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Visible matter: 4.9% 
Dark matter (DM): 26.6% 
Dark energy (DE): 68.5%

1. Introduction
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Standard model (SM) explains three fundamental forces and smaller-than-
atom particles.  
But SM unable to explain gravity and the nature of DE & DM

An extension to SM known as Dark sector 
The goal is to explain dark matter 
DM particles interact with each other by exchanging Dark photons

Dark photons 

Carriers of force 
Can switch back and forth with ordinary 
photons 
Abelian gauge boson coupled to the ordinary 
Maxwell gauge field

Credit: https://dx.doi.org/
10.1088/1402-4896/abfef2
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2. Experimental searches 

Inspection of dilation-like coupling to photons caused by 
ultra-light DM 
Fine structure constant oscillations 
Dark photon emission during supernovae event 
Electron excitation measurements in CCD-like detector 
Search for dark photons in e+ and e- collisions at BABAR 
experiment at SLAC 
Boosted decision tree technique to  distinguish imbalance due 
to dark photons in ATLAS experiment 
Dark photon creation at LHC by meson decay, quark-anti 
quark annihilation
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3. Model of Dark Photon

The action describing two coupled, massless gauge field is given by: 

SM−dark photon = ∫ d4x( − FμνFμν − BμνBμν − αFμνBμν)

To get rid of the kinetic mixing term, we define new gauge fields as 

Ãμ =
2 − α
2 (Aμ − Bμ) B̃μ =

2 + α
2 (Aμ + Bμ)and

This gives;

FμνFμν + BμνBμν + αFμνBμν ⟹ F̃μνF̃μν + B̃μνB̃μν

We set: F̃μν = 2∇[μ Ãν] and B̃μν = 2∇[μB̃ν] (5)



Now, the action can be written as

SM−dark photon = ∫ d4x( − F̃μνF̃μν − B̃μνB̃μν)
Variation of the action wrt  ,  and  givesgμν Ãμ B̃μ

∇μF̃μν = 0 ∇μB̃μν = 0and 

For consistency, we also redefine charges as

ẽA =
2 − α
2 (e − ed) ẽB =

2 + α
2 (e + ed)and 

The resulting action of massive charged particle influenced by both visible and 
dark matter sectors is assumed to be:

S = − ∫ m −ds2 + ẽA ∫ Ãμdxμ + ẽB ∫ B̃μdxμ
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The standard calculation leads to the following equation of motion:

m
Duμ

dτ
= (ẽAF̃μν + ẽBB̃μν)uν,

As a result, the four-momentum of the massive particle subject to 2 
gauge fields can be written as

pμ = muμ + ẽAÃμ + ẽBB̃μ .

Transforming the charges and fields back, we get

pμ = muμ + eAμ + edBμ +
α
2 (edAμ + eBμ) .

And this becomes

pμ = muμ + e(Aμ +
α
2

Bμ) When ed = 0
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4. Weakly Magnetized Black Holes
∇μF̃μν = 0 ∇μB̃μν = 0and In Lorenz gauge, written for spherically symmetric 

EE with vanishing Ricci tensor gives:

□ Ãμ = 0 and □ B̃μ = 0 Where □ = gμν ∇μ ∇ν

 and  can be defined as a linear combination of Killing fields. Therefore, Ãμ B̃μ

Ãμ = γ1 ξμ
(t) + γ2 ξμ

(ϕ) B̃μ = δ1 ξμ
(t) + δ2 ξμ

(ϕ)
and

We make use of following definitions:  

8πM = − ∫ ϵαβγδ ∇γξδ
(t) 16πJ = ∫ ϵαβγδ ∇γξδ

(ϕ)

8πQ(F̃) = ∫ ϵαβγδF̃γδ
8πQ(B̃) = ∫ ϵαβγδB̃γδ
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Consider the Maxwell field:  F̃μν = ∇μ Ãν − ∇ν Ãμ

F̃μν = ∇μ[γ1 ξν
(t) + γ2 ξν

(ϕ)] − ∇ν[γ1 ξμ
(t) + γ2 ξμ

(ϕ)]
∇νKμ = − ∇μKνBut Where K is Killing vector

F̃μν = 2γ1 ∇μ ξν
(t) + 2γ2 ∇μ ξν

(ϕ)Using the above equation

Using the relation 8πQ(F̃) = ∫ ϵαβγδF̃γδ we get, Q(F̃) = 2γ1M + 4γ2J

Assuming γ2 =
B(F̃)

0

2
gives γ1 = −

Q(F̃)
2M

+ aB(F̃)
0 where  a ≡

J
M

Hence, Ãμ =
B(F̃)

0

2 [ξμ
(ϕ) + 2 aξμ

(t)] −
Q(F̃)
2M

ξμ
(t)

Similarly B̃μ =
B(B̃)

0

2 [ξμ
(ϕ) + 2 aξμ

(t)] −
Q(B̃)
2M

ξμ
(t) (9)



B(F̃)
0 =

2 − α
2 (B(F)

0 − B(B)
0 ) and B(B̃)

0 =
2 + α
2 (B(F)

0 + B(B)
0 )

Q(F̃) =
2 − α
2 (Q(F) − Q(B)) Q(B̃) =

2 + α
2 (Q(F) + Q(B))and

When a=0 and Q =0, we obtain

Aμ =
B(F)

0

2
ξμ

(ϕ)

Bμ =
B(B)

0

2
ξμ

(ϕ)
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5 Collissions of particles in the vicinity  Black Hole

We solve the Hamilton-Jacobi equation and obtain the four-velocity 
components of a particle in the vicinity of BH. 

gαβ ( ∂S
∂xα

− ẽAÃα − ẽBB̃α) ( ∂S
∂xβ

− ẽAÃβ − ẽBB̃β) = − m2 + m D̃μν
F̃

F̃μν + m D̃μν
B̃

B̃μν

D̃μν
(F̃)(B̃)

:descibes properties of the particle immersed in both U(1)-gauge field

Their explicit forms are

D̃μν
(F̃)

F̃μν =
2 − α
2 (μ(F)

δ − μ(B)
δ ) ϵ̃μνρδuρ F̃μν

D̃μν
(B̃)

B̃μν =
2 + α
2 (μ(F)

δ + μ(B)
δ ) ϵ̃μνρδuρ B̃μν

 : stand for the four-vectors of dipole moments of magnetic 
particle bounded by Maxwell and dark photon

μ(F)
δ , μ(B)

δ
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S = − E t + L ϕ + ∫ dr g(r)[ E2

f(r)
−

1
r2 (L − ẽAÃϕ − ẽBB̃ϕ)

2
− m2 + m(D̃μν

(F̃)
F̃μν + D̃μν

(B̃)
B̃μν)]

We use this form of action in the Hamilton-Jacobi equation to obtain four-velocity. 

The centre of mass (COM) energy of the particles is ℰ2
CM = 1 − gμνu

μ
1 uν

2

The explicit form of COM energy in our case is

ℰ2
CM = 1 +

ℰ1 ℰ2

f(r)
−

1
r2 (l1 −

ẽAÃϕ

m
−

ẽBB̃ϕ

m )(l2 −
ẽAÃϕ

m
−

ẽBB̃ϕ

m ) −

1
f(r) [ℰ2

1 −
f(r)
r2 (l1 −

ẽAÃϕ

m
−

ẽBB̃ϕ

m )2 − 1 +
f(r)(Dμν

(F̃)F̃μν + Dμν
(B̃)B̃μν)(1)

m ] ×

[ℰ2
2 −

f(r)
r2 (l2 −

ẽAÃϕ

m
−

ẽBB̃ϕ

m )2 − 1 +
f(r)(Dμν

(F̃)F̃μν + Dμν
(B̃)B̃μν)(2)

m ]
(12)



5.1 Two magnetized particles

ℰ2
CM = 1 +

ℰ1 ℰ2

f(r)
−

1
f(r) [ℰ2

1 − f(r)( l2
1

r2
+ 1 − f(r)β̃1(F, B, α))]1

2 × [ℰ2
2 − f(r)( l2

2

r2
+ 1 − f(r)β̃2(F, B, α))]1

2 −
l1 l2
r2

l>0: Repulsive Lorentz force (away from BH) 
L<0: Attractive Lorentz force (towards BH)

COM energy increases as one moves closer to the event horizon
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5.2 Magnetized and charged particles

ℰ2
CM = 1 +

ℰ1 ℰ2

f(r)
−

1
f(r) [ℰ2

1 −
f(r)
r2 (l1 − er2(w(F) +

α
2

w(B)))2 − f(r)]1
2 × [ℰ2

2 − f(r)( l2
2

r2
+ 1 − f(r)β̃2(F, B, α))]1

2 −
1
r2 (l1 − er2(w(F) +

α
2

w(B)))l2

where 
w(F) ≡

B(F)
0

2m
and w(B) ≡

B(B)
0

2m

Higher concentration of dark matter
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6 Constant homogeneous magnetic field
We suppose that there exist magnetic fields stemming from those sectors in 
the vicinity of BH, being axisymmetric and homogenous at spatial infinity. 

The conserved qualities are: ℰ = −
1
m

ξμ
(t)pμ = ·t f(r)

lz =
1
m

ξμ
(ϕ)pμ = r2 sin2 θ( ·ϕ + ẽAB̃(F̃)

0 + ẽBB̃(B̃)
0 )

where 

B̃(F̃)
0 =

e
2m

B(F̃)
0

B̃(B̃)
0 =

e
2m

B(B̃)
0

B(F̃)
0 =

2 − α
2 (B(F)

0 − B(B)
0 ) B(B̃)

0 =
2 + α
2 (B(F)

0 + B(B)
0 )

The normalisation condition of the four-velocity  leads touαuα = − 1

ℰ2 = ·r2 + r2f(r) ·θ2 + Ueff
(15)



where 

Ueff = f(r)[1 + r2 sin2 θ(
lz

r2 sin2 θ
− e(w(F) +

α
2

w(B)))2]
w(F) ≡

B(F)
0

2m

w(B) ≡
B(B)

0

2m

ed = 0

The position of innermost circular orbit (ISCO) is determined by: 

∂rUeff = 0 and ∂2
rUeff = 0
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By solving above two conditions simultaneously, we get

e(w(F) +
α
2

w(B)) =
1

2 sin θ
×

2M(6M − r±)

r±[4r2± − 18Mr± + 12M2 ± 2M (3r± − 2M)(6M − r±)]1/2

l± = ± 1

2

2M(sin θ)r±

r±[4r2± − 18Mr± + 12M2 ± 2M (3r± − 2M)(6M − r±)]1/2
r± ≡ r2

In order to visualise the dependency of ISCO on , let us define two functions:α

Q+(r±) ≡ 4r4
± − 18Mr3

± + 12Mr2
± + 2Mr2

± (3r± − 2M)(6M − r±) −
M(6M − r±)

e2(w(F) + α
2 w(B))2sin2 θ

Q−(r±) ≡ 4r4
± − 18Mr3

± + 12Mr2
± − 2Mr2

± (3r± − 2M)(6M − r±) −
M(6M − r±)

e2(w(F) + α
2 w(B))2sin2 θ

(17)



The radius of ISCO decreases as the coupling between dark photon and 
Maxwell fields increases. 
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Summary
We have considered motion of magnetized and charged particles in 
the spacetime of spherically symmetric weakly magnetized BH.  
We take into account Einstein-Maxwell gravity with dark sector, 
using the so-called dark photon theory.  
U(1)-gauge field coupled to ordinary Maxwell one is responsible for 
the invisible sector. 
The weakly magnetized solution has been found using Wald’s 
procedure.  
It was shown that magnetic coupling parameter, responsible for the 
strength of external magnetic fields, is influenced by dark matter 
sector magnetic field and -coupling constant. α

Thank you for your attention!!
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