (10+10kt V _A)	2025 – 2026 (187kt V _A)	
Data Taking	2025 (cosmic) / 2026 (v beam)	2026	
ND Ready	2027	In place	
July 9, 2018	HK& DUNE, Jae Yu	21	

R. Ruiz (IFJ PAN

14 / 82

(日)

Electron-Ion Collider

0 0	
IX. IXHIZ I	IL J FAN
· · · · · · · · · · · · · · · · · · ·	

・ロト・(型)・(目)・(目)・目・のへぐ

The EIC is a next-generation $\ell - A$ collider with first collisions in '30s

Reference Schedule toward CD-4

R. Ruiz (IFJ PAN

Warsaw24

16 / 82

・ロト・日本・ キャー キャーショー うくの

the big picture

	n · ·	
<u> </u>		$D \cap N \cap I$
		 FAIN

æ

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶ ○

bonanza of lepton-nucleus scattering data through '40s/'50s

possibly beyond

		D A A I Y
~	Runz I	PAND
	I VUIZ I	

3

イロト イポト イヨト イヨト

Several ν DIS and e^{\pm} DIS programs already collecting data:

- Fermilab (short-baseline ν)
- JLab (12 GeV CEBAF)
- CERN (FASER/SND experiments)

with more planned for '20s-'50s:

- BNL (EIC) \checkmark
- LBNF (dune) \checkmark
- CERN (Forward Physics Facility)

with various agendas:

- precision ν oscillations
- precision hadronic structure
- QCD at the extremes
- search for LFV
- search for feably coupled phys.

19 / 82

theory developments over next 5 years will impact day-1 physics

	n · ·	D A A U
<u> </u>		DAN
		 FAIN

Image: A match a ma

→ 문 ▶ 문

deep-inelastic scattering (DIS)

. Ruiz (IFJ PAN)

Warsaw24

21 / 82

3

イロト イポト イヨト イヨト

DIS scattering experiments are counting experiments:

- count # of candidate signal events, e.g., $1mu^{\pm} + X$ satisfying criteria
- estimate # of background events from data-driven control region
- calculate statistical significance

DIS scattering experiments are counting experiments:

- count # of candidate signal events, e.g., $1mu^{\pm} + X$ satisfying criteria
- estimate # of background events from data-driven control region
- calculate statistical significance

Theory needed to estimate number (and unc.) of signal and bkg events:

Generically, hard scattering of $\ell \in {\ell^{\pm}, \nu, \overline{\nu}}$ off **nucleons** well-described by **kinematic factor** (lepton bit) and "**structure functions**" (hadron bit)

R. Ruiz (IFJ PAN)	Warsaw24

23 / 82

Generically, hard scattering of $\ell \in {\ell^{\pm}, \nu, \overline{\nu}}$ off **nucleons** well-described by **kinematic factor** (lepton bit) and "**structure functions**" (hadron bit)

Pt2. building a scattering formula for nuclei

 $^{^{1}}$ for a more complete & pedagogical treatment, see appendices of RR, et al [Prog.Part.Nucl.Phys. 136 ('24) 104096]

R. Ruiz	(IFJ PAN

< ロ > < 同 > < 回 > < 回 > < 回 >

light cone dominance

starting point for DIS on *p* is stipulating kinematics. typically,

 $Q^2 = -q^2 > 0 \gg m_{
m proton}^2$ [proton case]

light cone dominance

starting point for DIS on p is stipulating kinematics. typically,

 $Q^2 = -q^2 > 0 \gg m_{
m proton}^2$ [proton case]

naïve application to 56 Fe or 197 Au would require

$$Q^2 \gg (50 \text{ GeV})^2 \sim \left(\frac{M_Z}{2}\right)^2$$
 or $(180 \text{ GeV})^2 \sim m_t^2$ [incorrect]

light cone dominance

starting point for DIS on p is stipulating kinematics. typically,

 $Q^2 = -q^2 > 0 \gg m_{
m proton}^2$ [proton case]

naïve application to 56 Fe or 197 Au would require

$$Q^2 \gg (50 \text{ GeV})^2 \sim \left(\frac{M_Z}{2}\right)^2$$
 or $(180 \text{ GeV})^2 \sim m_t^2$ [incorrect]

more precise statement

$$Q^2 \gg \Lambda_{
m non-pert.} \sim {\cal O}(1)~{
m GeV} \gg \Lambda_{
m QCD}^2 \sim m_q^2~[{
m general case}]$$

Bjorken scaling still works at moderate energies since $O(\Lambda_{\rm QCD}^2/Q^2) \ll 1$ Georgi, Politzer ('79); Muta ('98/'10)

R. Ruiz (IFJ PAN)	Warsaw24	25 / 82	

draw diagrams, currents, and build the matrix element

$$-i\mathcal{M}\begin{pmatrix} \nu_{\ell}(k_{1}) & \ell^{-}(k_{2}) \\ W^{*}(q) & \\ A(p_{A}) & \\ & & \\$$

Ξ.

イロト イポト イヨト イヨト

lepton and hadronic currents

matrix element:

$$\begin{aligned} -i\mathcal{M} &= \langle X\ell_2 | J^{\mu}_{\ell_2\ell_1}(0) \cdot \Delta^{V}_{\mu\sigma}(q) \cdot J^{\sigma}_{XA}(0) | A\ell_1 \rangle \\ &= \langle \ell_2 | J^{\mu}_{\ell_2\ell_1}(0) | \ell_1 \rangle \cdot \Delta^{V}_{\mu\sigma}(q) \cdot \langle X | J^{\sigma}_{XA}(0) | A \rangle \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

lepton and hadronic currents

matrix element:

$$\begin{aligned} -i\mathcal{M} &= \langle X \ell_2 | J^{\mu}_{\ell_2 \ell_1}(0) \cdot \Delta^{V}_{\mu \sigma}(q) \cdot J^{\sigma}_{XA}(0) | A \ell_1 \rangle \\ &= \langle \ell_2 | J^{\mu}_{\ell_2 \ell_1}(0) | \ell_1 \rangle \cdot \Delta^{V}_{\mu \sigma}(q) \cdot \langle X | J^{\sigma}_{XA}(0) | A \rangle \end{aligned}$$

lepton current:

$$L^{\mu} \equiv \langle \ell_2 | J^{\mu}_{\ell_2 \ell_1}(0) | \ell_1 \rangle = -i \tilde{g} \, \overline{u}(k_2, \lambda_2) \left[g^{\ell}_V \gamma^{\mu} + g^{\ell}_A \gamma^{\mu} \gamma^5 \right] u(k_1, \lambda_1)$$

3

・ロト ・ 四ト ・ ヨト ・ ヨト …

lepton and hadronic currents

matrix element:

$$\begin{aligned} -i\mathcal{M} &= \langle X \ell_2 | J^{\mu}_{\ell_2 \ell_1}(0) \cdot \Delta^{V}_{\mu \sigma}(q) \cdot J^{\sigma}_{XA}(0) | A \ell_1 \rangle \\ &= \langle \ell_2 | J^{\mu}_{\ell_2 \ell_1}(0) | \ell_1 \rangle \cdot \Delta^{V}_{\mu \sigma}(q) \cdot \langle X | J^{\sigma}_{XA}(0) | A \rangle \end{aligned}$$

lepton current:

$$L^{\mu} \equiv \langle \ell_2 | J^{\mu}_{\ell_2 \ell_1}(0) | \ell_1 \rangle = -i \tilde{g} \, \overline{u}(k_2, \lambda_2) \left[g^{\ell}_V \gamma^{\mu} + g^{\ell}_A \gamma^{\mu} \gamma^5 \right] u(k_1, \lambda_1)$$

hadronic current:

$$H^{A\sigma} \equiv \langle X | J^{\sigma}_{XA}(0) | A \rangle \equiv \overline{u}_X(p_X, \lambda_X)[\dots]^{\sigma} u(p_A, \lambda_A)$$

R. Ruiz (IFJ PAN)	Warsaw24	27 / 82	

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

squaring and summing over spins gives us $H_n^{\mu\nu}$ (exclusive, *n*-body)

$$\Sigma_{\text{spins}} \left| \mathcal{M} \left(\begin{array}{c} \nu_{\ell}(k_1) \\ W^*(q) \\ A(p_A) \\ & &$$

0 0	
- · · · · · · · · · · · · · ·	

28 / 82

(日)

n-body phase space integral *and* summing over *n* gives us $W^{\mu\nu}_{A}$

this step sometimes omitted in textbooks, e.g., Halzen & Martin

Summing over X_n ensures "inclusivity" and closure, $1 = \sum_n |X_n\rangle \langle X_n|$

R. Ruiz (IFJ PAN)	Warsaw24	29 / 82	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

DIS cross section (scattering rate) given by

$$\sigma(\ell_1 + A \to \ell_2 + X_n) = \int dP S_{n+1} \frac{d\sigma}{dP S_{n+1}} , \quad \text{with} \quad \frac{d\sigma}{dP S_{n+1}} = \frac{1}{\mathcal{F}} \frac{1}{S_{\ell_1} S_A} \sum_{\{\lambda\}} \sum_{\text{dof}} |\mathcal{M}|^2$$

Warsaw24

(日)
DIS cross section (scattering rate) given by

$$\sigma(\ell_1 + A \to \ell_2 + X_n) = \int dP S_{n+1} \frac{d\sigma}{dPS_{n+1}} , \quad \text{with} \quad \frac{d\sigma}{dPS_{n+1}} = \frac{1}{\mathcal{F}} \frac{1}{S_{\ell_1} S_A} \sum_{\{\lambda\}} \sum_{\text{dof}} |\mathcal{M}|^2$$

Inserting known quantities

$$k_2^0 \times \frac{d\sigma}{d^3 k_2} = \frac{1}{(16\pi^2)s} \frac{2}{S_{\ell_1} S_A} \frac{1}{(q^2 - M_V^2)^2} \left(\sum_{\{\lambda\}} L^{\mu\nu}\right) \cdot W^A_{\mu\nu}$$

n · ·	
IXIIIZ I	FAINT

DIS cross section (scattering rate) given by

$$\sigma(\ell_1 + A \to \ell_2 + X_n) = \int dP S_{n+1} \frac{d\sigma}{dPS_{n+1}} , \quad \text{with} \quad \frac{d\sigma}{dPS_{n+1}} = \frac{1}{\mathcal{F}} \frac{1}{S_{\ell_1} S_A} \sum_{\{\lambda\}} \sum_{\text{dof}} |\mathcal{M}|^2$$

Inserting known quantities

$$k_2^0 \times \frac{d\sigma}{d^3 k_2} = \frac{1}{(16\pi^2)s} \frac{2}{S_{\ell_1} S_A} \frac{1}{(q^2 - M_V^2)^2} \left(\sum_{\{\lambda\}} L^{\mu\nu}\right) \cdot W^A_{\mu\nu}$$

Leptonic currents (depend on exchange boson)

$$\sum_{\{\lambda\}} L^{\mu\nu} \Big|_{\text{QED}} = 4e^2 \left\{ k_1^{\mu} k_2^{\nu} + k_1^{\nu} k_2^{\mu} - (k_1 \cdot k_2) g^{\mu\nu} \right\}$$

$$\sum_{\{\lambda\}} L^{\mu\nu} \Big|_{W} = g_{W}^{2} \Big\{ k_{1}^{\mu} k_{2}^{\nu} + k_{1}^{\nu} k_{2}^{\mu} - (k_{1} \cdot k_{2}) g^{\mu\nu} + i k_{1\alpha} k_{2\beta} \epsilon^{\mu\nu\alpha\beta} \Big\}$$

R. Ruiz (IFJ PAN)

・ロト・日本・日本・日本・日本・今日・

DIS cross section (scattering rate)

$$k_2^0 \times \frac{d\sigma}{d^3 k_2} = \frac{1}{(16\pi^2)s} \frac{2}{S_{\ell_1} S_A} \frac{1}{(q^2 - M_V^2)^2} \left(\sum_{\{\lambda\}} L^{\mu\nu}\right) \cdot W^A_{\mu\nu}$$

Hadronic current is formally defined by²:

²Same as usual expression $W^{A}_{\mu\nu} = \frac{1}{4\pi} \int d^{4}z \ e^{iq \cdot z} \langle A|J^{\dagger}_{had,\mu}(z) \ J_{had,\nu}(0)|A\rangle$. See Eq. (A.22) and below of [2301.07715] $\langle \Box \rangle = \langle \Box \rangle =$ DIS cross section (scattering rate)

$$k_2^0 \times \frac{d\sigma}{d^3 k_2} = \frac{1}{(16\pi^2)s} \frac{2}{S_{\ell_1} S_A} \frac{1}{(q^2 - M_V^2)^2} \left(\sum_{\{\lambda\}} L^{\mu\nu}\right) \cdot W^A_{\mu\nu}$$

Hadronic current is formally defined by²:

$$W_{\mu\nu}^{A} = \frac{1}{4\pi} \sum_{\substack{n=1\\ \text{sum over n}}}^{\infty} \int dPS_{n} \sum_{\text{dof}} \underbrace{H_{\mu\nu\ n}^{A}}_{\text{matrix for n hadrons}} \\ = -g_{\mu\nu} F_{1}^{A} + \frac{p_{A\mu}p_{A\nu}}{Q^{2}} 2x_{A} F_{2}^{A} - i\epsilon_{\mu\nu\rho\sigma} \frac{p_{A}^{\rho}q^{\sigma}}{Q^{2}} x_{A} F_{3}^{A} \\ + \frac{q_{\mu}q_{\nu}}{Q^{2}} 2F_{4}^{A} + \frac{p_{A\mu}q_{\nu} + p_{A\nu}q_{\mu}}{Q^{2}} 2x_{A} F_{5}^{A} + \frac{p_{A\mu}q_{\nu} - p_{A\nu}q_{\mu}}{Q^{2}} 2x_{A} F_{6}^{A}$$

 $\frac{1}{2} \text{Same as usual expression } W^{A}_{\mu\nu} = \frac{1}{4\pi} \int d^{4}z \ e^{iq \cdot z} \langle A | J^{\dagger}_{had,\mu}(z) \ J_{had,\nu}(0) | A \rangle. \text{ See Eq. (A.22) and below of [2301.07715]} \\ < \Box \succ \langle \Box \rangle \langle \Box \rangle \langle \Delta \rangle$

R. Ruiz (IFJ PAN)	Warsaw24	31 / 82
-------------------	----------	---------

point #1: $W^{A}_{\mu\nu}$ has at most six unknown components $(4 \times 4) = 1 + \frac{1}{2} + \frac{4}{4} + \frac{6}{6}$

³ parton model says $F_i = \sum f_{j/p}$; see Collins ('11) for nice discussion on this!

⁴ see Sterman [hep-ph/9606312] and see Collins ('11) for nice discussions! $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \rangle$

R. Ruiz (IFJ PAN

point #1: $W_{\mu\nu}^A$ has at most six unknown components $(4 \times 4) = 1 + \frac{1}{2} + \frac{4}{4} + \frac{6}{6}$

point #2: "structure functions" $F_i(x, Q^2)$ are well-defined experimentally

R. Ruiz (IFJ PAN

³parton model says $F_i = \sum f_{j/p}$; see Collins ('11) for nice discussion on this!

point #1: $W^A_{\mu\nu}$ has at most six unknown components $(4 \times 4) = 1 + \frac{1}{2} + \frac{4}{4} + \frac{6}{6}$

point #2: "structure functions" $F_i(x, Q^2)$ are well-defined experimentally

point #3: $F_i(x, Q^2)$ are independent of underlying theory³

³ parton model says $F_i = \sum f_{j/p}$; see Collins ('11) for nice discussion on this!

see Sterman [hep-ph/9606312] and see Collins ('11) for nice discussions! 🛛 🕻 🗆 ד 🚛 🕨 ද 🗄 ד 🛓 🖉 ඉලල

point #1: $W^{A}_{\mu\nu}$ has at most six unknown components $(4 \times 4) = 1 + 1 + 4 + 4 + 6$ **point #2:** "structure functions" $F_i(x, Q^2)$ are well-defined experimentally

point #3: $F_i(x, Q^2)$ are independent of underlying theory³

point #4: $W^{A}_{\mu\nu}$ is defined in the "DIS" limit:

$$x_{\mathcal{A}}=rac{Q^2}{2p_{\mathcal{A}}\cdot q}$$
 is fixed and $Q^2\gg \Lambda_{\mathrm{NP}}^2$, where $\Lambda_{\mathrm{NP}}\sim \mathcal{O}(1-2)~\mathrm{GeV}$

³ parton model says $F_i = \sum f_{j/p}$; see Collins ('11) for nice discussion on this!

see Sterman [hep-ph/9606312] and see Collins ('11) for nice discussions! 🛛 🕻 🗆 ד 🚛 🕨 ද 🗄 ד 🛓 🖉 ඉලල

point #1: $W^A_{\mu\nu}$ has at most six unknown components $(4 \times 4) = 1 + \frac{1}{2} + 4 + \frac{4}{4} + 6$ **point #2:** "structure functions" $F_i(x, Q^2)$ are well-defined experimentally **point #3:** $F_i(x, Q^2)$ are independent of underlying theory³

point #4: $W^{A}_{\mu\nu}$ is defined in the "DIS" limit:

$$x_{\cal A}=rac{Q^2}{2p_A\cdot q}$$
 is fixed and $Q^2\gg \Lambda_{
m NP}^2$, where $\Lambda_{
m NP}\sim {\cal O}(1-2)~{
m GeV}$

point #5: in practice, $F_{4,5,6}$ can be neglected, but not always⁴

$$W_{\mu\nu}^{A} = -g_{\mu\nu} F_{1}^{A}(x_{A}) + \frac{P_{A\mu}P_{A\nu}}{Q^{2}} 2x_{A} F_{2}^{A}(x_{A}) - \mathcal{O}(\mathcal{P}) x_{A}F_{3}^{A}(x_{A}) + \mathcal{O}\left(\frac{m_{\nu}^{2},m_{\ell}^{2}}{Q^{2}}\right) 2F_{4}^{A}(x_{A}) + \mathcal{O}\left(\frac{m_{\nu}^{2},m_{\ell}^{2}}{Q^{2}}\right) 2x_{A} F_{5}^{A}(x_{A}) + \mathcal{O}(\mathcal{CP}) 2x_{A} F_{6}^{A}(x_{A})$$

³ parton model says $F_i = \sum f_{j/p}$; see Collins ('11) for nice discussion on this!

⁴ see Sterman [hep-ph/9606312] and see Collins ('11) for nice discussions! (ロト イラト イヨト イヨト ヨー つへで

R. Ruiz (IFJ PAN

32 / 82

what is next?

	- A A I	
- 1	D/1 NI	
	 FAIN	
- 1	 	

・ロト・西ト・ヨト・ヨー うへの

building structure functions

To build **structure functions**, follow Georgi & Politzer ('76,'76) with guidance from "modern" literature:

- O Get coffee √
- 2 Build inclusive, had. tensor in DIS: $W^{\mu\nu}_A$ 🗸
- Solution Define forward-scatt. tensor $T_A^{\mu\nu}$ (nice analytic properties)
- **4** Relate $W^{\mu\nu}_A$ and $T^{\mu\nu}_A$
- **(**) "expand" and "simplify" $T_A^{\mu\nu}$
- Get coffee

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● � � �

Define the time-ordered ME for (virtual) $AV^* \rightarrow AV^*$ scattering

$$T^{A}_{\mu\nu} = \int d^{4}z \ e^{iq \cdot z} \langle A | \ \mathcal{T}J^{\dagger}_{had,\mu}(z) \ J_{had,\nu}(0) | A \rangle$$
$$= -g_{\mu\nu} \ \Delta T^{A}_{1} \ + \frac{p_{A\mu}p_{A\nu}}{M^{2}_{A}} \ \Delta T^{A}_{1} \ - i\epsilon_{\mu\nu\rho\sigma} \frac{p^{\rho}_{A}q^{\sigma}}{M^{2}_{A}} \ \Delta T^{A}_{3}$$
$$+ \frac{q_{\mu}q_{\nu}}{M^{2}_{A}} \ \Delta T^{A}_{4} \ + \frac{p_{A\mu}q_{\nu} + p_{A\nu}q_{\mu}}{M^{2}_{A}} \ \Delta T^{A}_{5} \ + \frac{p_{A\mu}q_{\nu} - p_{A\nu}q_{\mu}}{M^{2}_{A}} \ \Delta T^{A}_{6}$$

point #1: related to $W^{A}_{\mu\nu}$ by Fourier transformations

point #2: $T^{A}_{\mu\nu}$ is defined in the "short-distance" limit: $\frac{x_{A}}{Q}$ is fixed and $(Q^{2}/M_{A}^{2}) \rightarrow \infty$ $W^{A}_{\mu\nu}$ and $T^{A}_{\mu\nu}$ are different (DIS vs short-distance limit) but related by a contour

 $\Delta T_i^A(x_A^{-1} + i\varepsilon) - \Delta T_i^A(x_A^{-1} - i\varepsilon) = (\text{some factor}) \times F_i^A(x_A, Q^2)$

 $W^{A}_{\mu\nu}$ and $T^{A}_{\mu\nu}$ are different (DIS vs short-distance limit) but related by a contour

 $\Delta T_i^A(x_A^{-1} + i\varepsilon) - \Delta T_i^A(x_A^{-1} - i\varepsilon) = (\text{some factor}) \times F_i^A(x_A, Q^2)$

Taylor-expand ΔT_i around $x_A^{-1} \rightarrow 0$ + Cauchy's Thm see also Collins ('84)!

 $\Delta T_i^A = \text{(some other factor)} \times \sum_{N=1}^{\infty} \underbrace{F_i^{AN}(Q^2)}_{i} x_A^{-N} \\ N^{th} \text{ Mellin moment} = \int_0^1 dy \ y^{(N-1)} F_i(y) \\ (I = V \in \mathbb{R}, \text{Ruiz (IEJ PAN)})$ Warsaw24 36 / 82

the last step

luiz (IFJ PAN))
----------------	---

æ

イロン イ理 とく ヨン イ ヨン

the operator product expansion

	n · ·	
<u> </u>		$D \cap N \cap I$
	1/11/2 1	 FAN

• • • • • • • • • •

→ 문 ▶ 문

The OPE is a formalism for decomposing products of operators

Wilson ('69); Brandt, Preparata ('71); Christ, et al ('72)

(some number of operators
$$\hat{\mathcal{O}}$$
) = $\sum_{k} \underbrace{\mathcal{C}_{k}}_{m} \times \langle \text{fewer operators } \hat{\mathcal{O}} \rangle$

Wilson coeff.

⁵Power counting is ordered by "twist", $\tau = (\text{dim. of EFT operator}) - (\# \text{ of Lorentz indiges});$ see also Stermen (TASI'95), \bigcirc

R. Ruiz (IFJ PAN

The OPE is a formalism for decomposing products of operators

Wilson ('69); Brandt, Preparata ('71); Christ, et al ('72)

$$\langle \text{some number of operators } \hat{\mathcal{O}} \rangle = \sum_{k} \underbrace{\mathcal{C}_{k}}_{\text{Wilson coeff.}} \times \langle \text{fewer operators } \hat{\mathcal{O}} \rangle$$

Assume $T^{A}_{\mu\nu}$ admits an OPE in the short-distance limit:⁵

$$\lim_{z \to 0} \mathcal{T}^{\mathcal{A}}_{\mu\nu} \stackrel{\text{OPE}}{=} -2i \sum_{\iota,n} \underbrace{c_{\mu\nu\mu_1\dots\mu_n}(q)}_{\text{Wilson coeff.}} \underbrace{\langle \mathcal{A} | \hat{\mathcal{O}}^{\mu_1\dots\mu_n}_{\iota,\tau=2} | \mathcal{A} \rangle}_{\text{hadronic ME}} \\ + \mathcal{O}(\tau > 2) \leftarrow \text{power corrections}$$

⁵Power counting is ordered by "twist", $\tau = (dim. of EFT operator) - (# of Lorentz indiges); see also Stermen (TASI'95), <math>>$

R. Ruiz (IFJ PAN)	Warsaw24	39 / 82	
-------------------	----------	---------	--

The OPE is a formalism for decomposing products of operators

Wilson ('69); Brandt, Preparata ('71); Christ, et al ('72)

$$\langle \text{some number of operators } \hat{\mathcal{O}} \rangle = \sum_{k} \underbrace{\mathcal{C}_{k}}_{\text{Wilson coeff.}} \times \langle \text{fewer operators } \hat{\mathcal{O}} \rangle$$

Assume $T^{A}_{\mu\nu}$ admits an OPE in the short-distance limit:⁵

$$\lim_{z \to 0} T^{A}_{\mu\nu} \stackrel{\text{OPE}}{=} -2i \sum_{\iota,n} \underbrace{c_{\mu\nu\mu_1\dots\mu_n}(q)}_{\text{Wilson coeff.}} \underbrace{\langle A | \hat{\mathcal{O}}^{\mu_1\dots\mu_n}_{\iota,\tau=2} | A \rangle}_{\text{hadronic ME}} \\ + \mathcal{O}(\tau > 2) \leftarrow \text{power corrections}$$

"Leading twist" collects entire tower of operators $\hat{\mathcal{O}} \sim D^k / \Lambda^{k+2}$

⁵ Power counting is ordered by "twist", $ au = (\phi_{1})$	dim. of EFT operator) $-$ (# of Lorentz	indiges); see also Stermen (TASI'95) $\land \circ$
R. Ruiz (IFJ PAN)	Warsaw24	39 / 82

The OPE is a formalism for decomposing products of operators

Wilson ('69); Brandt, Preparata ('71); Christ, et al ('72)

$$\langle \text{some number of operators } \hat{\mathcal{O}} \rangle = \sum_{k} \underbrace{\mathcal{C}_{k}}_{\text{Wilson coeff.}} \times \langle \text{fewer operators } \hat{\mathcal{O}} \rangle$$

Assume $T^{A}_{\mu\nu}$ admits an OPE in the short-distance limit:

$$\begin{split} \lim_{z \to 0} T^A_{\mu\nu}(q, p_A) &\stackrel{\text{OPE}}{=} -2i \sum_{k=k_{\min}}^{\infty} \left[-2g_{\mu\nu}q_{\mu_1}q_{\mu_2}C_1^{2k} + g_{\mu\mu_1}g_{\nu\mu_2}Q^2C_2^{2k} - i\epsilon_{\mu\nu\alpha\beta}g^{\alpha}_{\mu_1}q^{\beta}q_{\mu_2}C_3^{2k} \right. \\ & \left. + 4\frac{q_{\mu}q_{\nu}}{Q^2}q_{\mu_1}q_{\mu_2}C_4^{2k} + 2(g_{\mu\mu_1}q_{\nu}q_{\mu_2} \pm g_{\nu\mu_1}q_{\mu}q_{\mu_2})C_{5,6}^{2k} \right] \\ & \left. \times \frac{2^{2k}}{(Q^2)^{2k}} \times \left(\prod_{m=3}^{2k}q_{\mu_m}\right) \times A^{2k}_{\tau=2}(p_A^2) \times \tilde{H}^{\mu_1\dots\mu_{2k}} + \mathcal{O}(\tau > 2) \right] \end{split}$$

R. Ruiz (IFJ PAN)

4 ∰ ▶ < ≧ ▶ < ≧ ▶</p>
40 / 82

how to justify this?

n · ·	
	$D \cap N \cap N$
IXIIIZ I	FAINT

3

turn off QCD

<u> </u>	
0 0	
1\ 1\1117 1	
1 (. I (GIL)	

$$T^{A}_{\mu\nu} = \int d^{4}z \ e^{iq \cdot z} \langle A | \ \mathcal{T} J^{\dagger}_{had,\mu}(z) \ J_{had,\nu}(0) | A \rangle$$

43 / 82

Ξ.

イロト イヨト イヨト イヨト

$$T^{A}_{\mu
u}=\int~d^{4}z~e^{iq\cdot z}\langle A|~\mathcal{T}J^{\dagger}_{had.\mu}(z)~J_{had.
u}(0)|A
angle$$

step #1: Wick's contraction theorem:

$$\mathcal{T} \left\{ J_{had.\mu}^{\dagger}(z) \ J_{had.\nu}(0) \right\} = : \left[\overline{\psi}(z) \gamma_{\mu} \psi(z) \right] \left[\overline{\psi}(0) \gamma_{\nu} \psi(0) \right] :$$

$$+ \quad (1 \text{ Wick contraction})_{\mu\nu} \times 2$$

$$+ \quad \operatorname{Tr} \left[S_{F}(0-z) \gamma_{\mu} S_{F}(z-0) \gamma_{\nu} \right]$$

(日)

$$T^{A}_{\mu
u}=\int~d^{4}z~e^{iq\cdot z}\langle A|~\mathcal{T}J^{\dagger}_{had.\mu}(z)~J_{had.
u}(0)|A
angle$$

step #1: Wick's contraction theorem:

$$\mathcal{T} \left\{ J_{had.\mu}^{\dagger}(z) \ J_{had.\nu}(0) \right\} = : \left[\overline{\psi}(z) \gamma_{\mu} \psi(z) \right] \left[\overline{\psi}(0) \gamma_{\nu} \psi(0) \right] :$$

$$+ \quad (1 \text{ Wick contraction})_{\mu\nu} \times 2$$

$$+ \quad \operatorname{Tr} \left[S_{F}(0-z) \gamma_{\mu} S_{F}(z-0) \gamma_{\nu} \right]$$

step #2: expand! expand! expand! and trace!

$$S_F(z) = rac{-1}{4\pi^2}rac{2
extstyle + im_g z^2}{(z^2 - i arepsilon)^2} + ext{less singular in } 1/z^2$$

$$T^{A}_{\mu
u}=\int~d^{4}z~e^{iq\cdot z}\langle A|~\mathcal{T}J^{\dagger}_{had.\mu}(z)~J_{had.
u}(0)|A
angle$$

step #1: Wick's contraction theorem:

$$\mathcal{T} \left\{ J_{had.\mu}^{\dagger}(z) \ J_{had.\nu}(0) \right\} = : \left[\overline{\psi}(z) \gamma_{\mu} \psi(z) \right] \left[\overline{\psi}(0) \gamma_{\nu} \psi(0) \right] :$$

$$+ \quad (1 \text{ Wick contraction})_{\mu\nu} \times 2$$

$$+ \quad \operatorname{Tr} \left[S_{F}(0-z) \gamma_{\mu} S_{F}(z-0) \gamma_{\nu} \right]$$

step #2: expand! expand! expand! and trace!

$$S_F(z) = rac{-1}{4\pi^2} rac{2 ec{z} + i m_q z^2}{(z^2 - i arepsilon)^2} + ext{less singular in } 1/z^2$$

$$\psi(z) = \psi(z = 0) + [\partial_{\mu}\psi(z)]_{z=0} \cdot z^{\mu} + [\partial_{\mu_{2}}\partial_{\mu_{1}}\psi(z)]_{z=0} \cdot z^{\mu_{1}}z^{\mu_{2}} + \dots$$

$$\mathcal{T}^{\mathcal{A}}_{\mu
u}=\int~d^{4}z~e^{iq\cdot z}\langle \mathcal{A}|~\mathcal{T}J^{\dagger}_{had.\mu}(z)~J_{had.
u}(0)|\mathcal{A}
angle$$

step #1: Wick's contraction theorem:

$$\mathcal{T} \left\{ J_{had.\mu}^{\dagger}(z) \ J_{had.\nu}(0) \right\} = : \left[\overline{\psi}(z) \gamma_{\mu} \psi(z) \right] \left[\overline{\psi}(0) \gamma_{\nu} \psi(0) \right] :$$

$$+ \quad (1 \text{ Wick contraction})_{\mu\nu} \times 2$$

$$+ \quad \text{Tr} \left[S_{F}(0-z) \gamma_{\mu} S_{F}(z-0) \gamma_{\nu} \right]$$

step #2: expand! expand! expand! and trace!

$$S_F(z) = rac{-1}{4\pi^2} rac{2 z + i m_g z^2}{(z^2 - i arepsilon)^2} + ext{less singular in } 1/z^2$$

$$\psi(z) = \psi(z = 0) + [\partial_{\mu}\psi(z)]_{z=0} \cdot z^{\mu} + [\partial_{\mu_{2}}\partial_{\mu_{1}}\psi(z)]_{z=0} \cdot z^{\mu_{1}}z^{\mu_{2}} + \dots$$

 $\implies \operatorname{Tr}\left[S_{F}(-z)\gamma_{\mu}S_{F}(z)\gamma_{\nu}\right] \sim \frac{\mathbb{I}_{4}}{4\pi^{4}(z^{2}-i\varepsilon)^{4}}\left(4z^{2}g_{\mu\nu}+8z_{\mu}z_{\nu}+m_{q}^{2}z^{4}g_{\mu\nu}\right)$

R. Ruiz (IFJ PAN)	Warsaw24	43 / 82	

plug and chug:

$$T^{A}_{\mu\nu} = \int d^{4}z \ e^{iq \cdot z} \langle A | \ \mathcal{T}J^{\dagger}_{had,\mu}(z) \ J_{had,\nu}(0) | A \rangle$$

=
$$\int d^{4}z \ e^{iq \cdot z} \langle A | \ \mathrm{Tr} \left[S_{F}(-z)\gamma_{\mu}S_{F}(z)\gamma_{\nu} \right] | A \rangle + \dots$$

R. Ruiz (IFJ PAN)

44 / 82

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ― 国

$$T^{A}_{\mu\nu} = \int d^{4}z \ e^{iq \cdot z}$$

$$\times \qquad \langle A| \ \frac{\mathbb{I}_{4}}{4\pi^{4}(z^{2} - i\varepsilon)^{4}} \times (4z^{2}g_{\mu\nu} + 8z_{\mu}z_{\nu} + m^{2}z^{4}g_{\mu\nu})|A\rangle + \dots$$

Warsaw24

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

$$T^{A}_{\mu\nu} = \int d^{4}z \ e^{iq \cdot z}$$

$$\times \qquad \langle A| \ \frac{\mathbb{I}_{4}}{4\pi^{4}(z^{2} - i\varepsilon)^{4}} \times (4z^{2}g_{\mu\nu} + 8z_{\mu}z_{\nu} + m^{2}z^{4}g_{\mu\nu})|A\rangle + \dots$$

after the Fourier integral

• for a scalar interaction $\hat{\mathcal{O}}^{S} = \mathbb{I}_{4}$, $\langle \mathcal{A} | \hat{\mathcal{O}}^{S} | \mathcal{A} \rangle \equiv \mathcal{A}^{S}$ is the hadronic ME

$$T^{A}_{\mu\nu} = \int d^{4}z \ e^{iq \cdot z}$$

$$\times \qquad \langle A| \ \frac{\mathbb{I}_{4}}{4\pi^{4}(z^{2} - i\varepsilon)^{4}} \times (4z^{2}g_{\mu\nu} + 8z_{\mu}z_{\nu} + m^{2}z^{4}g_{\mu\nu})|A\rangle + \dots$$

after the Fourier integral

• for a scalar interaction $\hat{\mathcal{O}}^{S} = \mathbb{I}_{4}$, $\langle A | \hat{\mathcal{O}}^{S} | A \rangle \equiv \mathcal{A}^{S}$ is the hadronic ME • $z^{2}g_{\mu\nu} \rightarrow Q^{2}g_{\mu\nu}$

$$T^{A}_{\mu\nu} = \int d^{4}z \ e^{iq \cdot z}$$

$$\times \qquad \langle A| \ \frac{\mathbb{I}_{4}}{4\pi^{4}(z^{2} - i\varepsilon)^{4}} \times (4z^{2}g_{\mu\nu} + 8z_{\mu}z_{\nu} + m^{2}z^{4}g_{\mu\nu})|A\rangle + \dots$$

after the Fourier integral

- for a scalar interaction $\hat{\mathcal{O}}^{S} = \mathbb{I}_{4}$, $\langle \mathcal{A} | \hat{\mathcal{O}}^{S} | \mathcal{A} \rangle \equiv \mathcal{A}^{S}$ is the hadronic ME
- $z^2 g_{\mu\nu} \rightarrow Q^2 g_{\mu\nu}$
- $z_{\mu}z_{\nu} \rightarrow q_{\mu}q_{\nu}$

$$T^{A}_{\mu\nu} = \int d^{4}z \ e^{iq \cdot z}$$

$$\times \qquad \langle A | \ \frac{\mathbb{I}_{4}}{4\pi^{4}(z^{2} - i\varepsilon)^{4}} \times (4z^{2}g_{\mu\nu} + 8z_{\mu}z_{\nu} + m^{2}z^{4}g_{\mu\nu}) | A \rangle + \dots$$

after the Fourier integral

- for a scalar interaction $\hat{\mathcal{O}}^{S} = \mathbb{I}_{4}$, $\langle \mathcal{A} | \hat{\mathcal{O}}^{S} | \mathcal{A} \rangle \equiv \mathcal{A}^{S}$ is the hadronic ME
- $z^2 g_{\mu\nu} \rightarrow Q^2 g_{\mu\nu}$
- $z_{\mu}z_{\nu} \rightarrow q_{\mu}q_{\nu}$
- $\mathcal{O}\left(\# \times (\operatorname{coup})/\pi^4\right) \to C$ Wilson coefficients

$$T^{A}_{\mu\nu} = \int d^{4}z \ e^{iq \cdot z}$$

$$\times \qquad \langle A | \ \frac{\mathbb{I}_{4}}{4\pi^{4}(z^{2} - i\varepsilon)^{4}} \times (4z^{2}g_{\mu\nu} + 8z_{\mu}z_{\nu} + m^{2}z^{4}g_{\mu\nu}) |A\rangle + \dots$$

after the Fourier integral

- for a scalar interaction $\hat{\mathcal{O}}^{S} = \mathbb{I}_{4}$, $\langle A | \hat{\mathcal{O}}^{S} | A \rangle \equiv \mathcal{A}^{S}$ is the hadronic ME • $z^{2}g_{\mu\nu} \rightarrow Q^{2}g_{\mu\nu}$
- $z_{\mu}z_{\nu} \rightarrow q_{\mu}q_{\nu}$

• $\mathcal{O}\left(\# \times (\operatorname{coup})/\pi^4\right) \to C$ Wilson coefficients

$$\begin{split} \lim_{z \to 0} T^{A}_{\mu\nu}(q, p_{A}) &\stackrel{\text{OPE}}{=} -2i \sum_{k=k_{\min}}^{\infty} \left[-2g_{\mu\nu}q_{\mu_{1}}q_{\mu_{2}}C_{1}^{2k} + g_{\mu\mu_{1}}g_{\nu\mu_{2}}Q^{2}C_{2}^{2k} - i\epsilon_{\mu\nu\alpha\beta}g_{\mu_{1}}^{\alpha}q^{\beta}q_{\mu_{2}}C_{3}^{2k} \right. \\ & \left. + 4\frac{q_{\mu}q_{\nu}}{Q^{2}}q_{\mu_{1}}q_{\mu_{2}}C_{4}^{2k} + 2(g_{\mu\mu_{1}}q_{\nu}q_{\mu_{2}} \pm g_{\nu\mu_{1}}q_{\mu}q_{\mu_{2}})C_{5,6}^{2k} \right] \\ & \left. \times \frac{2^{2k}}{(Q^{2})^{2k}} \times \left(\prod_{m=3}^{2k}q_{\mu_{m}}\right) \times A^{2k}_{\tau=2}(p_{A}^{2}) \times \tilde{H}^{\mu_{1}\dots\mu_{2k}} + \mathcal{O}(\tau > 2) \right] \end{split}$$

R. Ruiz (IFJ PAN)

assume that QCD has same OPE as QCD-less theory

	n · ·	D A A U
<u> </u>		DAN
		 FAIN

3

(日)

After combinatorics and collecting like-terms, get things like this:

$$\begin{split} \Delta \tilde{T}_{1}^{A} &= (-4i) \sum_{k=1}^{\infty} \left[C_{1}^{2k} A_{\tau=2}^{2k} \right] \sum_{j=0}^{k} \frac{(2k-j)!(2k)!}{(2k)!j!(2k-2j)!} \left(\frac{M_{A}^{2}}{Q^{2}} \right)^{j} x_{A}^{-(2k-2j)} \\ &+ (-4i) \sum_{k=1}^{\infty} \left[C_{2}^{2k} A_{\tau=2}^{2k} \right] \sum_{j=1}^{k} \frac{(2k-j)!(2k-2j)!}{(2k)!(j-1)!(2k-2j)!} \left(\frac{M_{A}^{2}}{Q^{2}} \right)^{j} x_{A}^{-(2k-2j)} \\ &+ \mathcal{O}(\tau > 2) \end{split}$$

D D		
• • • • • • • • • • • • • • • • • • • •		
After combinatorics and collecting like-terms, get things like this:

$$\begin{split} \Delta \tilde{T}_{1}^{A} &= (-4i) \sum_{k=1}^{\infty} \left[C_{1}^{2k} A_{\tau=2}^{2k} \right] \sum_{j=0}^{k} \frac{(2k-j)!(2k)!}{(2k)!j!(2k-2j)!} \left(\frac{M_{A}^{2}}{Q^{2}} \right)^{j} x_{A}^{-(2k-2j)} \\ &+ (-4i) \sum_{k=1}^{\infty} \left[C_{2}^{2k} A_{\tau=2}^{2k} \right] \sum_{j=1}^{k} \frac{(2k-j)!(2k-2)!}{(2k)!(j-1)!(2k-2j)!} \left(\frac{M_{A}^{2}}{Q^{2}} \right)^{j} x_{A}^{-(2k-2j)} \\ &+ \mathcal{O}(\tau > 2) \end{split}$$

After taking the $(M_A^2/Q^2) \rightarrow 0$ limit, recover something remarkable:

$$\widetilde{F}_{i}^{AN} = C_{i}^{N}A_{\tau=2}^{N} + \mathcal{O}(\tau > 2) \text{ for } i = 1, 3 - 6,$$

 $\widetilde{F}_{2}^{A(N-1)} = C_{2}^{N}A_{\tau=2}^{N} + \mathcal{O}(\tau > 2)$

After combinatorics and collecting like-terms, get things like this:

$$\begin{split} \Delta \tilde{T}_{1}^{A} &= (-4i) \sum_{k=1}^{\infty} \left[C_{1}^{2k} A_{\tau=2}^{2k} \right] \sum_{j=0}^{k} \frac{(2k-j)!(2k)!}{(2k)!j!(2k-2j)!} \left(\frac{M_{A}^{2}}{Q^{2}} \right)^{j} x_{A}^{-(2k-2j)} \\ &+ (-4i) \sum_{k=1}^{\infty} \left[C_{2}^{2k} A_{\tau=2}^{2k} \right] \sum_{j=1}^{k} \frac{(2k-j)!(2k-2)!}{(2k)!(j-1)!(2k-2j)!} \left(\frac{M_{A}^{2}}{Q^{2}} \right)^{j} x_{A}^{-(2k-2j)} \\ &+ \mathcal{O}(\tau > 2) \end{split}$$

After taking the $(M_A^2/Q^2) \rightarrow 0$ limit, recover something remarkable:

$$\begin{split} \tilde{F}_{i}^{AN} &= Z(\mu)C_{i}^{N}(\mu)A_{\tau=2}^{N} + \mathcal{O}(\tau > 2) \quad \text{for} \quad i = 1, 3 - 6, \\ \tilde{F}_{2}^{A(N-1)} &= Z(\mu)C_{2}^{N}(\mu)A_{\tau=2}^{N} + \mathcal{O}(\tau > 2) \end{split}$$

str. fns. = (RGE) \times (short-dist. phys.) \times (long-dist. phys.)

R. Ruiz (IFJ PAN)	Warsaw24	48 / 82	
-------------------	----------	---------	--

・ロト・日本・日本・日本・日本・日本・日本

Collinear Factorization Theorem for inclusive deep-inelastic scattering

Collins, Soper ('87); Collins ('11)

R. Ruiz (IFJ PAN)	Warsaw24	49 / 82	
-------------------	----------	---------	--

Pt3. intuition

n · ·	
	$D \cap N \cap N$
INDER 1	FAINI

for proton, $F_i^N = C_i^N \times A^N$ + power corrections \implies "PDFs = QCD × hadronic matrix element"

R. Ruiz (IFJ PAN

for A, it is common to parameterize PDF as combination of "bound" ${\mathcal P}$ and ${\mathcal N}$ PDFs

Warsaw24

52 / 82

for A, $F_i^{AN} = C_i^N \times A^N$ + power corrections \implies "PDFs = QCD × had. ME" ("nucleon" picture not necessary)

R. Ruiz (IFJ PAN)

the dark secret of ν scattering experiments

11 1 1 2 / 1 1
IF I PAN
11 2 1 / \1 \

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

→

≣ ୬९୯

in practice, ν DIS needs nuclear targets

1. ν only interact through weak force: targets must be bigger (O(10)tons) and denser (Ar,Fe,Pb) \implies more nuclear

2. fact of life: nuclear dynamics impact hadronic structure

For non-expert, QED (γ) contribution to F_2 : $F_2(\xi) \approx \sum_{i \in \{q, \overline{q}, g\}} Q_i^2 \xi f_i^A(\xi)$ Schenbein, et al [07]0.4897

R. Ruiz (IFJ PAN)	Warsaw24	55 / 82	
-------------------	----------	---------	--

Plotted: Ratios of nuclear PDFs vs (avg) energy fraction carried by parton

w/ Fuks, Marougkas[†], Sztandera[†] [2405.19399]

Plotted: scattering rate vs nucleon-nucleon collider energy

Plotted: scattering rate vs nucleon-nucleon collider energy

Plotted: scattering rate vs nucleon-nucleon collider energy

hypothesis-testing models of nuclear structure

3

イロト 不得 トイヨト イヨト

hypothesis: content of A fixed by free N + P and bound (NP) pairs

$$\begin{split} f_i^{\mathcal{A}}(x,Q) &= \frac{Z}{A} \Big[(1-C_{\mathcal{P}}^{\mathcal{A}}) \times f_i^{\mathcal{P}}(x,Q) \\ &+ C_{\mathcal{P}}^{\mathcal{A}} \times f_i^{\mathrm{SRC}\,\mathcal{P}}(x,Q) \Big] \\ &+ \frac{(\mathcal{A}-Z)}{\mathcal{A}} \Big[(1-C_{\mathcal{N}}^{\mathcal{A}}) \times f_i^{\mathcal{N}}(x,Q) \\ &+ C_{\mathcal{N}}^{\mathcal{A}} \times f_i^{\mathrm{SRC}\,\mathcal{N}}(x,Q) \Big] \end{split}$$

Warsaw24

62 / 82

3

イロト イポト イヨト イヨト

hypothesis: content of \mathcal{A} fixed by free $\mathcal{N} + \mathcal{P}$ and bound (\mathcal{NP}) pairs

$$f_{i}^{\mathcal{A}}(x,Q) = \frac{Z}{A} \Big[(1 - C_{\mathcal{P}}^{A}) \times f_{i}^{\mathcal{P}}(x,Q) \\ + C_{\mathcal{P}}^{\mathcal{A}} \times f_{i}^{\mathrm{SRC}\,\mathcal{P}}(x,Q) \Big] \\ + \frac{(A - Z)}{A} \Big[(1 - C_{\mathcal{N}}^{A}) \times f_{i}^{\mathcal{N}}(x,Q) \\ + C_{\mathcal{N}}^{A} \times f_{i}^{\mathrm{SRC}\,\mathcal{N}}(x,Q) \Big]$$

encoded in q/g densities

w/ Denniston, Hen, Olness, et al (PRL'24) $\left[2312.16293 \right]$

Warsaw24

62 / 82

Pt4. going beyond leading twist

. Ruiz (IFJ PAN)	Warsaw24	64 / 82
------------------	----------	---------

イロン イ理 とく ヨン イ ヨン

э

Importance of "subleading" (aka power) corrections

kinematical corrections, i.e., **target mass corrections (TMCs)**, can be incorporated in structure functions, $F_i(x, Q^2)$

Georgi, Politzer ('76,'76); Ellis, Furmanski, Petronzio ('82,'82); lots more; Kretzer, Reno ('02,'03); Schienbein, et al [0709.1775]

In practice, replace F_i^A (No TMC) $\rightarrow F_i^A$ (TMC) in cross sections:

$$\frac{d^2 \sigma^{\rm NC}}{dx \, dy} = x(s - M^2) \frac{d^2 \sigma^{\rm NC}}{dx dQ^2} = \frac{4\pi \alpha^2}{xyQ^2} \left[\frac{Y_+}{2} \sigma^{\rm NC}_{\rm Red.} \right] \,,$$

$$\sigma_{\rm Red.}^{NC} = \left(1 + \frac{2y^2 \varepsilon^2}{Y_+}\right) F_2^{\rm NC} \mp \frac{Y_-}{Y_+} x F_3^{\rm NC} - \frac{y^2}{Y_+} F_L^{\rm NC} \ ,$$

R. Ruiz (IFJ PAN

back to structure functions!⁶

⁶ w/ Muzakka, Olness, Schienbein, et al [(JPPNP'24)]

R. Ruiz (IFJ PAN

æ

イロト イポト イヨト イヨト

applying the OPE (massive target)

After combinatorics and collecting like-terms, get things like this:

$$\begin{split} \underbrace{\Delta \tilde{T}_{1}^{A}}_{\sim \sum F_{1}^{AN}} &= (-4i) \sum_{k=1}^{\infty} \underbrace{\left[C_{1}^{2k} A_{\tau=2}^{2k}\right]}_{F_{1}^{A(2k)}|_{\text{no TMC}}} \sum_{j=0}^{k} \frac{(2k-j)!(2k)!}{(2k)!j!(2k-2j)!} \left(\frac{M_{A}^{2}}{Q^{2}}\right)^{j} x_{A}^{-(2k-2j)} \\ &+ (-4i) \sum_{k=1}^{\infty} \underbrace{\left[C_{2}^{2k} A_{\tau=2}^{2k}\right]}_{F_{2}^{A(2k-1)}|_{\text{no TMC}}} \sum_{j=1}^{k} \frac{(2k-j)!(2k-2)!}{(2k)!(j-1)!(2k-2j)!} \left(\frac{M_{A}^{2}}{Q^{2}}\right)^{j} x_{A}^{-(2k-2j)} \\ &+ \mathcal{O}(\tau > 2) \end{split}$$

In massive limit, "massless" structure functions mix

R. Ruiz (IFJ PAN)	Warsaw24	68 / 82	
-------------------	----------	---------	--

after applying several integral identities

	n · ·	D A A U
<u> </u>		DAN
	1/11/2 1	 FAIN

• • • • • • • • • •

→ 문 ▶ 문

Generically, str. fn. with TMCs have the form:

$$F_{j}^{A,\text{TMC}}\underbrace{(x_{A}, Q^{2})}_{\text{Bjorken}} = \sum_{i=1}^{6} A_{j}^{i} \underbrace{F_{i}^{A,(0)}(\xi_{A}, Q^{2})}_{\text{no TMCs}} + B_{j}^{i} h_{i}^{A} \underbrace{(\xi_{A}, Q^{2})}_{\xi_{A}=2x_{A}/(1+\sqrt{1+4x_{A}^{2}M_{A}^{2}/Q^{2}})}$$

Warsaw24

3

・ロト ・回ト ・ヨト ・ ヨト

Generically, str. fn. with TMCs have the form:

$$F_{j}^{A,\text{TMC}}(\underbrace{x_{A}}_{\text{Bjorken}}Q^{2}) = \sum_{i=1}^{6} A_{j}^{i} \underbrace{F_{i}^{A,(0)}(\xi_{A},Q^{2})}_{\text{no TMCs}} + \underbrace{B_{j}^{i}h_{i}^{A}}_{\xi_{A}=2x_{A}/(1+\sqrt{1+4x_{A}^{2}M_{A}^{2}/Q^{2}})}$$

Lots to unpack!

• for $i \neq j$, structure function mixing!

•
$$A_i^i \sim \mathcal{O}(1)$$
; all other coeff. $\sim \mathcal{O}(x_A M_A^2/Q^2)$

•
$$A_j^i$$
, B_j^i , C_j are coefficients $\mathcal{O}\left(x_A, \left(x_A^2 M_A^2/Q^2\right)\right)$

•
$$h_i$$
 and g_2 are convolutions over $F_i(y)|_{no-TMC}$

3

Generically, str. fn. with TMCs have the form:

$$F_{j}^{A,\text{TMC}}(\underbrace{x_{A}}_{\text{Bjorken}}Q^{2}) = \sum_{i=1}^{6} A_{j}^{i} \underbrace{F_{i}^{A,(0)}(\xi_{A},Q^{2})}_{\text{no TMCs}} + \underbrace{B_{j}^{i}h_{i}^{A}}_{\xi_{A}=2x_{A}/(1+\sqrt{1+4x_{A}^{2}M_{A}^{2}/Q^{2}})}$$

Lots to unpack!

• for $i \neq j$, structure function mixing!

•
$$A^i_i \sim \mathcal{O}(1)$$
; all other coeff. $\sim \mathcal{O}(x_A M_A^2/Q^2)$

•
$$A_j^i$$
, B_j^i , C_j are coefficients $\mathcal{O}\left(x_A, (x_A^2 M_A^2/Q^2)\right)$

• h_i and g_2 are convolutions over $F_i(y)|_{no-TMC}$

Example:

$$F_{1}^{A,\text{TMC}}(x_{A}) = \left(\frac{x_{A}}{\xi_{A}r_{A}}\right)F_{1}^{A,(0)}(\xi_{A}) + \left(\frac{M_{A}^{2}x_{A}^{2}}{Q^{2}r_{A}^{2}}\right)h_{2}^{A}(\xi_{A}) + \left(\frac{2M_{A}^{4}x_{A}^{3}}{Q^{4}r_{A}^{3}}\right)g_{2}^{A}(\xi_{A})$$

Generically, str. fn. with TMCs have the form (at leading power): $F_j^{A,\text{TMC}}(x_A, Q^2) = \sum_{i=1}^{6} A_j^i \underbrace{F_i^{A,(0)}(\xi_A, Q^2)}_{\text{no TMCs}} + \frac{B_j^i h_i^A(\xi_A, Q^2)}{B_j^i h_i^A(\xi_A, Q^2)} + C_j g_2^A(\xi_A, Q^2)$

$$\begin{split} \bar{F}_{1}^{A,\mathrm{TMC}}(x_{A}) &= \left(\frac{x_{A}}{\xi_{A}r_{A}}\right) \bar{F}_{1}^{A,(0)}(\xi_{A}) + \left(\frac{M_{A}^{2}x_{A}^{2}}{Q^{2}r_{A}^{2}}\right) \bar{h}_{2}^{A}(\xi_{A}) + \left(\frac{2M_{A}^{4}x_{A}^{3}}{Q^{4}r_{A}^{3}}\right) \bar{g}_{2}^{A}(\xi_{A}) ,\\ \bar{F}_{2}^{A,\mathrm{TMC}}(x_{A}) &= \left(\frac{x_{A}^{2}}{\xi_{A}^{2}r_{A}^{3}}\right) \bar{F}_{2}^{A,(0)}(\xi_{A}) + \left(\frac{2M_{A}^{2}x_{A}^{3}}{Q^{2}r_{A}^{3}}\right) \bar{h}_{2}^{A}(\xi_{A}) + \left(\frac{12M_{A}^{4}x_{A}^{4}}{Q^{4}r_{A}^{3}}\right) \bar{g}_{2}^{A}(\xi_{A}) ,\\ \bar{F}_{3}^{A,\mathrm{TMC}}(x_{A}) &= \left(\frac{x_{A}}{\xi_{A}r_{A}^{3}}\right) \bar{F}_{3}^{A,(0)}(\xi_{A}) + \left(\frac{2M_{A}^{2}x_{A}^{3}}{Q^{2}r_{A}^{2}}\right) \bar{h}_{3}^{5}(\xi_{A}) ,\\ \bar{F}_{4}^{A,\mathrm{TMC}}(x_{A}) &= \left(\frac{x_{A}}{\xi_{A}r_{A}^{3}}\right) \bar{F}_{4}^{A,(0)}(\xi_{A}) - \left(\frac{2M_{A}^{2}x_{A}^{3}}{Q^{2}r_{A}^{2}}\right) \bar{F}_{5}^{5,(0)}(\xi_{A}) + \left(\frac{M_{A}^{4}x_{A}^{3}}{Q^{4}r_{A}^{3}}\right) \bar{F}_{2}^{A,(0)}(\xi_{A}) \\ &+ \left(\frac{M_{A}^{2}x_{A}^{2}}{Q^{2}r_{A}^{3}}\right) \bar{h}_{5}^{5}(\xi_{A}) - \left(\frac{2M_{A}^{4}x_{A}^{3}}{Q^{4}r_{A}^{4}}\right) \left(2 - \xi_{A}^{2}M_{A}^{2}/Q^{2}\right) \bar{h}_{2}^{4}(\xi_{A}) \\ &+ \left(\frac{2M_{A}^{2}x_{A}^{3}}{Q^{4}r_{A}^{3}}\right) \left(1 - 2x_{A}^{2}M_{A}^{2}/Q^{2}\right) \bar{g}_{2}^{4}(\xi_{A}) ,\\ \bar{F}_{5}^{A,\mathrm{TMC}}(x_{A}) &= \left(\frac{x_{A}}{\xi_{A}r_{A}^{2}}\right) \bar{F}_{5}^{A,(0)}(\xi_{A}) - \left(\frac{M_{A}^{2}x_{A}^{2}}{Q^{2}r_{A}^{3}}\right) \bar{F}_{2}^{A,(0)}(\xi_{A}) \\ &+ \left(\frac{M_{A}^{2}x_{A}^{2}}{Q^{4}r_{A}^{3}}\right) \bar{h}_{5}^{6}(\xi_{A}) - \left(\frac{2M_{A}^{2}x_{A}^{2}}{Q^{2}r_{A}^{3}}\right) \bar{F}_{2}^{A,(0)}(\xi_{A}) \\ &+ \left(\frac{M_{A}^{2}x_{A}^{2}}{Q^{2}r_{A}^{3}}\right) \bar{h}_{5}^{6}(\xi_{A}) - \left(\frac{2M_{A}^{2}x_{A}^{2}}{Q^{2}r_{A}^{3}}\right) \left(1 - x_{A}\xi_{A}M_{A}^{2}/Q^{2}\right) \bar{h}_{2}^{4}(\xi_{A}) \\ &+ \left(\frac{M_{A}^{2}x_{A}^{2}}{Q^{2}r_{A}^{3}}\right) \bar{g}_{2}^{4}(\xi_{A}) , \\ \bar{F}_{6}^{A,\mathrm{ITMC}}(x_{A}) &= \left(\frac{x_{A}}{\xi_{A}r_{A}^{2}}\right) \bar{F}_{6}^{A,(0)}(\xi_{A}) + \left(\frac{2M_{A}^{2}x_{A}^{2}}{Q^{2}r_{A}^{3}}\right) \bar{h}_{6}(\xi_{A}) . \end{split}$$

R. Ruiz (IFJ PAN

71 / 82

some numbers

	n · ·	
<u> </u>		$D \cap N \cap I$
		 FAIN

running the numbers

we use NLO PDFs (nCTEQ15) to build str. fns. At LO, these are

$$\begin{split} F_1^{\nu A} &= (d + s + \bar{u} + \bar{c}), \qquad F_1^{\bar{\nu}A} = (u + c + \bar{d} + \bar{s}) \\ F_2^{\nu A} &= 2x \left(d + s + \bar{u} + \bar{c} \right), \qquad F_2^{\bar{\nu}A} = 2x \left(u + c + \bar{d} + \bar{s} \right) \\ F_3^{\nu A} &= +2 \left(d + s - \bar{u} - \bar{c} \right), \qquad F_3^{\bar{\nu}A} = -2 \left(u + c - \bar{d} - \bar{s} \right) \\ F_2^{l^{\pm}A} &= x \frac{1}{9} \Big[4(u + \bar{u}) + (d + \bar{d}) + 4(c + \bar{c}) + (s + \bar{s}) \Big] \end{split}$$

for many targets

Symbol	Α	Ζ	Symbol	Α	Ζ	Symbol	A	Ζ	Symbol	A	Ζ
Н	1	1	Be	9	4	Ca	40	20	Xe	131	54
D	2	1	C	12	6	Fe	56	26	W	184	74
³ He	3	2	N	14	7	Cu_{iso}	64	32	Au	197	79
He	4	2	Ne	20	10	${\sf Kr}_{\rm iso}$	84	42	Au iso	197	98.5
Li	6	3	AI	27	13	Ag_{iso}	108	54	Pb _{iso}	207	103.5
Li	7	3	Ar	40	18	${\sf Sn}_{\rm iso}$	119	59.5	Pb	208	82

R. Ruiz (IF I PAN

ratio of $F_i^{\rm TMC}$ / $F_i^{\rm no~TMC}$

J)	Warsaw24
----	----------

Plotted: ratio for (L) $F_1^{W^-}$ and (R) $F_3^{W^-}$ at Q = 1.5 GeV

Can you spot the ¹H and ²D curves?

I)

(本語) とうほう とほう

Plotted: ratio for (L) $F_2^{W^-}$ and (R) $F_2^{\gamma/Z}$ at Q = 1.5 GeV

Can you spot the ¹H and ²D curves?

R. Ruiz (IFJ PAN)	Warsaw24
-------------------	----------

76 / 82

< □ > < 同 > < 回 > < 回 > < 回 >

ratio of $\textit{F}_{i}^{\mathrm{TMC}}$ / $\textit{F}_{i}^{\mathrm{leading \ TMC}}$

Warsaw2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Plotted: ratio for (L) $F_i^{Z/\gamma}$, (C) $F_i^{W^+}$, (R) $F_i^{W^-}$ for i = 2 (upper) and i = 3 (lower)

remarkable uniformity! (good enough to fit! ()

R. Ruiz (IFJ PAN

78 / 82

3

reduced cross sections

	D · ·	
<u> </u>		
	IXIIIZ I	 FAN
		,
Plotted: (upper) reduced cross sections with nTMCs; (lower) ratio to w/o

R. Ruiz (IFJ PAN

< ロ > < 同 > < 回 > < 回 > < 回 >

- N Q (?

э

We are entering an era of precision DIS that strongly complements the ongoing hadron program

- ongoing efforts to improve theory predictions
- theory improvements applicable to programs at CERN, US labs
- lots not covered, so see new (pedagogical) review JPPNP ('24) [2301.07715]

Thank you!

	-	
<u> </u>	$D \cdots \rightarrow i$	$D \Lambda \Lambda$
	1/11/2 1	 EAN

・ロト・(型)・(目)・(目)・(日)・(の)