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Kinetic theory

• In galaxies or globular clusters, stars act like gas particles, with collisions between them being

so rare that they can be ignored to some extent. These stars interact solely through their

gravitational fields and can be described by the Einstein-Vlasov system.

• In the case of a collisionless gas, matter is described by the particle distribution function

ℱ defined on the phase space. The distribution function ℱ is a non-negative function supported

on the mass shell.

Other applications

• Modeling of plasma near black holes (magnetic filed needed).

• Modeling dark matter.

PM := {g𝛼𝛽p
𝛼p𝛽 = −m0

2, p𝛼 future pointing}



Vlasov equation

• Vlasov gas can be understood as a collection of particles moving along timelike future-directed geodesic lines. For 

collisionless particles, the Vlasov equation can be expressed as follows: 

The distribution function ℱ is not an observable quantity on its own. Our focus is on physical quantities.

Physical quantities

• Let (ℳ,𝑔) denote the spacetime manifold. The cotangent bundle on (ℳ,𝑔) is defined as:
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T∗ℳ = {(x,p): x ϵ ℳ, p ϵ Tx
∗ ℳ}

Px
+ = {p ϵ Tx

∗ℳ:g𝜇𝜈p𝜇p𝜈 < 0, p is future directed}



Physical quantities

Where s is a unit vector normal to S, ηs denotes the three-dimensional volume element. The dvolx denotes the 

volume element in Px
+ :

• The expression for 𝑁(S):

• The energy momentum tensor in the Vlasov model is defined as:

T𝜇𝜈 x =  
Px
+

1

ℱ x, p p𝜇p𝜈 dvolx p .

N S = −  
S

1

J𝜇s
𝜇ηS .

dvolx p = −det g𝜇𝜈(x) dp0dp1dp2dp3.

• Let S be a three-dimensional spacelike surface in ℳ. The average number of particle trajectories whose 

projections on ℳ intersect S:

N S = − 
S

1
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+

1

ℱ x, p pμ s
μdvolx p ηS



Model

• We consider Bondi-type accretion in the Kerr spacetime, assuming that the gas is confined to the  equatorial plane 

(thin disk).

• In a physical situation, the accretion starts from a finite distance r0. The boundary conditions are assumed at a 

finite radius, at which matter is added to the system.

• In horizon-penetrating coordinates the Kerr metric can be written as:

g = −dt2 + dr2 − 2a sin2ϑdrdφ + r2 + a2 sin2ϑdφ2 + ρ2dϑ2 +
2 Mr

ρ2
(dt + dr − a sin2ϑdφ)2

ρ2 = r2 + a2sinϑ2

• We used distribution functions of the type:

ℱ x, p = A δ(m −m0)δ (θ −
π

2
)δ pθ f0(ϵ, λ)



Dimensionless Coordinates

E = −pt lz = pφ l = ϵσ(pφ+ apt)

• We use the following dimensionless variables

r = Mξ a = Mα E = m𝜖 l = Mm𝜆 lz = Mm λ z

Radial potential and its critical points

 𝑅(𝜉) = 𝜉4[𝜖 −𝑊−(𝜉)][𝜖 −𝑊+(𝜉)]

W± ξ =
ϵσαλ

ξ2
±

 ∆(ξ2 + λ2)

ξ2

λc =
ξ( ξ − ϵσα)

ξ ξ − 3 + 2ϵσα ξ

ϵc =
ξ2 − 2ξ + ϵσα ξ

ξ ξ ξ − 3 + 2ϵσα ξ

Critical angular momentum

Critical energy

 𝑅(𝜉) ≥ 0

• Orbits confined to the equatorial plane are governed by the radial potential  𝑅 𝜉 :



Minimum energy with respect to 𝜆 (angular momentum)

• What is the minimum allowed energy ϵ of a particle that can reach ξ0?

• If ϵσα < 0 and ξ > 2

Wmin ξ = W+ ξ |
λ=−ϵσα ξ/ ξ−2

= 1 −
2

ξ

• If ϵσα > 0 and ξ > 2, the value of λ becomes negative, which is physically meaningless in this context. Therefore, we set 

λ = 0 in

Wmin ξ = W+ ξ |λ=0 = 1 −
2

ξ
+
α2

ξ2

W± ξ =
ϵσαλ

ξ2
±

 ∆(ξ2 + λ2)

ξ2

dW+

dλ
=
ϵσα λ2 + ξ2 + λ  Δ

ξ2 λ2 + ξ2
= 0



𝜉+ ≤ 𝜉 ≤ 𝜉0

Region allowed for motion 𝜆min

𝜉0

Critical energy, bound on 𝜆



𝜉+ ≤ 𝜉 ≤ 𝜉0

Region allowed for motion

Critical energy, bound on 𝜆



Critical energy, bound on 𝜆

𝜉+ ≤ 𝜉 ≤ 𝜉0

Region allowed for 

motion

𝜉0

𝜖𝑐𝑟𝑖𝑡 = 𝑊+(𝜉0)
ξms =  Marginally stable orbit

ϵcrit =   Critical energy

λcrit =  Critical angular       

momentum

ξ0 =  Finite radius

𝜉+= Horizon



Phase-space parameters governing accretion from a finite radius

Wmin ξ0 ≤ ϵ ≤ ϵcrit(ξ0)

ϵcrit ξ0 < ϵ < +∞

• Absorbed Orbits

and 0 ≤ λ ≤ λmax(ξ0, ϵ, ϵσ)

0 ≤ λ ≤ λc(ϵ)

• Scattered Orbits

ϵmin ξ < ϵ < +∞

and

and λc(ϵ) < λ ≤ λmax(ξ, ϵ, ϵσ)



Particle current surface density

For  a stationary planar model

Jt = −Am0
3ξ  

ϵσ=±1

 
f0 ϵ, λ ϵ dϵ dλ

 R(ξ)
Jr =

Am0
3

ξ
 

ϵσ=±1

 ϵrf0 ϵ, λ ϵ dϵdλ

Jφ = Am0
3M ξ  

ϵσ=±1

 
f0 ϵ, λ (ϵσλ + α ϵ) dϵdλ

 R(ξ)

• Energy-momentum surface density (needed in the computation of accretion rates):

Tt
r = −

Am0
4

ξ
 

ϵσ=±1

 ϵrf0 ϵ, λ ϵ dϵ dλ Tφ
r =

AMm0
4

ξ
 

ϵσ=±1

 ϵrf0 ϵ, λ (ϵφλ + αϵ)dϵdλ

• Component of particle current surface density

J = J𝜇
scat + J𝜇

abs



Particle current surface density with integral limits

• We divide the particle current surface density into two parts, corresponding to absorbed trajectories (abs) and 

scattered trajectories (scat)

Jt
abs = −Am0

3 ξ  

ϵσ=±1

 
Wmin ξ0, ϵσ

ϵcrit(ξ0, ϵσ)

dϵ 
0

λmax(ξ0,ϵ,ϵσ)

dλ
f0 ϵ, λ ϵ

 R(ξ)
+  

εcrit(ξ0, ϵσ)

∞

dϵ 
0

λc(ϵ, ϵσ)

dλ
f0 ϵ, λ ϵ

 R(ξ)

Jt
scat = −2 Am0

3 ξ  

ϵσ=±1

 
ϵmin(ξ, ϵσ)

∞

dϵ 
λc(ϵ, ϵσ)

λmax(ξ,ϵ, ϵσ)

dλ
f0 ϵ, λ ϵ

 R(ξ)

• Similar formulas  for Jφ and Jr



Examples Monoenergetic distribution   f0 = δ(ϵ − ϵ0)

ξ0 = 30
ε = 0.98
α = 0.5



Examples Monoenergetic distribution  f0 = δ(ϵ − ϵ0)

𝜉



Accretion rates

 M = −2 πr1m0 J
r

 ℇ = 2πr1Tt
r

 ℒ = −2πr1Tφ
r

Accretion rates with integral limits

 M = 2πAm0
4  

ϵσ=±1

 
Wmin ξ0, ϵσ

ϵcrit(ξ0,ϵσ)

dϵ 
0

λmax(ξ0,ϵ,ϵσ)

dλf0 ϵ, λ +  
ϵcrit(ξ0,ϵσ)

∞

dϵ 
0

λc(ϵ, ϵσ)

dλ f0 ϵ, λ

 ℰ = 2πA m0
4  

ϵσ=±1

 
Wmin ξ0, ϵσ

ϵcrit(ξ0, ϵσ)

dϵ 
0

λmax(ξ0,ϵ,ϵσ)

dλ f0 ϵ, λ +  
ϵcrit(ξ0,ϵσ)

∞

dϵ ϵ 
0

λc(ϵ, ϵσ)

dλ f0 ϵ, λ

 ℒ = 2πAMm0
4  

ϵσ=±1

 
Wmin ξ0, ϵσ

ϵcrit(ξ0, ϵσ)

dϵ 
0

λmax(ξ0,ϵ, ϵσ)

dλ f0 ϵ, λ (ϵσλ + αϵ) +  
ϵcrit(ξ0, ϵσ)

∞

dϵ 
0

λc(ϵ, ϵσ)

dλ f0 ϵ, λ (ϵσλ + αϵ)

Mass accretion rate

Energy accretion rate

Angular momentum accretion rate



Examples                   Monoenergetic distribution   f0 = δ(ϵ − ϵ0)

• Eventually  ℳ/Mρξ0 decreases with α.

• High energy values correspond to high accretion 

rates.

• The sign of  ℒ/Mρξ0 is always opposite to the sign of

the black hole spin parameter 𝛼, indicating that the

accretion reduces the black hole rotation.



• Accretion rates decrease with increasing β

Examples                        Maxwell-Juttner distribution    f0 = exp(−βϵ)



Summary

• We employ the general relativistic kinetic theory and restrict ourselves to a collisionless Vlasov gas.

• We compute stationary solutions corresponding to at finite disk in the equatorial plane of the Kerr spacetime.

• In general the mass accretion rates decreases with black hole spin parameter.

• Accretions slows down black hole rotation.

• Potential applications in context of dark matter accretion.


