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most important: these lectures are low-key; questions are great

I am literally here to tell you what I know
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Lecture Plan (Tuesday)

Lecture II:

Pt1: the parton model as a phenomenological model for QCD

Pt2: soft factorization in massless gauge theories

Pt3: collinear factorization in massless gauge theories

Pt4: parton showers

Pt5: what are jets?

Lunch at 12:30ish
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the big picture

R. Ruiz (IFJ PAN) Warsaw24 4 / 101



R. Ruiz (IFJ PAN) Warsaw24 5 / 101



Big Picture of Today’s Lectures

Today is about introducing jets at hadron colliders

what are jets?
how do jets form?
how are jets defined?
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part 1: the parton model
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subtle question: how to get µ+µ− in proton-proton collisions?
(protons do not carry lepton number)
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The parton model is the idea that the hadrons, e.g., the proton, are
bound states of wee bits of “valence” in a “sea” of more wee bits

(Bjorken (’68), Feynman (’69))

valence quanta carry net quantum charges of bound state
sea quanta carry various quantum charges and opposite charges
prediction: “parton-antiparton annihilation” into massive leptons

(Drell and Yan [PRL ’70])
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Partons were identified as q, q, and g of QCD

competing ideas were possible, e.g., QCD with scalar gluons

d µ−

µ+
d

γ∗/Z

prediction: “Drell-Yan” in reverse e−e+ → qqg and measure spin!
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Running the Experiment: PETRA at DESY
PETRA: an e+e− collider with

√
s = 13 − 32 GeV

Experiments: TASSO (below!), JADE, MARK J, PLUTO
Collider signature: e+e− → 3 prongs with 1

2 − 1
2 − 1 angular dist.
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Evidence for direct production of gluons! (’79)
PETRA: an e+e− collider with

√
s = 13 − 32 GeV

Experiments: TASSO (below!), JADE, MARK J, PLUTO
Collider signature: e+e− → 3 prongs with 1

2 − 1
2 − 1 angular dist.

(CERN Courier [Nov ’04])
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Discovery of a spin-1 gluon established QCD as the standard
description (model!) of strong nuclear interactions
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how does the parton model lead to this?
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Pt2: soft factorization in massless gauge theories
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Soft Factorization in Massless Gauge Theories
Factorization in gauge theories is when a radiation amplitude MR in
certain kinematic limits simplifies to the product of (a) a no-radiation
amplitude MB (Born!) term and (b) a universal (process-independent!) term:

MR =

q(p), u(p)

g(k), ǫ∗µ(k), (Eg/Eq) → 0
M̃

∝ MB =

Intuition:
Momentum conservation in QM: e− → e− + γ when Eγ ≪ Ee

Low resolving power of low energy photons/gluons
(it only knows about external momenta!)

Separation of scales:

Prob(hard+rad) “=” Prob(rad)⊗Prob(hard) +O(µ/Q)
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Soft Factorization in Massless Gauge Theories

MR =

q(p), u(p)

g(k), ǫ∗µ(k), (Eg/Eq) → 0
M̃

∝ MB =

Consider emission q∗(p + k) → q(p) + g(k) with Eg ≪ Eq

MR

∣∣∣
Eg≪Eq

= u(p)ϵ∗µ(k)(igsT A)γµ
( ̸p+ ̸kg )
(p+kg )2 · M̃ ≈ (igsT A)u(p) ϵ∗µγ

µ ̸p
(2p·kg )

· M̃

After anti-commuting and applying Dirac equation (u ̸ pu = 0):

= (igsT A) u(p) · (pµϵ∗µ)

(p·kg )
· M̃ = (igsT A)

pµϵ∗µ
(p · kg)︸ ︷︷ ︸

Process independent

× u(p) · M̃
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Soft Factorization in Massless Gauge Theories

MR =

q(p), u(p)

g(k), ǫ∗µ(k), (Eg/Eq) → 0
M̃

∝ MB =

Consider emission q∗(p + k) → q(p) + g(k) with Eg ≪ Eq

MR

∣∣∣
Eg≪Eq

= u(p)ϵ∗µ(k)(igsT A)γµ
( ̸p+ ̸kg )
(p+kg )2 · M̃ ≈ (igsT A)u(p) ϵ∗µγ

µ ̸p
(2p·kg )

· M̃

After anti-commuting and applying Dirac equation (u ̸ pu = 0):

= (igsT A) u(p) · (pµϵ∗µ)

(p·kg )
· M̃ = (igsT A)

pµϵ∗µ
(p · kg)︸ ︷︷ ︸

Process independent

× u(p) · M̃︸ ︷︷ ︸
=MB!
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Soft Factorization in Massless Gauge Theories

MR =

q(p), u(p)

g(k), ǫ∗µ(k), (Eg/Eq) → 0
M̃

∝ MB =

Generically, for radiation Eg ≪ Q

|MR|2
∣∣∣
Eg≪Eq

≈ g2
s
∑

i,j∈{external} (color factor)× (pi ·pj )
(pi ·k)(pj ·k) × |MB|2

A remarkably complicated situation is remarkably simple to write
simplifies further for QED
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another perspective on factorization in massless gauge theories:

the Weizsäcker-Williams approximation

e−(pA)

e−(p1)

γ(q2)

X(pB)

Y
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Pt3: collinear factorization in massless gauge theories
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e−(pA)

e−(p1)

γ(q2)

X(pB)

Y

Consider the scattering process eX → e′Y . Generically, M is

idea: when θe ≪ 1, γ∗ goes on-shell and becomes an asymptotic state

=⇒ M(eX → eY ) = M(e → eγ) × M(γX → eY ) + O(θe)
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a brief digression on polarization
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Decomposing Propagators

Completeness relationships between propagators & polarization
vectors in gauge theories are subtle. Consider QED in Feynman gauge

=⇒ ξ = 1 so (1 − ξ)qµqν/q2 → 0:

−gµν =


−1

+1
+1

+1

 =
∑

λ=±,0,S εµ(q, λ)ε∗ν(q, λ)

For q = (q0, 0, 0, q3) and transverse pols εµ(λ = ±) = (0,∓1,−i , 0)/
√

2

∑
λ=± εµ(q, λ)ε∗ν(q, λ) =


0

+1 0
0 +1

0
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Decomposing Propagators

For q = (q0, 0, 0, q3) and longitudinal εµ(λ = 0) = (q3, 0, 0, q0)/
√

q2

∑
λ=0 εµ(q, λ)εν(q, λ) = q2

q2


−1

0
0

+1

 +
qµqν

q2

For “auxiliary” (A) or “scalar” (S) polarization εµ(λ = S) = qµ/
√
−q2∑

λ=S εµ(q, λ)εν(q, λ) = −qµqν

q2

Precise form for λ = 0, S depends on several factors:
– broken (massive) or unbroken (massless) gauge symmetry
– gauge (Feynman vs Landau vs Unitary vs Axial)
– gauge fixing (ξ = 1 or n2 = −1)
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Decomposing Propagators

For q = (q0, 0, 0, q3) and longitudinal εµ(λ = 0) = (q3, 0, 0, q0)/
√

q2

∑
λ=0 εµ(q, λ)εν(q, λ) = q2

q2


−1

0
0

+1

 +
qµqν

q2

For “auxiliary” (A) or “scalar” (S) polarization εµ(λ = S) = qµ/
√
−q2∑

λ=S εµ(q, λ)εν(q, λ) = −qµqν

q2

Example: for W /Z in Unitary gauge, εW /Z
µ (λ = S) = qµ

√
1

M2
V
− 1

q2∑
λ=S εµ(q, λ)εν(q, λ) = −qµqν

q2 +
qµqν

M2
V
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Decomposing Propagators

For q = (q0, 0, 0, q3) and longitudinal εµ(λ = 0) = (q3, 0, 0, q0)/
√

q2

∑
λ=0 εµ(q, λ)εν(q, λ) = q2

q2


−1

0
0

+1

 +
qµqν

q2

For “auxiliary” (A) or “scalar” (S) polarization εµ(λ = S) = qµ/
√
−q2∑

λ=S εµ(q, λ)εν(q, λ) = −qµqν

q2

Bonus, longitudinal polarization vectors can be written as Dawson (’85)

εµ(λ = 0) =
qµ√

q2
+O

(√
q2

q0

)
importance of this soon!
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the Weizsäcker-Williams approximation

e−(pA)

e−(p1)

γ(q2)

X(pB)

Y
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e−(pA)

e−(p1)

γ(q2)

X(pB)

Y

Consider the scattering process eX → e′Y . Generically, M is

First focus on matrix element for ℓ → ℓγλ splitting
R. Ruiz (IFJ PAN) Warsaw24 31 / 101



Calculating M(ℓ → ℓV )

Many ways to evaluate M. Helicity amplitudes are super fast:

e
−(pi)

γ
∗

λ(q = pi − pf)

e
−(pf)

−iM(ℓλi → ℓλf VλV ) = Jµ
ℓλf ℓλi

· ε∗µ(q, λV )

R. Ruiz (IFJ PAN) Warsaw24 32 / 101



Calculating M(ℓ → ℓV )

Many ways to evaluate M. Helicity amplitudes are super fast:

e
−(pi)

γ
∗

λ(q = pi − pf)

e
−(pf)

−iM(ℓλi → ℓλf VλV ) = Jµ
ℓλf ℓλi

· ε∗µ(q, λV )

lepton current (only two helicity configurations!)

Jµ
ℓLℓL

= (−ieQe)

 uL(pf )︸ ︷︷ ︸
LH helicty

γµ uL(pi)︸ ︷︷ ︸
LH helicty


Jµ
ℓRℓR

= (−ieQe)

 uR(pf )︸ ︷︷ ︸
RH helicty

γµ uR(pi)︸ ︷︷ ︸
RH helicty
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Calculating M(ℓ → ℓV )

Many ways to evaluate M. Helicity amplitudes are super fast:

e
−(pi)

γ
∗

λ(q = pi − pf)

e
−(pf)

−iM(ℓλi → ℓλf VλV ) = Jµ
ℓλf ℓλi

· ε∗µ(q, λV )

outgoing photon (four helicity polarizations!)

– λ = ± =⇒ εµ = (0,± cos θγ ,−i ,± sin θγ)/
√

2

– λ = 0 =⇒ εµ ∼ qµ/
√

q2 +O(
√

q2/q0)

– λ = S =⇒ εµ ∼ qµ/
√

q2
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Calculating M(ℓ → ℓV )

Many ways to evaluate M. Helicity amplitudes are super fast:

e
−(pi)

γ
∗

λ(q = pi − pf)

e
−(pf)

−iM(ℓλi → ℓλf VλV ) = Jµ
ℓλf ℓλi

· ε∗µ(q, λV )

Dirac equation for massless fermions

Jµ
ℓf ℓi

· qµ = (coupling factors) × [u(pf ) γ
µ (pi − pf )µ u(pi)]

=

u(pf ) ̸piu(pu)︸ ︷︷ ︸
=��mℓu(pi )

−

u(pf ) ̸pf︸ ︷︷ ︸
=u(pf )��*

0mℓ

u(pi)

 = 0
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Calculating M(ℓ → ℓV )

Many ways to evaluate M. Helicity amplitudes are super fast:

e
−(pi)

γ
∗

λ(q = pi − pf)

e
−(pf)

−iM(ℓλi → ℓλf VλV ) = Jµ
ℓλf ℓλi

· ε∗µ(q, λV )

outgoing photon (four 2.5 helicity polarizations!)

– λ = ± =⇒ εµ = (0,± cos θγ ,−i ,± sin θγ)/
√

2

– λ = 0 =⇒ εµ ∼ qµ/
√

q2 + O(
√

q2/q0)

– λ = S =⇒ εµ ∼ qµ/
√

q2
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Spinors and Spinor (Current) Algebra
To evaluate Jµ

ℓλf ℓλi
, we need spinors and spinor algebra (simply matrix algebra!)
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Spinors and Spinor (Current) Algebra

Spinor algebra appears complicated, but simplifies a lot

In the lab frame, pi = Ei (1, 0, 0,+1) and this gives

uL(pi) =
√

2Ei


0
1
0
0

 and uR(pi) =
√

2Ei


0
0
1
0



In the same frame, pf = Ef (1, sin θℓ, 0, cos θℓ) and this gives

uL(pf ) =
√

2Ef


0
0

− sin θℓ
2

cos θℓ
2


T

and uR(pf ) =
√

2Ef


cos θℓ

2
sin θℓ

2
0
0


T
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Spinors and Spinor (Current) Algebra

Contracting Dirac/spinor indices gives:
pro tip: this entails (1 × 4) · (4 × 4) · (4 × 1) matrix multiplication for each γ0, γ1, . . . .

Jµ
ℓLℓL

= (−ieQe)
√

2EiEf

(
cos θℓ

2 , sin
θℓ
2 ,−i sin θℓ

2 , cos
θℓ
2

)
Jµ
ℓRℓR

= (−ieQe)
√

2EiEf

(
cos θℓ

2 , sin
θℓ
2 ,+i sin θℓ

2 , cos
θℓ
2

)
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Splitting Amplitudes

Contracting Lorentz indices gives:

M(e−L → e−L γ+) = (+2ieQe)
√

2E1EA cos

(
θl + θγ

2

)
sin

(
θγ
2

)
M(e−L → e−L γ−) = (−2ieQe)

√
2E1EA cos

(
θγ
2

)
sin

(
θl + θγ

2

)
M(e−L → e−L γ0) ∼ O

(√
q2/EA

)
A few observations:

M(e−R → e−R γλ) related by parity inversion

R. Ruiz (IFJ PAN) Warsaw24 40 / 101



Splitting Amplitudes

Contracting Lorentz indices gives:

M(e−L → e−L γ+) = (+2ieQe)
√

2E1EA cos

(
θl + θγ

2

)
sin

(
θγ
2

)
M(e−L → e−L γ−) = (−2ieQe)

√
2E1EA cos

(
θγ
2

)
sin

(
θl + θγ

2

)
M(e−L → e−L γ0) ∼ O

(√
q2/EA

)
A few observations:

M(e−R → e−R γλ) related by parity inversion

R. Ruiz (IFJ PAN) Warsaw24 40 / 101



Splitting Amplitudes

Contracting Lorentz indices gives:

M(e−L → e−L γ+) = (+2ieQe)
√

2E1EA cos

(
θl + θγ

2

)
sin

(
θγ
2

)
M(e−L → e−L γ−) = (−2ieQe)

√
2E1EA cos

(
θγ
2

)
sin

(
θl + θγ

2

)
M(e−L → e−L γ0) ∼ O

(√
q2/EA

)
A few observations:

M(e−R → e−R γλ) related by parity inversion
we want to see what happens when γ goes on shell, i.e., γ∗ → γ

(in practice, neglect O(
√

q2/EA) terms
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Splitting Amplitudes

Contracting Lorentz indices gives:

M(e−L → e−L γ+) = (+2ieQe)
√

2E1EA cos

(
θl + θγ

2

)
sin

(
θγ
2

)
M(e−L → e−L γ−) = (−2ieQe)

√
2E1EA cos

(
θγ
2

)
sin

(
θl + θγ

2

)
M(e−L → e−L γ0) ∼ O

(√
q2/EA

)
A few observations:

M(e−R → e−R γλ) related by parity inversion
we want to see what happens when γ goes on shell, i.e., γ∗ → γ

(in practice, neglect O(
√

q2/EA) terms)

γ goes on shell, i.e., γ∗ → γ also means pℓ
T → 0 since p2

T ∝ q2

(in practice, expand to lowest order in θl , θγ )
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Collinear Factorization in Massless Gauge Theories

e−(pA)

e−(p1)

γ(q2)

X(pB)

Y

In high-energy collinear e → eγ splitting, γ∗ → γ and unphysical
polarizations decouple and matrix elements factor out (“factorize”)

M(eX → eY )

=
∑
λ=±

M(e → eγλ) × 1
q2 × M(γλX → eY ) + O

(
θℓ, θγ ,

√
q2

EA

)
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Y

In high-energy collinear e → eγ splitting, γ∗ → γ and unphysical
polarizations decouple and matrix elements factor out (“factorize”)

M(eX → eY )

=
∑
λ=±

M(e → eγλ)︸ ︷︷ ︸
proc. independent

× 1
q2 × M(γλX → eY )︸ ︷︷ ︸

proc. dependent

+ O

(
θℓ, θγ ,

√
q2

EA

)
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Collinear Factorization in Massless Gauge Theories

e−(pA)

e−(p1)

γ(q2)

X(pB)

Y

In high-energy collinear e → eγ splitting, γ∗ → γ and unphysical
polarizations decouple and (matrix element)2 factorize

|M(eX → eY )|2

=
1
q4

∑
λ=±

|M(e → eγλ)|2 × |M(γλX → eY )|2 + O

(
θℓ, θγ ,

√
q2

EA

)
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Collinear Factorization in Massless Gauge Theories

e−(pA)

e−(p1)

γ(q2)

X(pB)

Y

Defining z = Eγ/EA, then for θe ≪ 1 we get something nice
(see also Peskin and Schroeder to get here)

∑
λ,d.o.f. |M(e → eγ)|2 = (coup. factors)2 4q2

z(1−z)

[
1+(1−z)2

z

]
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now to put everything together
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Phase Space and Fermi’s Golden Rule

1. Phase Space: in general, dPSnY +1 can be split into dPSnY and dPS1

2. Fermi’s Golden Rule: for scattering rates (split according to dPS!)

σ =
∫

dPSny+1 × dσ̂
dPSnY +1

=
∫

dPSny

∫
dPS1 × dσ̂

dPSnY +1
,

where dσ
dPSnY +1

=
1

2Q2︸︷︷︸
flux

1
(2sa + 1)(2sb + 1)Na

c Nb
c︸ ︷︷ ︸

spin/color averaging

∑
d .o.f .

|MnY +1|2
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Phase Space and Fermi’s Golden Rule

1. Phase Space: in general, dPSnY +1 can be split into dPSnY and dPS1

2. Fermi’s Golden Rule: for scattering rates (split according to dPS!)

σ =
∫

dPSny+1 × dσ̂
dPSnY +1

=
∫

dPSny

∫
dPS1 × dσ̂

dPSnY +1
,

where dσ
dPSnY +1

=
1

2Q2︸︷︷︸
flux

1
(2sa + 1)(2sb + 1)Na

c Nb
c︸ ︷︷ ︸

spin/color averaging

∑
d .o.f .

|MnY +1|2︸ ︷︷ ︸
use factorized ME here!
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e−(pA)

e−(p1)

γ(q2)

X(pB)

Y

3. Combine and reorganize Q2 = (q + pB )2 = 2q · pB ≡ z × (pA · pB ) = z × s

σ(e−X → e−Y )
∣∣∣
θe≪1

=

∫ dϕ1dzdq2

4(2π)3 (1 − z)

∑
λ,d.o.f.

|M(e → eγ∗)|2 × 1
q4 × Q2

2s σ̂(γX → Y )
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e−(pA)

e−(p1)

γ(q2)

X(pB)

Y

4. Integrate! Integrate! Integrate!

σ
∣∣∣
θe≪1

=
∫

dz
(
αq2

e
2π

)
Pγe(z) ×

∫ dq2

q2 × σ̂(γX → Y )

The function Pγe(z) is one of the Altarelli-Parisi splitting functions
gives splitting probability of e → γ for Eγ = z × EA

e
−(pi)

γ
∗

λ(q = pi − pf)

e
−(pf) Pγe(z) ≡ Pγ←e(z) = 1+(1−z)2

z
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∣∣∣
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Weizsäcker-Williams Approximation

e−(pA)

e−(p1)

γ(q2)

X(pB)

Y

5. After integrating over virtuality of γ

σ(e−X → e−Y )
∣∣∣
θe≪1

=
∫

dz αq2
e

2π Pγe(z) log
(

Q2

m2
e

)
︸ ︷︷ ︸

fγ/e(z,Q)

σ̂(γX → Y )

fγe can be identified as the γ (number) density within e
also known as the parton (number) density function of parton distribution function
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intuition?

R. Ruiz (IFJ PAN) Warsaw24 54 / 101



bare vs dressed particles in QFT

e−

γ

ν W

. . . . . .

×

physical (dressed) particles contain a sea of partons
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Weizsäcker-Williams Approximation
Beyond leading order (and more systematically!), fγe picks up additional contibutions:

fγ/e(z , µ2
r ) = fγ/e(z)︸ ︷︷ ︸

“first emission”

+
α

2π

∫ 1

z

dx
x Pγe(x) fe/e

( z
x

)
log

µ2
r

µ2
0
+ C(x , z)︸ ︷︷ ︸

add′l γ emissions

e
−(pA) e

−(p1)

γ

=⇒ a scale evolution: δfγ/e(z , µ2
r ) ≈ α

2π
∫ 1

z
dx
x Pγe(x) f

( z
x , µ

2
r
)
δ log µ2

r

=⇒ “dressing” / renormalization of beams from µ2
0 = q2 ≪ E 2

A to µ2
r

∂fγ/e(z,µ2
r )

∂ log µ2 = α
2π
∫ 1

z
dx
x Pγe(x) f

( z
x , µ

2
r
)
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WWA aka Collinear Factorization

renormalization / “dressing” accounts for all collinear rad. with kT < µr

∂fγ/e(z,µ2
r )

∂ log µ2 = α
2π
∫ 1

z
dx
x Pγe(x) f

( z
x , µ

2
r
)

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations
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this holds for QED and QCD
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possibly also for EW theory
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µ−

γ

ν W

. . . . . .

×

physical (dressed) particles contain a sea of partons
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Pt4: parton showers
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The idea of a parton shower is to capture soft/collinear ISR/FSR
(which are near the singular regions of FO matrix elements!)

q(pj)

∼ αn
s (k

2

T ) log
n
(

t
k2
T

)

Such ISR/FSR are not naively O(αs) suppressed, i.e., power suppressed,
since momentum scale of emission is small compared to hard scale Q

logs from extra propagators can grow large: dp2
T/p2

T ∼ log p2
T ≳ 1/αs

Using collinear factorization and unitarity (prob conservation!),
we can account for such radiation to all orders in perturbation theory!
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For 1 → 2 splitting at virtuality t, coll. fact. in QCD / QCD are same:
(just replace α → αs CF (A) for q(g))

σ2→(n+1) ∼ σ2→n
∫

dz dt
t

αsCi
2π Pji(z)

The differential splitting probability is then

dPSplit ∼
σ(n+1)
σn

= dt
t
∫

dz αsCi
2π Pji(z)

By unitarity, likelihood of a parton at t0 not radiating down to t1 < t0 is

PNo Split(t1, t0) = 1 − PSplit = 1 −
∫ dt

t
∫

dz αsCi
2π Pji(z)

≈ exp
[∫ t1

t0
dt
t
∫

dz αsCi
2π Pji(z)

]
On event-by-event basis, throw random number y ∈ [0, 1]. Check if
splittings occur. If yes, add 1 → 2 splitting. Restart, until no splitting.

dσ(pp → B + X ) =
∑

a,b f a ⊗ f b ⊗ ∆ab︸︷︷︸⊗d σ̂(ab → B)
=P(z) (survival rate)

+O
(
Λp

NP/Qp+2)
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=P(z) (survival rate)

+O
(
Λp

NP/Qp+2)
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For 1 → 2 splitting at virtuality t, coll. fact. in QCD / QCD are same:
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how accurate is all of this?

leading log (LL), usually
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Fixed Order vs Resummation
Resummation: REnormalization-grouped improved SUMMATION
- a technique for accounting for a particular type if radiation,
e.g., strongly ordered collinear gluons to all orders in pert. theory

ui

dj V (q)

+ . . .

LO NLO NNLO

+ . . .

LL

+ . . .

NLL

+ . . .

k
g1
T ≪ k

g2
T ≪ k

g3
T ≪ . . . ≪

√
q2 k

g1
T , k

g2
T ≪ k

g3
T ≪ . . . ≪

√
q2

. . .

. . .
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Sketch of Factorization and Exponentiation
Combine our factorized results:

MV+1 soft/collinear radiation =

rad. pole + loop pole︸ ︷︷ ︸
universal factor

×MFO
V

The squaring, averaging, and integrating over (n + 1)-body phase space

dσV+1 soft/collinear radiation =

∫
dPS1(universal piece)︸ ︷︷ ︸

∣∣∣
soft/collinear

× σFO
V

finite, ≡ S. solve integral with RGE to LL, NLL,...

Keeping track of symmetry factors lets us do this for k-emissions:

dσV+k soft/collinear =
1
k! [S]

k × σFO
V

Summing over all such emissions gives us a closed result:

dσV+any soft/collinear =
∑

k
1
k! [S]

k × σFO
DY = exp[S]× σFO

V
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is there double counting?

yes, usually!

R. Ruiz (IFJ PAN) Warsaw24 67 / 101



is there double counting? yes, usually!

R. Ruiz (IFJ PAN) Warsaw24 67 / 101



MC@NLO
Phase space double counting is now a concern when adding PS to NLO:

At NLO, is the first/hardest emission from the PS or ME?

Solution: MC@NLO (Frixione, Webber [hep-ph/0204244]; other solutions, too! e.g., POWHEG)

If collinear/soft, it came from the PS. If wide-angle/hard, then ME
PS and ME describe these regions well, respectively.

Importantly,
The PS assumptions are invalidated at wide angles
The ME becomes perturbatively instable in soft/collinear limits.
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MC@NLO in practice: (Frixione, Webber [hep-ph/0204244])

introduce auxiliary term ±dσA to move 1/εIR cancellation
introduce auxiliary term ±dσM̸C to move first O(αs) emission
result: moves “parton shower” out of dPS(n+1) and into dPSn

Main Monte Carlo formula at NLO in QCD:

σNLO =
∫

dPSn
[
dσB + dσCT +

(
dσV +

∫
dPS1dσA)] (Born-like)

+
∫

dPS(n+1)
[
dσM̸C − dσA] (counter events)

+
∫

dPS(n+1)
[
dσR − dσM̸C] (real events)

normalization okay but dists. wrong without parton shower!
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language of precision:

precision of normalization ̸= precision of distribution
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Not all observables are well-defined when σ is known only at LO

Example: transverse momentum (qT ) of W /Z system in pp → V + X
qT = 0 at Born-level (no recoil!) and singular at O(αs)
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q
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1
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[f

b
 /
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]
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/d
q
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 d
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14 TeV LHC,

)
T

(qδ ∝ 
T

dq

LOσd ←

d µ−

µ+
d

γ∗/Z

;

qT = 0 (no premordial pT)

;



Not all observables are well-defined when σ is known only at LO

Example: transverse momentum (qT ) of W /Z system in pp → V + X
Lowest order qT physical is when σ is known at NLO w/ leading log.
(LL) qT -resummation (or +PS) =⇒ dσ/dqT is LO+LL(qT )
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14 TeV LHC,
[arXiv:1509.05416]

R. Ruiz, JHEP12, 165 (2015)

d µ−

µ+
d

γ∗/Z

;



intuition
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d

µ−

µ+
d

g

γ∗/Z

By momentum conservation,

gluon emission will push

γ∗/Z in various directions with some net effect
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Example: transverse momentum (qT ) of W /Z system in pp → V + X
Lowest order qT physical is when σ is known at NLO w/ leading log.
(LL) qT -resummation (or +PS) =⇒ dσ/dqT is LO+LL(qT )
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Pt5: what are jets?1

1from an RGE perspective: Contopanagos, Laenen, Sterman (’96); Becher, Broggio, Ferroglia (’14); etc
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Collinear Factorization Theorem
Collins, Soper, Sterman (’85,’88,’89); Collins, Foundations of pQCD (2011)

dσ(pp → B + X ) =
∑

a,b f a ⊗ f b ⊗∆ab ⊗ d σ̂(ab → B) +O
(
Λp

NP/Qp+2)

hadron-level scattering prob. is the product (convolution) of parton
-distrib. (PDFs), -emission (Sudakov), and -scattering probs. (|M|2)

}

σ̂(ab → B)

σ(pp → B +X) process (ŝ)

Hadronic

fa/p

fb/p

⌊

⌈

Partonic

process (Q2)

Hard

⌋

⌉

⌊

⌋

⌈

⌉

process (s)

Now, ignore parton shower, and simply write:

σ(pp → B + X ) =
∑

a,b f a ⊗ f b ⊗ σ̂(ab → B) +O
(
Λp

NP/Qp+2)
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Rewrite the CFT in Mellin (“probability”) space: f̃ N =
∫ 1

0 dx xN−1f (x)

σ̃N =
∑

a,b f̃ N
a × f̃ N

b × ˜̂σN
ab +ON

(
Λp

NP
Qp+2

)
In Mellin space, DGLAP evolution is also nice:

d
d log µ f = Γ(αs)︸ ︷︷ ︸

anomalous dim.

f

nice enough to be solvable!

f (µ2)︸ ︷︷ ︸
Dressed

= exp

[∫
d log µ Γ(αs)

]
︸ ︷︷ ︸

LL, NLL, NNLL, etc.

f (µ1)︸ ︷︷ ︸
Bare

≡ U(µ2, µ1)f (µ1)

(evaluate integral using change of variable and QCD β-function: d log µ = dα/β(α))

note: U(µ2, µ1) takes f from (small) µr = µ1 to (large) µr = µ1
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Remember: µ are put in by hand to make the math easier
(nature does not care about µ!)

“scale invariance of physical observables”: Dσ̃N ≡ d
d log µ σ̃

N = 0

scale invariance gives one big zero!

0 = D(σ̃N) = Df̃ N
a︸︷︷︸

=Γf̃ N
a

× f̃ N
b × ˜̂σN

ab + f̃ N
a ×Df̃ N

b︸︷︷︸
=Γf̃ N

b

× ˜̂σN
ab + f̃ N

a × f̃ N
b ×D ˜̂σab
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d log µ σ̃

N = 0

scale invariance gives one big zero!

0 = D(σ̃N) = Df̃ N
a︸︷︷︸
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N = 0
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0 = D(σ̃N) = 2Γ×
(

f̃ N
a × f̃ N

b × ˜̂σab

)
+ f̃ N

a × f̃ N
b ×D ˜̂σab

=⇒ ˜̂σab also obeys renormalization group evolution, i.e., DX ∝ X !

0 = f̃ N
a × f̃ N

b × ˜̂σN
ab × [2Γ +

1
˜̂σN

ab
D ˜̂σN

ab︸ ︷︷ ︸
=0

]

the solution is
˜̂σN

ab(µ2)︸ ︷︷ ︸
Dressed

= exp

[
−2
∫

d log µ Γ(αs)

]
︸ ︷︷ ︸

LL, NLL, NNLL, etc.

˜̂σN
ab(µ1)︸ ︷︷ ︸
Bare

≡ E †(µ2, µ1)˜̂σ
N
ab(µ2)
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what does this mean?
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how are QCD partons geometrically distributed at Q = 13 − 32 GeV?
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how are QCD partons geometrically distributed at Q = 9.5 TeV?
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QCD partons become collimated at high energies
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Even if the parton shower ∆ is ignored, scale invariance gives it back:

σ̃N = f̃ N
a (µf 1)× f̃ N

b (µf 2)×
[
U1(µf 1)U2(µf 2)E †(µh)

]
︸ ︷︷ ︸

=∆

× ˜̂σN
ab(µh)

1 The parton shower (as a Sudakov factor) is physical!

2 The parton shower (as an RG evo. factor) dresses bare partons!

}

σ̂(ab → B)

σ(pp → B +X) process (ŝ)

Hadronic

fa/p

fb/p

⌊

⌈

Partonic

process (Q2)

Hard

⌋

⌉

⌊

⌋

⌈

⌉

process (s)
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pronged events are macroscopic manifestations

of “particle dressing” (QFT!)

physical (dressed) particles contain a sea of partons
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External quarks and gluons typically carry small virtuality (off mass-shell!)
=⇒ forced by uncertainty principle to radiate gluons just like EM!

Nature favors many, low E emissions vs few, high E emissions

=⇒ strong QCD coupling leads to formation of a collimated streams of
energetic bound states (hadrons!), which we call jets
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bonus: jet identification
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LHC detector experiments are masterpieces

- MASSIVE (5-8 stories; 7-14kt)

- 4π coverage (LHCb∼ 2π)

- Si tracking (giant CCD camera!)

- concentric calorimeters
- spectrometer or similar

neutrino ID: /
electron ID:
- tracker, ECAL
- kinematic + isolation req.

quark ID:
- tracker, ECAL, HCAL
- jet clustering
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what is a jet?
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Suggestions? Intuitively: boosted, collimated hadronic activity.

q′

e−

q

W−

νe

Sterman-Weinberg jets: Cones with
opening angle δ ≪ 1 containing up to
(ETot. − ϵ)/N energy from hadrons.

Since 1977, our understanding of jets and their constituents has evolved.

In particular,
Application of infrared and collinear (IRC) safety
Invention of sequential jet clustering algorithms
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Idea of IRC: physical quantities do not change under the emission of a
single soft (Erad → 0) and/or collinear (θij → 0) radiation

In TH and EXP,
soft/collinear parton
splitting should not change
the number of jets

Silly if adding a 1 GeV
hadron to this pp → jj
event made a difference.

Formally, for momenta pi = pj + pk , an observable O is IRC-safe if

On+1(p1, . . . , pj , pk , . . . , pn+1) = On(p1, . . . , pj + pk , . . . , pn+1)

when Ej → 0, Ek → 0, or p̂i · p̂j = cos θij → 1

Summary: collimated/soft objects are unresolvable
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unsafe jets

(cone clustering algorithm)
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Consider two SW jets of radius R with their centers separated by R

Beyond LO, a single soft radiation can cause the two jets to merge, or
the appearance of a third jet SW jets do not require a min. energy threshold!

In soft/collinear limit, (n + 1)-body kinematics map to the n-body
configuration =⇒ cancellation of real and virt. 1/εIR [KLN Thm]

ALERT: If the number of jets changes in the soft limit, then phase spaces
are different =⇒ 1/εIR do not cancel =⇒ violation of KLN Thm
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IRC-safe jets
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Aim of jet-building is to “identify” hard partons by “undoing” splitting

Consider a very energetic 1 → 2 parton splitting

Since M ∝ 1/m2
jk , where m2

jk ∼ EjEkθjk

=⇒ preference for low energy (Ej ,Ek → 0)/small angles (θjk → 0)!
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Aim of modern jet-building is to undo nature

and cluster according to smallest “distance” measure:

djk = min(pj
T , pk

T )
p∆R2

jk/R2, ∆Rjk = (angular opening)

For p = 2, djk ∝ m2
jk =⇒ distance in virtuality space

(best describes matrix element)

For p = 0, djk ∝ θ2
jk =⇒ distance to geometric neighbors

(best for studying jet substructure)

For p = −2 =⇒ distance from hardest object to geometric neighbor
(possesses "ideal" properties)
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Choice of momentum weighting p changes pheno appreciably
p = 2 is the kT -algo. and clusters softer/more col. neighbors first

p = 0 is the Cambridge/Aachen algo. and clusters closest neighbors
▶ Useful for studying jet substructure since no momentum scale bias

p = −2 is the anti-kT -algo. and clusters hardest object to neighbors
▶ “Ideal” properties and reproduces cone-like jet structure

By construction, all kT -style algorithms are IRC-safe. [0802.1189]
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summary
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Jets are powerful tools for studying physics

what is the origin of jets? RG evolution / “dressing” of bare partons

how are jets useful? they quantify particle splitting (not just QCD partons!)

how are jets identified? recombining their splitting histories

where can jets be used? everywhere: from SM to BSM!

Jets are incredibly rich structures and tell us much about gauge theories
we should respect the physics of jets but not be scared of it!
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ν ℓthank you! questions?
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