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most important: these lectures are low-key; questions are great

| am literally here to tell you what | know
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Lecture Plan (Tuesday)

Lecture II:
@ Ptl: the parton model as a phenomenological model for QCD
o Pt2: soft factorization in massless gauge theories
o Pt3: collinear factorization in massless gauge theories
o Pt4: parton showers
o Pt5: what are jets?

Lunch at 12:30ish
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the big picture
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ATLAS

AL EXPERIMENT

umber: 320716, Event Number: 857582452

Date: 2017-07114 10:48:51 CEST

Display of a dijet event (Run=329716, Event=8575822452) with m;=9.5 TeV, produced in pp collisions at Vs=13 TeV data collected in 2017. The two jets with
highest pt have pt=3.0 and 2.9 TeV, one is at n=-1.2 (magenta) and the other at n=0.9 (cyan). The view of the event in the plane transverse to the beam

direction is shown on the left side. The top-right figure represents the calorimeter clusters transverse energies in the n-¢ plane. The bottom-right figure present
the event in the longitudinal view (Z-Y plane).
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Big Picture of Today's Lectures

Today is about introducing jets at hadron colliders

@ what are jets?
@ how do jets form?

@ how are jets defined?
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part 1: the parton model
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subtle question: how to get in proton-proton collisions?

(protons do not carry )

Warsaw24 8/ 101



subtle question: how to get in proton-proton collisions?

(protons do not carry )
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The parton model is the idea that the hadrons, e.g., the proton, are
bound states of wee bits of “valence” in a “sea” of more wee bits

(Bjorken ('68), Feynman ('69))
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The parton model is the idea that the hadrons, e.g., the proton, are
bound states of wee bits of “valence” in a “sea” of more wee bits
(Bjorken ('68), Feynman ('69))

e valence quanta carry net quantum charges of bound state
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The parton model is the idea that the hadrons, e.g., the proton, are
bound states of wee bits of “valence” in a “sea” of more wee bits
(Bjorken ('68), Feynman ('69))
e valence quanta carry net quantum charges of bound state
@ sea quanta carry various quantum charges and opposite charges

R. Ruiz (IFJ PAN) Warsaw24 9 /101


http://inspirehep.net/record/60911

The parton model is the idea that the hadrons, e.g., the proton, are
bound states of wee bits of “valence” in a “sea” of more wee bits
(Bjorken ('68), Feynman ('69))
e valence quanta carry net quantum charges of bound state
@ sea quanta carry various quantum charges and opposite charges

@ prediction: “parton-antiparton annihilation” into
(Drell and Yan [PRL '70])

(a)

FIG. 1. (a) Production of a massive pair @2 from
one of the hadrons in a high-energy collision. In this
case it is kinematically impossible to exchange “wee”
partons only. (b) Production of a massive pair by
parton-antiparton annihilation.
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The parton model is the idea that the hadrons, e.g., the proton, are
bound states of wee bits of “valence” in a “sea” of more wee bits

(Bjorken ('68), Feynman ('69))
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The parton model is the idea that the hadrons, e.g., the proton, are
bound states of wee bits of “valence” in a “sea” of more wee bits
(Bjorken ('68), Feynman (69))
e prediction: “parton-antiparton annihilation” into massive leptons

(Drell and Yan [PRL '70])
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Partons were identified as g, g, and g of QCD

R. Ruiz (IFJ PAN) Warsaw24 11 / 101



Partons were identified as g, g, and g of QCD

@ competing ideas were possible, e.g., QCD with scalar gluons

d

v/ Z
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Partons were identified as g, g, and g of QCD

@ competing ideas were possible, e.g., QCD with scalar gluons

d
v/ Z

o prediction: “Drell-Yan" in reverse ¢ ¢ — gqgg and measure spin!
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Running the Experiment: PETRA at DESY

PETRA: an ¢ ¢ collider with /s = 13 — 32 GeV
o Experiments: TASSO (eon), JADE, MARK J, PLUTO
o Collider signature: ¢ e — 3 prongs with % — % — 1 angular dist.
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Running the Experiment: PETRA at DESY

PETRA: an collider with /s = 13 — 32 GeV
@ Experiments: TASSO . , MARK J, PLUTO
o Collider signature: — 3 prongs with % — % — 1 angular dist.
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Evidence for direct production of gluons! ('79)

PETRA: an e"e

o Collider signature: e

R. Ruiz (IFJ PAN)

collider with /s = 13 — 32 GeV
@ Experiments: TASSO (eon), JADE, MARK J, PLUTO

@
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(CERN Courier [Nov '04])
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https://cerncourier.com/a/twenty-five-years-of-gluons/

Discovery of a spin-1 gluon established QCD as the standard
description (model!) of strong nuclear interactions
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how does the parton model lead to this?
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Pt2: soft factorization in massless gauge theories
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Soft Factorization in Massless Gauge Theories

Factorization in gauge theories is when a radiation amplitude Mg in
certain kinematic limits simplifies to the product of (a) a no-radiation
amplitude MB (Born!) term and (b) a universal (process-independent!) term:

9(k), (k). (Eg/Ey) =0

i
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Soft Factorization in Massless Gauge Theories

Factorization in gauge theories is when a radiation amplitude Mg in

certain kinematic limits simplifies to the product of (a) a no-radiation
amplitude MB (Born!) term and (b) a universal (process-independent!) term:

g(k), €.(k), (Ey/Ey) =0
Intuition:

e Momentum conservation in QM: e~ — e~ + v when E, < E,

R. Ruiz (IFJ PAN)

Warsaw24 18 / 101



Soft Factorization in Massless Gauge Theories

Factorization in gauge theories is when a radiation amplitude Mg in

certain kinematic limits simplifies to the product of (a) a no-radiation
amplitude MB (Born!) term and (b) a universal (process-independent!) term:

q(p), u(p)

¢ % - g

9(k), (k). (Eg/Ey) =0

Intuition:

e Momentum conservation in QM: e~ — e~ + v when E, < E,

e Low resolving power of low energy photons/gluons

(it only knows about external momenta!)

R. Ruiz (IFJ PAN)
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Soft Factorization in Massless Gauge Theories

Factorization in gauge theories is when a radiation amplitude Mg in

certain kinematic limits simplifies to the product of (a) a no-radiation
amplitude MB (Born!) term and (b) a universal (process-independent!) term:

g(k), €.(k), (Ey/Ey) =0
Intuition:

e Momentum conservation in QM: e~ — e~ + v when E, < E,

e Low resolving power of low energy photons/gluons

(it only knows about external momenta!)

@ Separation of scales:

Prob(hard+rad) “=" Prob(rad)®Prob(hard) +O(1/Q)

R. Ruiz (IFJ PAN)
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Soft Factorization in Massless Gauge Theories

g(k)v €, (k) (Eg/Eq) —0

1

Consider emission ¢*(p + k) — q(p) + g(k) with E; < Eq4
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Soft Factorization in Massless Gauge Theories

g(k)v €, (k) (Eg/Eq) —0

1

Consider emission ¢*(p + k) — q(p) + g(k) with E; < Eq4

Ma|, o =T(P) (k)i T (255 - M

E,<E, N (p+kg)?
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Soft Factorization in Massless Gauge Theories

g(k)v €, (k) (Eg/Eq) —0

i

Consider emission ¢*(p + k) — q(p) + g(k) with E; < Eq4

Mg

(p+kg)?

R. Ruiz (IFJ PAN) Warsaw24
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Soft Factorization in Massless Gauge Theories

g(k)v €, (k) (Eg/Eq) —0

1

Consider emission ¢*(p + k) — q(p) + g(k) with E; < Eq4

MR — T(p)e, (k) (igs TAYy" B . Nt~ (igs TAYT(p) iy - M

E<E; (p+ke)? (2p-ke)

After anti-commuting and applying Dirac equation @ 4, = 0):

. _ Hey, ~
= (igs TA) U(P) : ((,:;‘k;)) M
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Soft Factorization in Massless Gauge Theories

x Mp ://.

g(k)v €, (k) (Eg/Eq) —0

1

Consider emission ¢*(p + k) — q(p) + g(k) with E; < Eq4

Mg

— 77 * . A/,[,M‘”N_ Ar— 6*,\/“#'“'
£ce, ~ HPIGR)gs TN gy - M~ (igs T)E(P) 3 7, - M

After anti-commuting and applying Dirac equation @ 4, = 0):

Lo - He* -
— (e TA) a(p) - P . Nt = (g T u(p) - M
(igs T7) a(P) - (o (ig: )(p_kg) (p)

Process independent
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Soft Factorization in Massless Gauge Theories

x Mp ://.

g(k)v €, (k) (Eg/Eq) —0

1

Consider emission ¢*(p + k) — q(p) + g(k) with E; < Eq4

Mg

=T(p)et o TAV e (PEKe) o o (i TAYR( ) P A
E,<E, a(p)e, (k) (igs ™) (o - M ~ (s T7)E(P) 7,y - M

After anti-commuting and applying Dirac equation (@ 4, = 0):
— (g T B(p) - ) K = (i Th) L xu(p) - Kt
s (p-ke) s (p-kyg) ~~—=—

Process independent

=Mpg!
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Soft Factorization in Massless Gauge Theories

q(k) EZ(k)/ (EQ/E(]) - O

Generically, for radiation E; < Q

Mz |?

2 (pi-pj) 2
~~ - color factor) x —~ 2~ X
E,<E, &s Zl,)é{external} ( r ) (pi-k)(p;K) ’MB|
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Soft Factorization in Massless Gauge Theories

ocMBz/‘/.::

q(k) EZ(k)/ (EQ/E(]) - 0

Generically, for radiation E; < Q

Mz |?

~ o2 (Pi-pj) 2
e, 85 2. je{external} (COlOT factor) X CICRe | M|

A remarkably complicated situation is remarkably simple to write

simplifies further for QED
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another perspective on factorization in massless gauge theories:
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another perspective on factorization in massless gauge theories:

the Weizsacker-Williams approximation

e (p1)

pr— Y



Pt3: collinear factorization in massless gauge theories
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Consider the scattering process eX — ¢'Y. Generically, M is

(_i) (.9,&1/ - (f - 1)Q;LQu/q2)
qQ

M = [a(pr)(—iege)y"u(pa)] M (X = Y)
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Consider the scattering process eX — ¢'Y. Generically, M is

(_'i) (.9;w - (f - 1)Q;LQu/q2)
q2

M = [a(pr)(—iege)y"u(pa)] M (X = Y)

idea: when 0. < 1, v* goes on-shell and becomes an asymptotic state
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Consider the scattering process eX — ¢'Y. Generically, M is

(_'i) (.9;w - (E - 1)Q;LQu/q2)

M = [u(pr)(—iege)y" ulpa)] " M (X =Y)

idea: when 0. < 1, v* goes on-shell and becomes an asymptotic state

= M(eX —eY) = M(e— ey) x M(HX — eY) + O(6.)
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a brief digression on polarization
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Decomposing Propagators

Completeness relationships between propagators & polarization
vectors in gauge theories are subtle. Consider QED in Feynman gauge

= £=1s0(1—¢&)quan/q* — 0:
-1

+1 = ZA:i,o,s 5#(q,)\)€?j(q, )‘)

Warsaw24 26 / 101



Decomposing Propagators

Completeness relationships between propagators & polarization
vectors in gauge theories are subtle. Consider in Feynman gauge
= £=1s0(1—¢&)quan/q* — 0:
-1
+1
—8u = +1 = EA:i,o,s eu(q, Nes(a, A)

+1
— (g0 3 oy i
For g = (¢°,0,0, ¢) and transverse pols £, (\ = +) = (0,F1, —i,0)/v2

0
. +1 0
Z/\:j: 6#(q7 A)ez/(qa )‘) =
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Decomposing Propagators

For g = (¢°,0,0, ¢*) and longitudinal ¢,(\ = 0) = (¢3,0,0, °)/\/q?
—1
>0 en(q@,Nev(q,A) = % 0 + %
+1

Q
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Decomposing Propagators

For g = (¢°,0,0, ¢*) and longitudinal ¢,(\ = 0) = (¢3,0,0, °)/\/q?
—1
>0 en(q@,Nev(q,A) = % 0 + %
+1

Q

For “auxiliary” (A) or “scalar” (S) polarization ¢,(\ = 5) = qu/v/—q?

E)\:S Eﬂ(qv)‘)su(qak) = 7%
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Decomposing Propagators

For g = (¢°,0,0, ¢*) and longitudinal ¢,(\ = 0) = (¢°,0,0,¢%)/1/q?
—1
— q2 0 quqv
Yoo ulg, Nev(g,N) = L 0 + T2
+1

Q

For “auxiliary” (A) or “scalar” (S) polarization ¢,(\ = 5) = qu/v/—q?

E)\:S sﬂ(q7)‘)su(qa>‘) = 7%

Precise form for A = 0, S depends on several factors:

— broken (massive) or unbroken (massless) gauge symmetry
— gauge (Feynman vs Landau vs Unitary vs Axial)

- gauge fixing (¢ =1 or n®> = —1)
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Decomposing Propagators

For g = (¢°,0,0, ¢%) and longitudinal £,(\ = 0) = (¢%,0,0,¢°)//¢?
-1

2
ZAiO 6#(q’ A)Elz(q,>\) = %

q + >

+1

For “auxiliary” (A) or “scalar” (S) polarization £,(\ = 5) = qu/\/_iqz

Yo en(g, Nen(g, A) =

q2

Example: for W/Z in Unitary gauge, ¢, w/z (\=5)=aq, 1 %

s eul@Neu(g. ) = — 8+

\/
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Decomposing Propagators

For g = (¢°,0,0, ¢*) and longitudinal ¢,(\ = 0) = (¢3,0,0, ¢%)/1/q?
-1
Yo el@Nae) = &0 b
=0 1 q7 v q7 - q2 0 q2
+1

For “auxiliary” (A) or “scalar” (S) polarization €,(\ = 5) = g,/v/—¢°

Z/\:S 6M(q7)‘)€l/(q7)‘) = 7%

Bonus, longitudinal polarization vectors can be written as Dawson ('85)
/A2
E‘U‘(A — O) - /. + O 7;’ importance of this soon!
vV a? q
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the Weizsacker-Williams approximation

e~ (1)
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Consider the scattering process eX — ¢'Y. Generically, M is

_:"-") (,_f};.w - (E - 1}@[.1@1//92)

M = [alpr)(—ieg v u(pa)] : MY X - Y)

= = ?ﬂ?r [@(pi)r u(pa)l (Zg“ (g, N)ev Q7)\’}) M ("X = Y).

[
; AN

First focus on matrix element for / — 7, splitting
R. Ruiz (IFJ PAN) Warsaw24 31 /101



Calculating M (/' — (V)

Many ways to evaluate /M. Helicity amplitudes are super fast:

Yi(q = pi — py)

AAN NNV

—I..\/(((/\/, — (/\f\/)\v) = J'u . EZ(Q,)\V)

ExpEN;
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Calculating M (/' — (V)
Many ways to evaluate /M. Helicity amplitudes are super fast:

Yi(q = pi — py)

AAN NNV

—I',\/l(/)\/ — //\f V)\\/) = JH

N0y

- g5(g, Av)

|ept0n current (only two helicity configurations!)

Ity = (—ieQe) | arlpr) v ur(pi)
_LH helicty LH helicty

Jins, = (—ieQe) | Tr(pr) ¥ ur(pi)
N—— SN——
LRH helicty RH helicty

R Rz (R paNy e pr— 6 2




Calculating M (/' — (V)

Many ways to evaluate /M. Helicity amplitudes are super fast:
Yix(g = pi — py)

AAN NNV

—iM(0, = 0, V) = - en(a,Av)

AfFEA;

Outgoing photon (four helicity polarizations!)
-A=+ = ¢, =(0,%cosb,,—i,+sinb,)/v2
~A=0 = £, ~q/V@*+0(/q?/q°)

-A=S5S = .~ q/V G
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Calculating M (/' — (V)

Many ways to evaluate /M. Helicity amplitudes are super fast:

V(g =pi — p/‘)

AAN NNV

—iM(l — Exs VA\/) (\ O EZ(CI,)\V)
Dirac equation for massless fermions
JM g, = (coupling factors) x [a(pr) v* (pi — pr), u(pi)]
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Calculating M (/' — (V)

Many ways to evaluate /M. Helicity amplitudes are super fast:

(g = pi — py)

AAN NNV

—iM(l, =0, W) = S - g5(q,Av)
Dirac equation for massless fermions
Jive qu = (coupling factors) x [@(pr) v* (pi — pr) u(pi)]
= |u(pr) piu(pu) | — |ulpr)pr u(pi)| =0
——— ——
=pru(pi) =u(pr)pr°
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Calculating M (/' — (V)
Many ways to evaluate /M. Helicity amplitudes are super fast:
Yix(g = pi — py)

AAN NNV

=M, = 0 V) = I en(g, Av)

Exelx;

outgoing photon (feur 2.5 helicity polarizations!)

-A=+ = ¢, =(0,%cosb,,—i,+sinb,)/v2
“A=0 = g~ iR + OV )
—A=S = g aul Ve
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Spinors and Spinor (Current) Algebra
To evaluate Jf‘\ [ we need spinors and spinor algebra (simply matrix algebral)
Af AN

p* = (E, |p]sinf cos ¢, |p] sin O sin ¢, |p] cos 8), E? = |[p]*> +m?

2-component spinors:

@) 1 |P] + p- cos g
XA=+1\P) = —FTF/—m————— = .
2|p1(|p + p=) Do + 1Dy €' sin g

) 1 —Dz +ipy —e ¥ gin g
Xa=1(p) = —— =
2001101+ p2) \ |51 + p cos§

a(=p) = —Aex_a(p).

4-component spinors:
E — () —AVE + Alplx-A(D)
ux(p) = . up) =
E + Nl (p) E = Aplx-»(®
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Spinors and Spinor (Current) Algebra

Spinor algebra appears complicated, but simplifies a lot

In the lab frame, p; = E;(1,0,0,+1) and this gives

o= O O

0
1

ur(pi) = V2E; 0 and ugr(p;) = V2E;
0
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Spinors and Spinor (Current) Algebra

Spinor algebra appears complicated, but simplifies a lot

In the lab frame, p; = E;(1,0,0,+1) and this gives

0
1

ur(pi) = V2E; 0 and ugr(p;) = V2E;
0

o= O O

In the same frame, pr = Ef (1,sin 6y, 0, cosfy) and this gives

0 ! Cos %[
- 0 _ sin %
UL(pf) = 2Ef _sin 0o and UR(pf) = \/2Ef' 0
2
cos %ﬁ 0

R. Ruiz (IFJ PAN)
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Spinors and Spinor (Current) Algebra

Contracting Dirac/spinor indices gives:

1

pro tip: this entails (1 X 4) - (4 X 4) - (4 X 1) matrix multiplication for each 4%, ~%, . ..

B, = (—ieQe) V2EiEf (cos%‘,sm%‘, /sm%‘,cosg{)

Ll

JZ?ZR = (—ieQe) V2EEf (cos%‘,sm —I—lsmef cos 9”)
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Splitting Amplitudes

Contracting Lorentz indices gives:

(+2ieQe)/2E1 Ex cos (0’ J; 97) sin <927>
(ef »en-) = (_zieoe)mcos(@sm(mz%)
(e, = e ) ~ O<\/?/EA>

,.\
1
)
_l’_
N
Il

A few observations:
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Splitting Amplitudes

Contracting Lorentz indices gives:

(+2ieQe)/2E1 Ex cos (0’ J; 97) sin <927>
(ef »en-) = (_zieoe)mcos(@sm(mz%)
(e, = e ) ~ O<\/?/EA>

(e, = e 7+)

A few observations:
e M(e, — e.vy) related by parity inversion
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Splitting Amplitudes

Contracting Lorentz indices gives:

(+2ieQe) \/TEAcos( + 0, >sin (05)
(e, = e, 7-) = (—2ieQe)y/2E1Encos (;) sin (Mﬁ)
(e, = e70) ~ O(Va/Ea)

A few observations:

,.\
1
)
_|_
N
Il

e M(e, — e.vy) related by parity inversion
@ we want to see what happens when ~ goes on shell, i.e., v* —

(in practice, neglect O(ﬁ/EA) terms
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Splitting Amplitudes

Contracting Lorentz indices gives:
(+2ieQ.)/2E1 E cos (01 J; 07) sin <€27>
(e, e, 7-) = (—2ieQe)y/2E1Encos (027> sin (9’4_297>
(e, = e ) ~ @é@%

A few observations:

(e, = e 7+)

e M(e, — e.vy) related by parity inversion
@ we want to see what happens when ~ goes on shell, i.e., v* —

(in practice, neglect O(\/q2/E,) terms)
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Splitting Amplitudes

Contracting Lorentz indices gives:

(e, = e v4) = (+2ieQe)\/?EACOS<9/J;67>Sin<9V>
( )

2
2
—2ieQea)\/2E1 E4 cos <9;> sin <0I+297>
(e, = e ) ~ ﬁevlq%

A few observations:
e M(e, — e,~y) related by parity inversion

@ we want to see what happens when ~ goes on shell, i.e., v* — ~
(in practice, neglect O(\/q2/E4) terms)

@ 7y goes on shell, i.e., v* — ~ also means p%- — 0 since p2T x q°

(in practice, expand to lowest order in 6}, 0~ )

Warsaw24 437101



Collinear Factorization in Massless Gauge Theories

In high-energy collinear ¢ — e~ splitting, v* — v and unphysical
polarizations decouple and matrix elements factor out (“factorize”)

M(eX = eY)

1 2
=3 M(e = em) x 2% MnX ey + o(ae,av,vq>

E,
A==+ A

R. Ruiz (IFJ PAN) Warsaw?24 44 /101



Collinear Factorization in Massless Gauge Theories

In high-energy collinear ¢ — e splitting, v* — v and unphysical
polarizations decouple and matrix elements factor out (“factorize”)

M(eX = eY)
1 / 42
= Z Me=emn) X 5 x MnX—=eY) + 0 05,07,767
A —— q — EA
proc. independent proc. dependent
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Collinear Factorization in Massless Gauge Theories

In high-energy collinear ¢ — e~ splitting, v* — v and unphysical
polarizations decouple and (matrix element)? factorize

|IM(eX = eY)]?
]_ 2
= 2 S M(e = en)P x [M(X = eV + O (64,6, L
q* = Ea
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Collinear Factorization in Massless Gauge Theories

Defining z = E, /Epa, then for . < 1 we get something nice

(see also Peskin and Schroeder to get here)

~ : 2 1+(1—2)?
> ador. [M(e— ev)|?> = (coup. fa(:tors)zzéq_z) { HZ 2) }
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now to put everything together
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Phase Space and Fermi's Golden Rule

1. Phase Space: in general, dPS,, 11 can be split into dPS,, and dPS5;
ny ny +1 dgpk
dAPSny11(px,pf505, {PK}) = (2m)*s (px +pf—pyp —zpk> 1;[ @ﬂTEk
Ppy r P
= (2n)* (px +q- ZPk) 2m) 32Ef/ H (27)32E;,

d(ﬁf/ dz dq
4(2m)3

= dPS7Ly(anq:,pf’7 {pk}) X
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1. Phase Space: in general, dPS,, 11 can be split into dPS,, and dPS5;
ny ny +1 dgpk
dAPSny11(px,pf505, {PK}) = (2m)*s (px +pf—pyp —zpk> 1;[ @ﬂTEk
Ppy r P
= (2n)* (px +q- ZPk) 2m) 32Ef/ H (27)32E;,

d(ﬁf/ dz dq
4(2m)3

= dPS7Ly(anq:,pf’7 {pk}) X

2. Fermi’s Golden Rule: for scattering rates (spiit according 1o dps))

o= [dPS, +1 % idpgfyﬂ = [ dPS,, [ dPS; x idpgfyﬂ,
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Phase Space and Fermi's Golden Rule

1. Phase Space: in general, dPS,, 11 can be split into dPS,, and dPS5;
ny ny +1 dgpk
dAPSny11(px,pf505, {PK}) = (2m)*s (px +pf—pyp ZPk) 1;[ @ﬂTEk
Ppy r P
= (2n)* (px +q- ZPk) 2m) 32Ef/ H (27)32E),

d(ﬁf/ dz dq
4(2m)3

= dPS7Ly(anq:,pf’7 {pk}) X

2. Fermi’s Golden Rule: for scattering rates (spiit according 1o dps))

o= [dPS, +1 % idpgfyﬂ = [ dPS,, [ dPS; x idpgfyﬂ,

1 1
where 47— — > | ’
PSn, 1~ 2Q2 (255 1 1)(2% +1)NZNE 4o,
flux spin/color averaging
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Phase Space and Fermi's Golden Rule

1. Phase Space: in general, dPS,, 11 can be split into dPS,, and dPS5;
ny ny +1 dgpk
dAPSny11(px,pf505, {PK}) = (2m)*s (px +pf—pyp ZPk) 1;[ @ﬂTEk
Ppy r P
= (2n)* (px +q- ZPk) 2m) 32Ef/ H (27)32E),

d(ﬁf/ dz dq
4(2m)3

= dPS7Ly(anq:,pf’7 {pk}) X

2. Fermi’s Golden Rule: for scattering rates (spiit according 1o dps))

o= [dPS, +1 % idpgfyﬂ = [ dPS,, [ dPS; x 7dpgfy+l,

1 1
do 2
where =
Pon i~ 2Q2 (25, 7 1) (255 FINENE o
c'Ve d.o.f.
- use factorized ME here!
flux spin/color averaging
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3. Combine and reorganize Q= (g + PB)Z =2q-pgp=zX(pa-pP)=2zXs

d¢1dzdq?
fe<1 /4( 27r)3 (1-2)

Z IM(e = ey*)]? x

A,d.o.f.

ole X —=eY)

1 2
— X — o0y X =Y
q4 250(/ )
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4. Integrate! Integrate! Integrate!

= [dz (”qe> J(z) x qu—‘f X

Q>

G(yX = Y)

6’5<<1
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4. Integrate! Integrate! Integrate!
= Jdz (52) Pre(2) x [ % x 6(3X V)

The function P, .(z) is one of the Altarelli-Parisi splitting functions

6’5<<1

gives splitting probability of e — ~ for E,, = z X Ex
Yi(g = pi —ps)

AANNVY 14(1-2)’

Pre(2) = Prel2) =
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Weizsacker-Williams Approximation

5. After integrating over virtuality of ~

ole X —e7Y)

2
= [ dz qe P.o(2)log (%) 5(yX = Y)

f’y/e(QO)

ekl

f,e can be identified as the v (number) density within e

also known as the parton (number) density function of parton distribution function
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intuition?
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bare vs dressed particles in QFT

physical (dressed) particles contain a sea of partons
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Weizsacker-Williams Approximation

Beyond leading order (and more systematicany), £y picks up additional contibutions:

dx z 2
fw/e(z,/ﬁ) = Q/e + / Pre(x) fe/e <7> log —= + C(x, 2)
N—— /1

X

“first emission” T
add’l v emissions

) )
"‘7l4,h/, ! M, “ XV
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Weizsacker-Williams Approximation

Beyond leading order (and more systematicany), £y picks up additional contibutions:

z r
fre(z12) = £e(2) +/ Pye(x fe/e<7> log “2 + C(x, 2)
~——

X /1

“first emission” T
add’l v emissions

e~ (pa) e (p1)

. . . AN
/

— a scale evolution: 0f, /.(z, ii?) ~ 5= [ po(x) (2, 12) dlog 2
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Weizsacker-Williams Approximation

Beyond leading order (and more systematicany), £y picks up additional contibutions:

z r
fw/e(z,/ﬁ) = Q/e + / Pre(x) fe/e <7> log —= + C(x, 2)
——

X /1

“first emission” T
add’l v emissions

e~ (pa) e (p1)

. . . AN
/

— a scale evolution: 0f, /.(z, ii?) ~ 5= [ po(x) (2, 12) dlog 2

= ‘“dressing” / renormalization of beams from 13 = ¢° < Ef\ to 2

Of, se(z,142) 14
3/I<e)g,u2r _207[r z ; P ( )f(ihlL%)
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WWA aka Collinear Factorization

renormalization / “dressing” accounts for all collinear rad. with k7 < pu,

Oy je(z,147) 14 5
i’%oigp,z = %fz 7X P’Ye(x) f (iaur)

Warsaw24 57/ 101



WWA aka Collinear Factorization

renormalization / “dressing” accounts for all collinear rad. with k7 < pu,

Oy je(z,147) 14
gz = 3wy & Pre(x) £ (Z,17)

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations

da  fa@n 4 ldea, 117 Tdea, 7T
e [z -[Es
dlog(t/p”) Jo 22T po(a/z0) o 2 2T f(a)z,0)

d g zfc /1 dz as Pag (=) J 1 dz ag Pag () &
4 _ dz o, .-
dlog(t/u?) SJe 22T e Jo 2 2Tfo(x)z1)

[S. Hoechel

2

]

pr— )



this holds for QED and QCD
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possibly also for EW theory
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physical (dressed) particles contain a sea of partons
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Pt4: parton showers
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The idea of a parton shower is to capture soft/collinear ISR/FSR

(which are near the singular regions of FO matrix elements!)

e q(p;)

~ (k) log" ()

T

Such ISR/FSR are not naively O(as) suppressed, i.e., power suppressed,
since momentum scale of emission is small compared to hard scale @
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The idea of a parton shower is to capture soft/collinear ISR/FSR

(which are near the singular regions of FO matrix elements!)

%\%Q/ ~ (k) log" (%)

Such ISR/FSR are not naively O(as) suppressed, i.e., power suppressed,
since momentum scale of emission is small compared to hard scale @

@ logs from extra propagators can grow large: dpzT/p2T ~ log p2T >1/as
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The idea of a parton shower is to capture soft/collinear ISR/FSR

(which are near the singular regions of FO matrix elements!)

P %\%Q/ ~ (k) log" (%)

Such ISR/FSR are not naively O(as) suppressed, i.e., power suppressed,
since momentum scale of emission is small compared to hard scale @

@ logs from extra propagators can grow large: dpgr/p2T ~ log p2T >1/as

Using collinear factorization and unitarity (prob conservation!),
we can account for such radiation to all orders in perturbation theory!
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For 1 — 2 splitting at virtuality t, coll. fact. in QCD / QCD are same:

(just replace @ — asCr(a) for q(g))

dt asG
025(n+1) ™~ 02—>nfd2 T 51Pi(2)
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For 1 — 2 splitting at virtuality t, coll. fact. in QCD / QCD are same:

(just replace @ — s Cp(a) for q(g))

02—(n+1) ™ 02andz % a257rC,- Pji(Z)

The differential splitting probability is then

O(n+1 a.C
dPsplic ~ (O—+ bt [ dz %55P(2)

27
n
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For 1 — 2 splitting at virtuality t, coll. fact. in QCD / QCD are same:

(just replace o — usCF(A) for q(g))

02—(n+1) ™ 02andz % azsﬂC" Pji(Z)

The differential splitting probability is then

O(n+1 a.C
dPsplic ~ (O—+ bt [ dz %55P(2)

2
n
By unitarity, likelihood of a parton at ty not radiating down to t; < ty is

Pro split(tL t0) =1 — Pepiy = 1 — [ % [ dz %5 P;(z2)
~ep [[2 % [ dz 5Py(2)
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For 1 — 2 splitting at virtuality t, coll. fact. in QCD / QCD are same:

(just replace av — s Cp(a) for q(g))

dt asG
025(n+1) ™~ 02—>nfd2 T 51Pi(2)

The differential splitting probability is then

O(n+1 a.C
IPo~ 2D~ & [ 6z 5 py(2)

2
n
By unitarity, likelihood of a parton at ty not radiating down to t; < ty is
Pro split (t1, t0) =1 — Pypie = 1 — [ 4 [ dz S5 Py(z)
t sCi
~ exp [ftol % [ dz % Pj;(z)}

On event-by-event basis, throw random number y € [0,1]. Check if
splittings occur. If yes, add 1 — 2 splitting. Restart, until no splitting.

do(pp = B+ X) =, ,fa®fp® D, ®d6(ab — B) + O (Aip/QPH?)

=P(z) (survival rate)

R Rz (R pany e pr— 5/ Tl



how accurate is all of this?
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how accurate is all of this? leading log (LL), usually
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Fixed Order vs Resummation

Resummation: REnormalization-grouped improved SUMMATION
- a technique for accounting for a particular type if radiation,
e.g., strongly ordered collinear gluons to all orders in pert. theory

NNLO

d>W“ Sl )

Y

Mﬁwww

Ef < kP <k < ... <G kT,k%2<<k#<<...<<\/q—

Y

R Rz (R paNy e pr— 5/ Tl

Y



Sketch of Factorization and Exponentiation

Combine our factorized results:

— FO
MV—I—I soft/collinear radiation — rad. pOle + IOOp pOle X MV

universal factor
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Sketch of Factorization and Exponentiation

Combine our factorized results:

— FO
MV—I—I soft/collinear radiation — rad. pOle + IOOp pOle X MV

universal factor

The squaring, averaging, and integrating over (n + 1)-body phase space

_ ; : FO
dJV—I—l soft/collinear radiation — dPSl(unlversaI plece) . X Oy
soft/collinear
finite, = S. solve integral with RGE to LL, NLL,...
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Sketch of Factorization and Exponentiation

Combine our factorized results:

— FO
MV—I—I soft/collinear radiation — rad. pOIG + IOOp pOIe X MV

universal factor

The squaring, averaging, and integrating over (n + 1)-body phase space

_ ; : FO
dJV—I—l soft/collinear radiation — dPSl(umversal plece) . X Oy
soft/collinear
finite, = S. solve integral with RGE to LL, NLL,...

Keeping track of symmetry factors lets us do this for k-emissions:

_ 1 k
dUV+k soft/collinear — [T[S] x UV
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Sketch of Factorization and Exponentiation

Combine our factorized results:

— FO
MV—I—I soft/collinear radiation — rad. pOIG + IOOp pOIe X MV

universal factor

The squaring, averaging, and integrating over (n + 1)-body phase space

. . . FO
dJV—I—l soft/collinear radiation — dPSl(umversal p|ece) . X Oy
soft/collinear

finite, = S. solve integral with RGE to LL, NLL,...

Keeping track of symmetry factors lets us do this for k-emissions:

_ k
dUV+k soft/collinear — [S] x UV

Summing over all such emissions gives us a closed result:

dUV+any soft/collinear — Zk KT [S]k X UDY - exp[S] X UV

R. Ruiz (IFJ PAN) Warsaw24 66 / 101



is there double counting?
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is there double counting? yes, usually!
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MCGONLO

Phase space double counting is now a concern when adding PS to NLO:
@ At NLO, is the first/hardest emission from the PS or ME?

>w/ ", < s

Reals zﬁ/m
[B. Fuks]

Parton showers

>
L

Warsaw24 68 / 101


https://arxiv.org/abs/hep-ph/0204244

MCGONLO

Phase space double counting is now a concern when adding PS to NLO:
@ At NLO, is the first/hardest emission from the PS or ME?

>w/ ", < s

Reals E/AJW
[B. Fuks]

Solution: MC@GNLO (Frixione, Webber [hep-ph/0204244]; other solutions, too! e.g., POWHEG)
o If collinear/soft, it came from the PS. If wide-angle/hard, then ME
@ PS and ME describe these regions well, respectively.

Parton showers

>
L
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MCGONLO

Phase space double counting is now a concern when adding PS to NLO:
@ At NLO, is the first/hardest emission from the PS or ME?

>w/ ", < s

Reals E/AJW
[B. Fuks]

Solution: MC@GNLO (Frixione, Webber [hep-ph/0204244]; other solutions, too! e.g., POWHEG)
o If collinear/soft, it came from the PS. If wide-angle/hard, then ME
@ PS and ME describe these regions well, respectively.

Parton showers

>
L

Importantly,
@ The PS assumptions are invalidated at wide angles
@ The ME becomes perturbatively instable in soft/collinear limits.
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MCGQ@NLO in practice: (Frixione, Webber [hep-ph/0204244])

=" cancellation

e introduce auxiliary term +do” to move 1/
e introduce auxiliary term +do"© to move first O(as) emission

e result: moves “parton shower” out of dPS(,,1) and into dPS,
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MCG@NLO in practice: (Frixione, Webber [hep-ph/0204244])
e introduce auxiliary term +do” to move 1/-'"" cancellation
e introduce auxiliary term +do"© to move first O(as) emission

e result: moves “parton shower” out of dPS(,,1) and into dPS,

Main Monte Carlo formula at NLO in QCD:

oNLO = [dPS, [do® + doCT + (do¥ + [ dPSida™)] (Bornike)
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MCG@NLO in practice: (Frixione, Webber [hep-ph/0204244])
e introduce auxiliary term +do” to move 1/-'"" cancellation
e introduce auxiliary term +do"© to move first O(as) emission
e result: moves “parton shower” out of dPS(,,1) and into dPS,

Main Monte Carlo formula at NLO in QCD:

oNLO = [ dPS, [doB + do“T + (doV + [ dPSido™)] (Born-k)

+f dPS(n+1) [dOJWC - d(TA] (counter events)
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MCG@NLO in practice: (Frixione, Webber [hep-ph/0204244])
e introduce auxiliary term +do” to move 1/-'"" cancellation
e introduce auxiliary term +do"© to move first O(as) emission

e result: moves “parton shower” out of dPS(,1) and into dPS,

Main Monte Carlo formula at NLO in QCD:

oNLO = [ dPS, [doB + do“T + (doV + [ dPSido™)] (Born k)
+f dPS(n+1) [dO'MC - d(fA] (counter events)
+fdP5(n+1) [dO'R - d(TMC] (real events)

normalization okay but dists. wrong without parton shower!
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language of precision:

precision of normalization # precision of distribution
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Not all observables are well-defined when o is known only at LO

Example: transverse momentum (q7) of W/Z system in pp — V + X

e g1 = 0 at Born-level (no recoil!) and singular at O(as)

| [ [ [ [ I
10k Leading Order pp— p* ;
>
[5)
@]
2 4l
P
g
2
o}
U —1
107§ 14 TeV LHC,
My, = 500 GeV

20 40 60 80 100 120
q, [GeV]




Not all observables are well-defined when ¢ is known only at LO

Example: transverse momentum (q7) of W/Z system in pp — V + X

@ Lowest order g7 physical is when o is known at NLO w/ leading log.
(LL) g7-resummation (or +PS) = do/dqt is LO+LL(g7)

L e e e e . B B B
; Fixed Order pp— T° T%j, O(at) |
(B 10 = Resummed, LL é
q‘\i r — — = Asymptotic, O(c,) ]

= - — + — Combined, normalized to NLO |
= 1 E
s i

UE“ r d Iz
3 L
S107'E A ,
F 14 TeV LHC, R. Ruiz, JHEPI2, 165 (2015)
My = 500 qu | [arXiv:1509.05416] 1

20 40 60 80 100 120
q, [GeV]



intuition
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By momentum conservation,
gluon emission will push

~v*/Z in various directions with some net effect

v Z
a /

R Rz (R paNy e pr— 0/



Example: transverse momentum (q71) of W/Z system in pp — V + X

@ Lowest order g7 physical is when o is known at NLO w/ leading log.
(LL) g7-resummation (or +PS) = do/dqr is LO+LL(qT)

2250 F 4 * D@ measurement
' —— b-space (Ladinsky-Yuan)
CTEQ2M g,=0.11 GeV*
8,=0.58 GeV’ g,=-1.5 GeV"!

—— py-space (Ellis-Veseli)

do/dpYy [pb/(GeVio)

1000 f MRSR1 @=0.1 GeV* g, =4.0 GeV
750
500 F \ HMRSB g,=0.15 (Jevzgz_mcevé
250F 0 N,
0E &
e B .
ﬁ 05 A t;-s;:ac‘e gL;di;skytYmnI T !
=S N S O I S S S S S
§ 05 Ft B py-space (Ellis-Veseli)
= e E D by
= ot LR T S S }
S 05 E+ | b-space (Arnold-Kauffman), |
é '05101520253035404550
pT [GeV/c]
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Pt5: what are jets?!
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Collinear Factorization Theorem

Collins, Soper, Sterman ('85,'88,'89); Collins, Foundations of pQCD (2011)

do(pp = B+ X) =3, ,fa®fp® Dap @ do(ab — B) + O (Ap/QPT2)
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Collinear Factorization Theorem

Collins, Soper, Sterman ('85,'88,'89); Collins, Foundations of pQCD (2011)

do(pp = B+ X) =3, ,fa®fp® Dap @ do(ab — B) + O (Ap/QPT2)

hadron-level scattering prob. is the product (convolution) of parton
-distrib. (PDFs), -emission (Sudakov), and -scattering probs. (|M|?)

>
Hadronic 6(ab — B)
7
process (s) Partonic - }Hard
o(pp — B+ X) process (8) A _ Jprocess (Q*
>
Oy <> «=r» «2r T DG



Collinear Factorization Theorem

Collins, Soper, Sterman ('85,'88,'89); Collins, Foundations of pQCD (2011)

do(pp = B+ X) =3, ,fa®fp® Dap @ do(ab — B) + O (Ap/QPT2)

hadron-level scattering prob. is the product (convolution) of parton
-distrib. (PDFs), -emission (Sudakov), and -scattering probs. (|M|?)

>
Hadronic 6(ab — B)
process (s) Partonic - }Hard
o(pp — B+ X) process (8) A _ Jprocess (Q*
>

Now, ignore parton shower, and simply write:

olpp = B+X) =Y, ,fa® fy®6(ab— B)+ O (Ap/QPH?)
= = =

m]

V)
/")
)



Rewrite the CFT in Mellin (“probability”) space: N = fol dx xN=1f(x)
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Rewrite the CFT in Mellin (“probability”) space: N = fol dx xN=1f(x)

6N:Zabfévx'dv b+ON<QP+2>
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Rewrite the CFT in Mellin (“probability”) space: N = fol dx xN=1f(x)

N = X, P X I 6+ O (G5

In Mellin space, DGLAP evolution is also nice:

d
e Iog,uf = Mas) f

anomalous dim.
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Rewrite the CFT in Mellin (“probability”) space: - fol dx xN=1£(x)

6N:ZabeXfN Ab+ON<QP+2>

In Mellin space, DGLAP evolution is also nice:

d
e Iog,uf = Mas) f

anomalous dim.

nice enough to be solvable!

f(12) = exp Udlogu r(ozs)} f(u1) = U(po, pa)f(pa)
—— ——

Bare
LL, NLL, NNLL, etc.
3 i da/B(c))

(evaluate integral using change of variable and QCD S-function: d log p

Dressed

78 / 101
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Rewrite the CFT in Mellin (“probability”) space: - fol dx xN=1£(x)

&N:ZabféVXfN Aab+ON<QP+2>

In Mellin space, DGLAP evolution is also nice:

d
e Iog,uf = Mas) f

anomalous dim.

nice enough to be solvable!

f(12) = exp Udlogu r(ozs)} f(u1) = U(po, pa)f(pa)
—— ——

Bare
LL, NLL, NNLL, etc.
3 i da/B(c))

(evaluate integral using change of variable and QCD S-function: d log p

Dressed

note: U(po, 1) takes f from (small) p, = pg to (large) pr = 11

R. Ruiz (IFJ PAN) Warsaw24

78 / 101



Remember: p are put in by hand to make the math easier

(nature does not care about p!)

“scale invariance of physical observables”: D&V =
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Remember: p are put in by hand to make the math easier

(nature does not care about p!)

. . . . w. yaN — _d ~N _
scale invariance of physical observables”: D& TTog 0 0

scale invariance gives one big zero!

R. Ruiz (IFJ PAN)
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Remember: p are put in by hand to make the math easier

(nature does not care about p!)

. . . . w. yaN — _d ~N _
scale invariance of physical observables”: D& TTog 0 0

scale invariance gives one big zero!

0="D(N) = DFY < FN¥ x 5N,
~—~—
=rfy
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Remember: p are put in by hand to make the math easier

(nature does not care about p!)

[ M M M ,'. NN d NN JR—
scale invariance of physical observables”: D& Tlogp 0 0

scale invariance gives one big zero!

— (aNy _ DFN  FN o N N HFN o AN
0=D(6")=Df; xfyxoly, + f3yxDfyxdcly,
=rfy =rfy
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Remember: p are put in by hand to make the math easier

(nature does not care about p!)

[ M M M ,'. NN d NN JR—
scale invariance of physical observables”: D& Tlogp 0 0

scale invariance gives one big zero!

0=D@EN) =DV xF¥x5N  + FVXDFYx5N  + FVxFVxDé,
—~— ~—
=rfy =rfy

R. Ruiz (IFJ PAN) Warsaw24 79 / 101



Remember: p are put in by hand to make the math easier

(nature does not care about p!)

“scale invariance of physical observables”: D&V = ﬁ"g#&’v =0

scale invariance gives one big zero!

0="D(5N) =2r x (?Q’x ?fxéab> + VX FN X Db
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Remember: pu are put in by hand to make the math easier

(nature does not care about p!)

“scale invariance of physical observables”: D&V = #"g#&’v =0

scale invariance gives one big zero!

0=D(GN) = 2T x (?’;’ x FIV x éab) + PN PN X Dé
— &, also obeys renormalization group evolution, i.e., DX «x X!

~ ~ ~ 1 ~
O ab
=0
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Remember: pu are put in by hand to make the math easier

(nature does not care about p!)

“scale invariance of physical observables”: D&V = g d_gN = 0
scale invariance gives one big zero!
0=D(GN) = 2T x (f’;’ x FIV x aab) + PN PN X Dé

—> &, also obeys renormalization group evolution, i.e., DX x X!

. - ~ 1
0=FN x P x 68, x [2F + - D5l

the solution is

& (12) = exp {2 / d log p r(ﬂ's)} oo(m1) = El (1o, )50 (1)
SN—— . ——

Dressed ~" Bare
LL, NLL, NNLL, etc.
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what does this mean?
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how are QCD partons geometrically distributed at Q = 13 — 32 GeV?
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how are QCD partons geometrically distributed at Q = 9.5 TeV?

YatLas
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QCD partons become collimated at high energies
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Even if the parton shower A is ignored, scale invariance gives it back:

&N = FV(pr1) x BN (pe2) x | Us(pen) Ua(pea) ET (un) | x &8 (1en)

=A
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Even if the parton shower A is ignored, scale invariance gives it back:

&N = FV(pr1) x BN (ue2) x | Us(peen) Ua(pe2) ET(in) | x & (1n)

=A

@ The parton shower (as a Sudakov factor) is physical!

@ The parton shower (as an RG evo. factor) dresses bare partons!

> fa/p } :’
Hadronic o(ab — B)
process (s) Partonic - }Hard
o(pp — B+ X) process (§) A _ Jprocess Q%)
>
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pronged events are macroscopic manifestations

of “particle dressing” (QFT!)

physical (dressed) particles contain a sea of partons
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External quarks and gluons typically carry small virtuality (off mass-shell!)
—> forced by uncertainty principle to radiate gluons just like EM!

/‘%%

Nature favors many, low E emissions vs few, high E emissions

calorimeter jet
particle jet

parton jet
pro!on

= strong QCD coupling leads to formation of a collimated streams of
energetic bound states (hadrons!), which we call jets
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bonus: jet identification
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LHC detector experiments are masterpieces

- MASSIVE (5-8 stories; 7-14kt)
- 41 coverage (LHCb~ 27)

- Sl tracking (giant CCD camera!) muon

spectrometer

- concentric calorimeters
- spectrometer or similar

neutrino ID: ®
- tracker, ECAL
- kinematic + isolation req.
quark ID: racking § e TeT

- tracker, ECAL, HCAL et
- jet clustering
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what is a jet?
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Suggestions? Intuitively: boosted, collimated hadronic activity.

\V

Va
)=

>

Sterman-Weinberg jets: Cones with
opening angle § < 1 containing up to
(E1or. — €)/ N energy from hadrons.

iz (IFJ PAN)

To study jets, we consider the partial cross
section o(E, 0, 2, €, 6) for e*e” hadron production
events, in which all but a fraction € <1 of the
total e *e” energy E is emitted within some pair
of oppositely directed cones of half-angle 6«1,
lying within two fixed cones of solid angle £ (with
T6°< @ « 1) at an angle ¢ to the ¢ ‘¢~ beam line,

Sterman, Weinberg ('77)
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Suggestions? Intuitively: boosted, collimated hadronic activity.

\V

Va
)=

To study jets, we consider the partial cross
section o(E, 0, 2, €, 6) for e*e” hadron production
events, in which all but a fraction € <1 of the

Sterman—Wein berg jetS: Cones Wlth total ee” energy E is emitted within some pair
. .. of oppositely directed cones of half-angle 6«1,
opening angle § < 1 containing UpP tO  iying within two fixed cones of solid angle 2 (with

T6°< @ « 1) at an angle ¢ to the ¢ ‘¢~ beam line,

(Etot. — €)/N energy from hadrons. Sterman, Weinberg ('77)

Since 1977, our understanding of jets and their constituents has evolved.

In particular,
@ Application of infrared and collinear (IRC) safety
@ Invention of sequential jet clustering algorithms
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Idea of IRC: physical quantities do not change under the emission of a
single soft (E,,q — 0) and/or collinear (6;; — 0) radiation

W Run : 142528 W Run : 142528 In TH and EXP,

y Event : 201376378 Event : 201376378 .

sz L A|Dijet Mass : 1636 Gev |, \ i Dijet Mass : 1636 GeV soft/colhnear parton

Er(GeV) e

i IR splitting should not change

the number of jets

200 jet1 Py: 739 GeV

-2 @ Jet 1 p: 739 GeV
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Idea of IRC: physical quantities do not change under the emission of a
single soft (E,,q — 0) and/or collinear (6;; — 0) radiation

W Run : 142528 W Run : 142528 In TH and EXP,

y Event : 201376378 Event : 201376378 .

sz L A|Dijet Mass : 1636 Gev |, \ i Dijet Mass : 1636 GeV soft/colhnear parton

Er(GeV) el

:ui, ol ekl splitting should not change
et H e’

00|/t 1 pr:739.60Y y the number of jets

SR 2 py 686 GV

Silly if adding a 1 GeV

n 2~'*‘; ‘.":.\ \\" ) N :
4 - o ° / hadron to this pp — jj

@ Jet 1 pp: 739 GeV

event made a difference.

R. Ruiz (IFJ PAN) Warsaw24 92 /101




Idea of IRC: physical quantities do not change under the emission of a
single soft (E,,q — 0) and/or collinear (6;; — 0) radiation

W Run : 142528 W Run : 142528 In TH and EXP,

y Event : 201376378 Event : 201376378 .

.é Dijet Mass : 1636 GeV éé Dijet Mass : 1636 GeV soft/co"lnear pal’ton

Er(GeV) el

i) e splitting should not change

the number of jets

200 jet1 Py: 739 GeV

N\ |z

Silly if adding a 1 GeV

/ hadron to this pp — jj
-2 et 1 p: 739 GeV .
N e event made a difference.

Formally, for momenta p; = p; + pj, an observable O is IRC-safe if
On+1(p17 <oy Pjs Pky+ - s Pn+1) - On(Pla sy Py + Pis - Pn+1)

when E; — 0, Ex — 0, or p; - pj = cosfj — 1
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Idea of IRC: physical quantities do not change under the emission of a
single soft (E,,q — 0) and/or collinear (6;; — 0) radiation

W Run : 142528 W Run : 142528 In TH and EXP,

y Event : 201376378 Event : 201376378 .

.é Dijet Mass : 1636 GeV .,é Dijet Mass : 1636 GeV soft/co"lnear pal’ton

Er(GeV) el

i) e splitting should not change

the number of jets

200 jet1 Py: 739 GeV

Silly if adding a 1 GeV
hadron to this pp — jj
event made a difference.

-2 @ Jet 1 p: 739 GeV

Formally, for momenta p; = p; + pj, an observable O is IRC-safe if
On+1(P17 <oy Pjs Pky+ - s Pn+1) - On(Pla sy Py + Pis - Pn+1)
when E; — 0, Ex — 0, or p; - pj = cosfj — 1

Summary: collimated/soft objects are unresolvable
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unsafe jets

(cone clustering algorithm)
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Consider two SW jets of radius R with their centers separated by R

jet jet jet jet jet

— soft divergence —

(@) (©)

G. Salam [0906.1833]
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Consider two SW jets of radius R with their centers separated by R

jet jet jet jet jet

~— soft divergence —

(@) (c)

G. Salam [0906.1833]

Beyond LO, a single soft radiation can cause the two jets to merge, or
the appearance Of a th|rd Jet SW jets do not require a min. energy threshold!
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Consider two SW jets of radius R with their centers separated by R

jet jet jet jet jet

— soft divergence —

(©)
G. Salam [0906.1833]

(@)

Beyond LO, a single soft radiation can cause the two jets to merge, or
the appearance Of a th|rd Jet SW jets do not require a min. energy threshold!

In soft/collinear limit, (n+ 1)-body kinematics map to the n-body
configuration
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Consider two SW jets of radius R with their centers separated by R

jet jet jet jet jet

~— soft divergence —

(©)
G. Salam [0906.1833]

(@)

Beyond LO, a single soft radiation can cause the two jets to merge, or
the appearance Of a th|rd Jet SW jets do not require a min. energy threshold!

In soft/collinear limit, (n+ 1)-body kinematics map to the n-body
configuration = cancellation of real and virt. [KLN Thm]
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Consider two SW jets of radius R with their centers separated by R

jet jet jet jet jet

~— soft divergence —

(©)
G. Salam [0906.1833]

(@)

Beyond LO, a single soft radiation can cause the two jets to merge, or
the appearance Of a th|rd Jet SW jets do not require a min. energy threshold!

In soft/collinear limit, (n+ 1)-body kinematics map to the n-body
configuration = cancellation of real and virt. [KLN Thm]

ALERT: If the number of jets changes in the soft limit, then phase spaces
are different
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Consider two SW jets of radius R with their centers separated by R

jet jet jet jet jet

~— soft divergence —

(©)
G. Salam [0906.1833]

(@)

Beyond LO, a single soft radiation can cause the two jets to merge, or
the appearance Of a th|rd Jet SW jets do not require a min. energy threshold!

In soft/collinear limit, (n+ 1)-body kinematics map to the n-body
configuration = cancellation of real and virt. [KLN Thm]

ALERT: If the number of jets changes in the soft limit, then phase spaces
are different — do not cancel
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Consider two SW jets of radius R with their centers separated by R

jet jet jet jet jet

~— soft divergence —

(©)
G. Salam [0906.1833]

(@)

Beyond LO, a single soft radiation can cause the two jets to merge, or
the appearance Of a th|rd Jet SW jets do not require a min. energy threshold!

In soft/collinear limit, (n+ 1)-body kinematics map to the n-body
configuration = cancellation of real and virt. [KLN Thm]

ALERT: If the number of jets changes in the soft limit, then phase spaces
are different — do not cancel = violation of KLN Thm
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IRC-safe jets
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Aim of jet-building is to “identify” hard partons by “undoing” splitting
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Aim of jet-building is to “identify” hard partons by “undoing” splitting

Consider a very energetic 1 — 2 parton splitting

q*(pi) Q(Pj)l

Since M l/mJ?k, where mjgk ~ EEi0jk
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Aim of jet-building is to “identify” hard partons by “undoing” splitting

Consider a very energetic 1 — 2 parton splitting

q*(pi) Q(Pj)l

Since M l/mJ?k, where mjgk ~ EEi0jk

= preference for low energy (E;j, Ex — 0)/small angles (0 — 0)!

R. Ruiz (IFJ PAN) Warsaw24 96 / 101



Aim of modern jet-building is to undo nature

q*(pi) q(p;) |

and cluster according to smallest “distance” measure:

dix = min(p’..,-,p’})PARﬁ(/Rz, ARj = (angular opening)

Warsaw24 o7 / 101



Aim of modern jet-building is to undo nature

q*(pi) q(p;)

\QQ_QQ/G(DH

and cluster according to smallest “distance” measure:

dy = min(p’..,-,p’})”ARfk/Rz, ARj = (angular opening)

e For p =2, djx mfk — distance in virtuality space

(best describes matrix element)

@ For p =0, dj x QJ?k = distance to geometric neighbors

(best for studying jet substructure)

@ For p = —2 = distance from hardest object to geometric neighbor

(possesses "ideal" properties)
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Choice of momentum weighting p changes pheno appreciably

@ p — 2 is the kr-algo. and clusters softer/more col. neighbors first
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Choice of momentum weighting p changes pheno appreciably
@ p — 2 is the kr-algo. and clusters softer/more col. neighbors first

e p = 0 is the Cambridge/Aachen algo. and clusters closest neighbors
» Useful for studying jet substructure since no momentum scale bias
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Choice of momentum weighting p changes pheno appreciably
@ p — 2 is the kr-algo. and clusters softer/more col. neighbors first

e p = 0 is the Cambridge/Aachen algo. and clusters closest neighbors
Useful for studying jet substructure since no momentum scale bias

v

@ p = —2 is the anti-k7-algo. and clusters hardest object to neighbors
» “ldeal” properties and reproduces cone-like jet structure

» [GoV] [ Cam/Aachen, R=1

By construction, all kr-style algorithms are IRC-safe. [0802.1189]
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summary
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Jets are powerful tools for studying physics
e what is the origin of jets? RG evolution / “dressing” of bare partons
@ how are jets useful? they quantify particle splitting  (not just cD partonst)
@ how are jets identified? recombining their splitting histories

@ where can jets be used? everywhere: from SM to BSM!
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Jets are powerful tools for studying physics
e what is the origin of jets? RG evolution / “dressing” of bare partons
@ how are jets useful? they quantify particle splitting (ot just acb partons))
@ how are jets identified? recombining their splitting histories
@ where can jets be used? everywhere: from SM to BSM!

Jets are incredibly rich structures and tell us much about gauge theories

we should respect the physics of jets but not be scared of it!
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thank you! questions?
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