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Preliminary information



The Schwarzschild metric

ds2 = −
(

1 − 2M
r

)
dt2 +

(
1 − 2M

r

)−1

dr 2 + r 2dΩ2, (1)

where dΩ2 = dθ2 + sin2 θdϕ2 is the metric line element of the two
sphere. The coordinate ranges were originally
t ∈ (−∞,+∞), r > 2M, θ ∈ (0, π), ϕ ∈ (0, 2π);
Eddington-Filkenstein and Kruskal-Szekeres charts later showed
that r = 2M is only a coordinate singularity. The manifold extends
to r > 0.
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Killing vector fields

The Schwarzschild spacetime has multiple Killing vectors: a
three-element group for rotational symmetry, and ∂t . We use the
spherical symmetry to constrain motion to the equator, and are left
with two constants of geodesic motion:

• −uµ(∂t)µ =
(2M

r − 1
)−1

ut = e, which is energy per unit
mass measured at spatial infinity.

• uµ(∂ϕ)µ = uϕ

r2
= L, which is angular momentum per unit mass.
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The problem and the rationale for
research



“What would happen to me if I fell into a black hole?”

A common question asked of physicists by laymen or students.

Descriptions of the process abound, from spaghettification by tidal
forces, to showing how the singularity is inevitable and what was
previously a spatial coordinate becomes timelike.

However, in some textbooks...
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• Spacetime and Geometry – “[...] once you enter the event
horizon, you are utterly doomed. This is worth stressing; not
only can you not escape back to [region above the event
horizon], you cannot even stop yourself from moving in the
direction of decreasing r, since this is simply the timelike
direction. [...] Since proper time is maximized along a
geodesic, you will live the longest if you don’t struggle,
but just relax as you approach the singularity.”

• Gravity – aside to an exercise about longest possible proper
time under event horizon: “One of the author’s students
characterized this result as ‘The more you struggle, the shorter
your life.’ ”
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This isn’t actually correct!

• Timelike geodesics maximalise proper time between two
causally connected events, however...

• ...the final destination of our journey (the singularity) is not a
single event, but a degenerate hypersurface!

• This means applying acceleration allows us to deviate from our
initial geodesic connecting (t0, 2M, θ0, ϕ0) and
(t1, r → 0, θ1, ϕ1). Since the new terminal event
(t2, r → 0, θ2, ϕ2) can be completely different, the worldline
can be longer.
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The Schwarzschild metric, adapted for calculation under the
event horizon

ds2 = −
(

2M
r

− 1
)−1

dr2 +

(
2M
r

− 1
)
dt2 + r2dΩ2, (2)

with coordinates other than r having the range 0 < r < 2M and
the other coordinates the same as in (1). Underneath the horizon
in these coordinates, −r is the time function (fulfills the
requirement that ∇f is timelike past pointing). From now on we
will reorder coordinates to the form (r , t, θ, ϕ) so that they conform
to the metric signature (−,+,+,+).
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Figure 1: Carter-Penrose diagram for the maximally extended
Schwarzschild spacetime. Region II is the region under the event horizon,
which we will explore in this paper. The red worldline is a schematic
example of an accelerated worldline which starts with some e0 at the
event horizon but, through acceleration by means of a rocket, soon starts
travelling along a line of constant t.
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Statement of the problem

Problem: An astronaut, through an unfortunate accident or a grisly
death wish, crosses the event horizon of a M mass Schwarzschild
black hole. At r = 2M, they have initial energy per unit mass e0

and angular momentum per unit mass L0. Their spacecraft is
equipped with an engine capable of generating a 3-acceleration of
magnitude α in the observer’s instantaneous frame of reference.

How should the astronaut fire the engines to travel on the worldline
that maximalises proper time among all possible worldlines under
these constraints, and how much proper time τ do they have before
their demise?

10



Why even bother?

• The error is extremely subtle, so it is instructive to realise how
it works

• Cool example to explain to young physicists or laymen

• Strictly speaking, one could decide to fall into a black hole and
perform science under the horizon – possible location of the
final POTOR conference? :)

• This simple spacetime may shed some light on other
spacetimes, as we will show at the end
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Previous work

• Most textbooks – show that singularity is unavoidable, and the
upper bound of survival time

• Burnett (1995) – description of upper bounds in general terms

• Lewis, Kwan (2007) – showing the misconception and
numerical proof for radial infall

• Cieślik, Mach (2022) – description of geodesic motion in terms
of Weierstrass elliptic integrals

• Toporensky, Zaslavskii (various between 2019-2023) – showing
solutions for instantaneous acceleration, and maximalising the
‘outside universe’ time
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Worldlines under the event horizon



Upper bound: the optimal geodesic observer

The proper time under the horizon is

τ =

∫ 2M

0
dr

[
e2 +

(
1 +

L2

r 2

)(
2M
r

− 1
)]− 1

2

. (3)

This time is maximised when e = L = 0 for all r < 2M, and is
equal to

τopt =

∫ 2M

0
dr

[
2M
r

− 1
]− 1

2

= Mπ (4)

for an observer with 4-velocity uµopt = (−
√

2M
r − 1, 0, 0, 0). Note:

no actual observer will ever fall into the black hole like this.
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Equation of motion and normalisation conditions

The EOM is

aµ = uαuµ
;α =

duµ

dτ
+ Γµαβu

αuβ. (5)

The normalisation conditions are

• orthogonality of 4-acceleration and 4-velocity aαuα = 0,

• normalisation of 4-acceleration aαaα = α2,

• normalisation of 4-velocity uαuα = −1.
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Radial infall



Figure 2: The geodesics of radial infall L0 = 0 of massive particles into a
black hole, starting 5 ∗ 10−5M under the event horizon. t is chosen to
start at 0. Colors go from red at low proper times to blue at high proper
times; the individual dots on each geodesics signify πM

8 intervals as
measured on the clock carried by the falling observer. Clearly visible is
the different total proper time τtot spent before hitting the singularity,
depending on the initial constant e0. 15



Taking the absolute derivative of the expression for e written as a
tensor equation with respect to proper time gives

De

dτ
=

D

dτ
(uµ(∂t)

µ) =
Duµ
dτ

(∂t)
µ +

D(∂t)
µ

dτ
uµ. (6)

Using the EOM (5) and the normalisation conditions, we get

de

dr
ur = −gttαg

−1
tt ur , (7)

and ultimately
de

dr
= −α. (8)
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After integration of (8), we get

e(r) = −αr + 2Mα+ e0. (9)

Inserted back into (3):

τ =

∫ 2M

0
dr

[
(−αr + 2M + e0)

2 −
(

1 − 2M
r

)]− 1
2

. (10)

After substitution u → r−1:

τ = 1√
2M

∫∞
1

2M

du

u

√
u3+(2α2M+2αe0+

e02
2M − 1

2M )u2−(2α2+α
e0
2M )u+ α2

2M

. (11)
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Equation (11) can be represented as

τ =
1√
2M

∫ ∞

1
2M

du

u
√

(u − u1)(u − u2)(u − u3)
, (12)

where ui are functions of M, e0, α.

To obtain a Carlson symmetric form elliptic integral, we only need
to bring the lower bound to 0 by substitution u′ → u − 1

2M :

τ =
2
3
RJ

(
1

2M − u1,
1

2M − u2,
1

2M − u3,
1

2M

)
√

2M
, (13)

which is the analytic expression for the proper time along the
accelerating curve from r = 2M to r = 0 in infall with no angular
momentum.
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We are interested in reaching the optimal geodesic. Therefore,
sometimes we should cease our acceleration before reaching r = 0.
From the equation (9) we can obtain the moment of reaching the
optimal geodesic

ropt = 2M +
e0
α
, (14)

and use a substitution u′ → u − 1
ropt

on (12) with a different lower
bound 1

ropt
to obtain an integral that we can subtract from integral

(13):

τ(ropt) =
2
3

RJ( 1
2M−u1,

1
2M−u2,

1
2M−u3,

1
2M )−RJ

(
1

ropt
−u1,

1
ropt

−u2,
1

ropt
−u3,

1
ropt

)
√

2M
.

(15)
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Figure 3: Curves of accelerated motion after infall with L0 = 0, e0 = 1
for various values of acceleration α. If we reach the optimal geodesic, we
cease accelerating further, and this way, the more acceleration we have,
the more we can live.
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(a) Contour plot of proper time for
radial infall depending on the
parameters α and e0. Colors retain
meaning of proper time τ from
worldline graphs. Contours are
separated by π

16 .

(b) Contour plot of the fraction τ
τα=0

representing the relative gain thanks to
using engines.

Figure 4: Plots of proper time and time gained for accelerated motion in
a black hole with M = 1m.
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Infall with angular momentum
only



Figure 5: The geodesics of the infall with e0 = 0 of massive particles
into a black hole, starting 5 ∗ 10−5M under the event horizon. Colors of
the individual curves go from red at early proper times to blue at late
proper times; the individual dots on each geodesics signify πM

8 intervals
as measured on the clock carried by the falling observer. Clearly visible is
the different total proper time τtot spent under the event horizon before
hitting the singularity, depending on the initial constant L0. 22



Similar analysis as before gives

dL

dr
= − αr√

2M
r − 1

. (16)

This time, the metric components do not cancel neatly, and the
behavior of L under acceleration is radically different. Integrating:

L(r) = L0 + α

(
1
2
r(3M + r)

√
2M
r

− 1 + 3M2 arctan

√
2M
r

− 1

)
.

(17)
The equation for proper time does not admit an analytical
integration, so we use numerical integration.
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Figure 6: Curves of accelerated motion after infall with L0 = 3.5, e0 = 0
for various values of acceleration α. If we reach the optimal geodesic, we
cease accelerating further, and this way, the more acceleration we have,
the more we can live.
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(a) Contour plot of proper time for
infall depending on the parameters α

and L0. Colors retain meaning of
proper time τ from worldline graphs.
Contours are separated by π

16 .

(b) Contour plot of the fraction τ
τα=0

representing the relative gain thanks to
using engines.

Figure 7: Plots of proper time and time gained for accelerated motion in
a black hole with M = 1m.
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General case



In the general case, we have a degree of freedom (angle at which
we will fire the engines). To handle this, we instead prove how we
need to thrust first.

Theorem (Schwarzschild black hole survival time maximisa-
tion principle)

Assuming a rocket equipped astronaut falls towards the singularity
with some 3-velocity u⃗ in relation to the optimal observer frame,
to move on the worldline that maximises proper time, they must
continuously thrust with all available engine power with a
3-acceleration a⃗ directed opposite to u⃗ until their 4-velocity
matches the optimal observer.
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Proof.
At each point along our accelerated worldline, we can find a frame
attached to the optimal observer. One can boost between these
frames using Lorentz boosts:

γ = gµνu
µuνopt =

√
L2

r2 + 1 + e2
(

2M
r

− 1
)−1

, (18)

and the ratio of proper time for the optimal worldline to the
proper time for the accelerated worldline is dτopt

dτ = γ. In the
limit, one obtains τ =

∫Mπ
0 γ−1dτopt, which is maximalised when

γ is minimised. That happens when

dγ

dτopt
= γ3v⃗ · a⃗ (19)

is negative and has maximal absolute value, which is when
3-acceleration is applied opposite to 3-velocity.
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(a) M = 1m, τ . (b) M = 1m, gain.

(c) M = 2m, τ . (d) M = 2m, gain.

Figure 8: Contour plots of proper time and time gained for infall
depending on the parameters e0 and L0 for various values of M. 28



Gains for ‘realistic’ situations



Potential values of parameters

• M: the larger, the better, as the behavior is dependent on the
product Mα.

• α: using a booth filled with water, humans can survive up to
24g ; with liquid breathing, potentially 100g or even 1000g is
possible.

• e0 and L0: either radial infall e0 = 1, or e0 around 0.8 and L0

around
√

12M are pretty realistic.
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M starting parameters α τ gain

M = 4.297 ∗ 106M⊙ (SagA*)
e0 = 1, L0 = 0

0 28.6467s N/A
1000g 28.6537s 0.00025

e0 = 0.8, L0 =
√

12M
0 16.156s N/A
1000g 16.160s 0.00025

M = 6.5 ∗ 109M⊙ (M87*)

e0 = 1, L0 = 0
0 12.037h N/A
100g 12.491h 0.0377
1000g 16.139h 0.341

e0 = 0.8, L0 =
√

12M
0 6.788h N/A
100g 7.065h 0.0407
1000g 12.537h 0.847

M = 1011M⊙ (PhoenixA)

e0 = 1, L0 = 0
0 7.7160d N/A
10g 8.1671d 0.0585
1000g 15.065d 0.952

e0 = 0.8, L0 =
√

12M
0 4.352d N/A
10g 4.633d 0.0646
1000g 15.407d 2.541
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Generalisation



It turns out the problem is solvable this way because of the
symmetries in the Schwarzschild spacetime in equatorial motion.

The theorem generalises to other manifolds with high symmetry
(though details are too long for a 15 minute talk!).

This allows use as a more general tool when considering proper
time for accelerated worldlines.
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Some of the spacetimes where this is usable include:

• Minkowski spacetime for a foliation t = const.

• Big Bang spacetime, perhaps with a hypothetical cataclysm
like a Big Rip as the final hypersurface.

• Reissner–Nordström spacetime constrained to equatorial
motion between outer and inner horizons.

• The Bianchi type I cosmological models and the Kasner metric.
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Summary

• „Do not go gentle into that good night.”

• In large black holes and assuming some technological leaps,
survival time can be extended by a lot for large black holes

• Research ended up revealing a principle useful in other
contexts.

• Perhaps the venue is not so good for POTOR – fewer jogging
trails :)

• Article up on arxiv: https://arxiv.org/abs/2405.03510
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Thank you!
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