Highly relativistic solutions of the Einstein-Vlasov system and a comparison to solutions of the Einstein-Dirac system

Håkan Andréasson

University of Gothenburg, Sweden

10th POTOR conference Kazimierz Dolny, September 2024

Plan of the talk

- I will introduce the Einstein-Vlasov (EV) system and I will outline how to construct spherically symmetric static solutions of the EV system. I will present some old results of mine on compact solutions in the massive case.
- I will discuss the existence of static solutions of the *massless* EV system and the relation to *geons*. This is joint work with David Fajman and Maximilian Thaller.
- I will present a more recent result on massless solutions surrounding a Schwarzschild black hole. As a consequence a new class of compact solutions is obtianed.
- I will present results from an ongoing study on the comparison between spherically symmetric static solutions of the EV system and the Einstein-Dirac system. This is a joint work with Joakim Blomqvist.

The Einstein-Vlasov system

This system describes a collisionless ensemble of particles, where the particles *typically* are stars, galaxies or clusters of galaxies, which interact through the gravitational field created collectively. In the *massless* case the particles could be photons.

This system has rich dynamics:

- dispersion for small data
- formation of black holes for large data
- steady states exist (both stable and unstable)
- time periodic oscillations
- serves as a good model in cosmology
- static solutions of the Einstein-Dirac system are very similar (as we will see)

The Einstein-Vlasov system

Let (x^{α}, p^{α}) be local coordinates on the tangent bundle of the spacetime (M, g).

The mass shell

$$PM = \{g_{\alpha\beta}p^{\alpha}p^{\beta} = -m^2, p^{\alpha} \text{ is future pointing}\} \subset TM,$$

is invariant under geodesic flow

$$\dot{x}^{lpha} = p^{lpha}, \ \dot{p}^{lpha} = -\Gamma^{lpha}_{eta\gamma}p^{eta}p^{\gamma}.$$

In the massive case we normalize the rest mass so that m = 1, and in the massless case m = 0.

Typically p^0 can be expressed in terms of p^a , a = 1, 2, 3 by the mass shell condition.

On PM we thus use coordinates (t, x^a, p^a) , a = 1, 2, 3.

The Einstein-Vlasov system

The Vlasov equation for $f = f(t, x^a, p^a)$ on PM reads

$$\partial_t f + rac{p^a}{p^0} \partial_{x^a} f - rac{1}{p^0} \Gamma^a_{\beta\gamma} p^\beta p^\gamma \partial_{p^a} f = 0.$$

Define the energy momentum tensor by

$$T_{\alpha\beta} := \sqrt{|g|} \int rac{p_{\alpha}p_{\beta}}{-p_0} f \ dp^1 dp^2 dp^3.$$

The Einstein-Vlasov system reads (with $\Lambda=0)$

$$R_{\alpha\beta}-rac{1}{2}Rg_{\alpha\beta}=8\pi T_{\alpha\beta}.$$

It has nice mathematical properties!

The static spherically symmetric EV system

The metric takes the following form in Schwarzschild coordinates

$$ds^2=-e^{2\mu(r)}dt^2+e^{2\lambda(r)}dr^2+r^2(d heta^2+\sin^2 heta darphi^2),$$

where $r \ge 0, \ \theta \in [0, \pi], \ \varphi \in [0, 2\pi].$

Asymptotic flatness is expressed by the boundary conditions

$$\lim_{r\to\infty}\lambda(r)=\lim_{r\to\infty}\mu(r)=0,$$

and a regular center requires

$$\lambda(0)=0.$$

The Einstein equations

The Einstein equations read

$$e^{-2\lambda}(2r\lambda_r - 1) + 1 = 8\pi r^2 \rho,$$

$$e^{-2\lambda}(2r\mu_r + 1) - 1 = 8\pi r^2 \rho,$$

$$e^{-2\lambda}(\mu_{rr} + (\mu_r - \lambda_r)(\mu_r + \frac{1}{r})) = 8\pi \rho_T.$$

The two first equations, together with the Vlasov equation, imply the last equation.

Here ρ , p and p_T denote the energy density, the radial pressure and the tangential pressure respectively.

The Vlasov equation

By symmetry $f = f(r, w, L), w \in \mathbb{R}, L \ge 0$.

The variables w and L can be thought of as the radial momentum and the square of the angular momentum respectively.

Remark: Note that each particle can carry angular momentum although the total angular momentum is zero due to spherical symmetry.

The Vlasov equation for f = f(r, w, L) is given by

$$\frac{w}{\mathcal{E}}\partial_r f - (\mu_r \mathcal{E} - \frac{L}{r^3 \mathcal{E}})\partial_w f = 0,$$

where

$$\mathcal{E}=\mathcal{E}(r,w,L)=\sqrt{1+w^2+L/r^2}.$$

The matter quantities

The matter quantities are given by

$$\rho(r) = \frac{\pi}{r^2} \int_{-\infty}^{\infty} \int_{0}^{\infty} \mathcal{E}f(r, w, L) \, dw dL,$$

$$p(r) = \frac{\pi}{r^2} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{w^2}{\mathcal{E}} f(r, w, L) \, dw dL,$$

$$p_T(r) = \frac{\pi}{r^4} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{L}{\mathcal{E}} f(r, w, L) \, dw dL.$$

The ansatz

In addition to the angular momentum L the quantity

$$E := e^{\mu(r)} \sqrt{1 + w^2 + L/r^2} = e^{\mu(r)} \mathcal{E},$$

is conserved along characteristics.

The ansatz

$$f(r,w,L)=\Phi(E,L),$$

for some function $\Phi,$ then satisfies the Vlasov equation and constitutes an efficient way to construct static solutions of the EV system.

Remark: Jeans' theorem states that for the spherically symmetric Vlasov-Poisson system (i.e. the Newtonian case), all solutions are obtained in this way. This is not true for the Einstein-Vlasov system [Schaeffer '99].

Choice of Φ

The following form of Φ will be used (the polytropic ansatz)

$$\Phi(E,L) = (E_0 - E)_+^k (L - L_0)_+^l,$$

where $l \ge -1/2, \ k \ge 0, \ L_0 \ge 0, \ E_0 > 0, \ \text{and} \ x_+ := \max\{x, 0\}.$

With this ansatz ρ takes the form

$$\rho(r) = \frac{2\pi}{r^2} \int_{\sqrt{1+\frac{L_0}{r^2}}}^{E_0 e^{-\mu(r)}} \int_{L_0}^{r^2(s^2-1)} \frac{(E_0 - e^{\mu}s)^k (L - L_0)^l s^2}{\sqrt{s^2 - 1 - \frac{L}{r^2}}} dL ds.$$

Similar expressions for p and p_T .

To summarize

The metric is

$$ds^2 = -e^{2\mu(r)}dt^2 + e^{2\lambda(r)}dr^2 + r^2(d\theta^2 + \sin^2\theta d\varphi^2).$$

The static Einstein-Vlasov system takes the form

$$e^{-2\lambda}(2r\lambda_r - 1) + 1 = 8\pi r^2 \rho,$$

$$e^{-2\lambda}(2r\mu_r + 1) - 1 = 8\pi r^2 p,$$

with boundary conditions $\lambda(0)=\lambda(\infty)=\mu(\infty)=0$, where

$$\rho(r) = \frac{2\pi}{r^2} \int_{\sqrt{1+\frac{L_0}{r^2}}}^{E_0 e^{-\mu(r)}} \int_{L_0}^{r^2(s^2-1)} \frac{(E_0 - e^{\mu}s)^k (L - L_0)^l s^2}{\sqrt{s^2 - 1 - \frac{L}{r^2}}} dL ds,$$

$$p(r) = \frac{2\pi}{r^2} \int_{\sqrt{1+\frac{L_0}{r^2}}}^{E_0 e^{-\mu(r)}} \int_{L_0}^{r^2(s^2-1)} (E_0 - e^{\mu}s)^k (L - L_0)^l \sqrt{s^2 - 1 - \frac{L}{r^2}} dL ds$$

Rein and Rendall have shown existence (1995-1999) of solutions. Main difficulty to show finite extension.

In a numerical project with Gerhard Rein (2005) we studied some features of solutions of the static Einstein-Vlasov system. We found

- Multi-peaks
- Arbitrarily thin shells (these are not Einstein clusters)
- Spirals in the M-R diagram
- The Buchdahl inequality holds (although the assumptions by Buchdahl are violated)

A ball configuration, isotropic case $(L_0 = 0 \text{ and } l = 0)$

A single shell $(L_0 = 0.2, k = 0, l = 1.5 \text{ and } y(0) = 0.4)$

æ

イロト イヨト イヨト イヨト

A shell with two peaks (y(0) = 0.12)

Figure: A vacuum region before the tail

æ

'문▶' ★ 문≯

Multi-peaks of shells $(L_0 > 0)$

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

... more peaks

Figure: Multi-peaks of shells

Not possible for the Vlasov-Poisson system, it is a purely relativistic feature!

Håkan Andréasson

Spirals in the (R, M) diagram

Figure: $k = 0, l = 10.5, 0.01 \le y(0) \le 0.99$

In astrophysics conclusions about stability are often drawn from the "Poincaré turning point principle" based on a spiral diagram. $_{=}$

How large can 2m/r possibly be?

Figure: $\Gamma := \sup 2m/r$ versus y(0)

æ

-≣->

-

The Schwarzschild solution

Consider a spherically symmetric object with mass M and radius R. For r > R there is vacuum and the Einstein equations can be solved explicitly by the Schwarzschild solution:

$$ds^{2} = -(1 - rac{2M}{r})dt^{2} + rac{1}{1 - rac{2M}{r}}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2}).$$

Note that the Schwarzschild solution is singular when r = 2M.

Schwarzschild asked already in 1916 the question:

How large can 2M/R possibly be for a static solution?

He gave the answer

$$2M/R \le 8/9$$

in the special case of the Schwarzschild interior solution which has constant energy density and isotropic pressure. \Box

The Buchdahl inequality

In 1959 Buchdahl extended the result by Schwarzschild; namely under the hypotheses that

i) the energy density is non-increasing outwards ii) the pressure is isotropic $(p = p_T)$

Buchdahl showed that

 $2M/R \le 8/9$.

- The assumptions made by Buchdahl are very restrictive: they are not satisfied by any known stable field configuration and they are not satisfied for most of the static solutions of the Einstein-Vlasov system.
- The satuarting solution is the constant energy density solution found by Schwarzschild where the pressure becomes infinite.
 A consequence is that the **dominant energy condition is** violated. Hence, it is non-physical.

A general inequality

Let

$$m(r)=4\pi\int_0^r s^2\rho(s)\,ds,$$

so that m(R) = M, where R is the outer boundary of the object.

Theorem (A. (2007))

Assume that $p + 2p_T \le \Omega \rho$, where p and ρ are non-negative, and $\Omega > 0$ is a constant. Then

$$\sup \frac{2m(r)}{r} \le \frac{(1+2\Omega)^2 - 1}{(1+2\Omega)^2},$$

and the inequality is sharp. The saturating solution is given by an infinitely thin shell solution.

Remark: Note that $\Omega = 1$ holds for Vlasov matter and that it gives $2m/r \leq \frac{8}{9}$.

Arbitrarily thin shells of the EV system do exist

Theorem (A. (2006))

Given $\epsilon > 0$, there exists static solutions of the spherically symmetric Einstein-Vlasov system such that the density function f is positive on (R_0, R_1) , where

$$\frac{\mathsf{R}_1}{\mathsf{R}_0} \le 1 + \epsilon,$$

and vanishes for $r \leq R_0$ and for $r \geq R_1$.

As a consequence, for any $\epsilon > 0$, there is a solution to the Einstein-Vlasov system such that

$$\frac{8}{9} - \epsilon < \frac{2M}{R} < \frac{8}{9}.$$

Remark: The thin shells are not Einstein clusters.

Let us now consider the charged case. The Schwarzschild solution is now replaced by the Reissner-Nordström solution

$$1-rac{2M}{r}
ightarrow 1-rac{2M}{r}+rac{Q^2}{r^2}.$$

The problem of finding an upper bound on M/R for a given total charge Q were considered in a number of papers but neither a transparent nor a general inequality similar to the case without charge, i.e.,

$$\frac{2M}{R} \le \frac{8}{9}$$

were found.

A general inequality with charge

Dedicated to the memory of my father Dan Andréasson (1933-2008).

Theorem (A. (2008))

Assume that $p + 2p_T \le \rho$, where p and ρ are non-negative and assume that $Q \le M$. Then

$$\sqrt{M} \leq rac{\sqrt{R}}{3} + \sqrt{rac{R}{9}} + rac{Q^2}{3R},$$

and the inequality is sharp.

Remark: i) Note that the inequality is saturated in the extreme case M = Q = R. In particular there is no gap to a transition to a black hole!

- Wheeler introduced the concept of a geon 1955
- Wheeler studied numerically idealized spherically symmetric geons
- Static thin shell solutions where found with the property that $2m/r \approx 8/9$
- The massless EV system models a photon gas
- The massless EV system thus provides an alternative model for a geon

Existence of massless solutions of the EV system

Theorem (A., Fajman and Thaller (2016))

There exist static, spherically symmetric, asymptotically flat solutions to the massless Einstein-Vlasov system, with compactly supported matter quantities. These solutions have the property that

$$\frac{4}{5} < \sup_{r \in [0,\infty)} \frac{2m(r)}{r} < \frac{8}{9}.$$

Existence of massless solutions surrounding a black hole

Motivated by the recent proof of stability of Kerr I became interested in massless solutions surrounding a black hole.

Theorem (A. (2021))

Let $M_0 \ge 0$ be the ADM mass of a Schwarzschild black hole. Then there exist static solutions with finite ADM mass to the massless spherically symmetric Einstein-Vlasov system surrounding the black hole. The matter components are supported on a finite interval $[R_0, R_1]$, where $R_0 > 3M_0$, and spacetime is asymptotically flat. Note that the result holds also in the case when $M_0 = 0$ (and in the massive case) but that the family of solutions is different from the family of solutions discussed above. In the present situation we require the inner radius R_0 to be large whereas in the previous case R_0 is required to be small.

Both families share the property that $\Gamma \to 8/9$ in the extreme limits: $R_0 \to 0$ or when $R_0 \to \infty$. The crucial thing being that

$$\frac{R_1}{R_0} \to 1 \ \, {\rm in \ the \ limit},$$

where matter is supported in $[R_0, R_1]$. For instance:

• if
$$R_1 = R_0 + R_0^{3/2}$$
 then $R_1/R_0 \to 1$ as $R_0 \to 0$
• if $R_1 = R_0 + R_0^{1/2}$ then $R_1/R_0 \to 1$ as $R_0 \to \infty$

Static solutions of the Einstein-Dirac system versus solutions of the EV system

- In 1998, Finster, Smoller and Yau, were able to generate spherically symmetric static solutions to the Einstein-Dirac system. The configuration they study consists of two uncharged fermions with opposite spin in order to yield a spherically symmetric system.
- A few years ago, Leith, Hooley, Horne and Dritschel, generalized this study to an even number of fermions, κ. I noticed that the solutions they obtain have striking similarties with solutions of the Einstein-Vlasov system as κ increases.
- This gives rise to a nice opportunity to study similarties of solutions with a quantum signature and solutions of a classical system, for a small number of particles.

The Einstein-Dirac system

The Einstein-Dirac (ED) system reads

I

$$R_{\mu
u}-rac{1}{2}Rg_{\mu
u}=8\pi\,T_{\mu
u},$$

with Dirac's equation

$$(i\not\!\!D-m)\Psi=0.$$

Here D is the Dirac operator in curved space time and $T_{\mu\nu}$ is obtained from Ψ and the metric.

We assume that a collection of fermions occupy a single shell configuration with $j_{tot} = 0$.

The number of fermions is given by $\kappa := 2j + 1$ where $j = (2n + 1)/2, n \in \mathbb{N}$.

Deriving the Einstein-Dirac equations

The overall wave function can be written, using the Hartree-Fock formalism, as $\Psi = \psi_{j,k=-j} \wedge \psi_{j,k=-j+1} \wedge \ldots \wedge \psi_{j,k=j}$, where $\psi_{j,k}$ is the wave function of an individual fermion with angular momentum component in the *z*-direction equal to *k*.

The following ansatz for $\psi_{j,k}$ is used

$$\psi_{jk} = \begin{bmatrix} \psi_{jk}^{(1)} \\ \psi_{jk}^{(2)} \\ \psi_{jk}^{(3)} \\ \psi_{jk}^{(4)} \end{bmatrix} = e^{-i\omega t} \frac{\sqrt{T(r)}}{r} \begin{bmatrix} \chi_{j-1/2}^{k} \alpha(r) \\ i\chi_{j+1/2}^{k} \beta(r) \end{bmatrix}$$

In the ansatz, $\chi_{j\mp 1/2}^k(\theta,\varphi)$ is a linear combination of spherical harmonics functions $Y_{j\mp 1/2}^k$ and the basis $e_1 = [1,0]^{\top}$, $e_2 = [0,1]^{\top}$.

The Einstein-Dirac system

Let the metric be given by

$$ds^{2} = -T^{-2}(r)dt^{2} + A^{-1}(r)dr^{2} + r^{2}d\Omega^{2},$$

then the Einstein-Dirac system takes the form:

$$\begin{split} \sqrt{A}\alpha' &= \frac{\kappa}{2r}\alpha - (\omega T + m)\beta, \\ \sqrt{A}\beta' &= (\omega T - m)\alpha - \frac{\kappa}{2r}\beta, \\ rA' &= 1 - A - 8\pi\kappa\omega T^2(\alpha^2 + \beta^2), \\ 2rA\frac{T'}{T} &= A - 1 - 8\pi\kappa\omega T^2(\alpha^2 + \beta^2) + 8\pi\frac{\kappa^2}{r}T\alpha\beta + 8\pi\kappa mT(\alpha^2 - \beta^2). \end{split}$$

Here ω is the fermion energy (we only consider the ground state) determined by the shooting algorithm.

Energy density and pressure

The energy density ρ , radial pressure p_r and the tangential pressure p_{\perp} are given by:

$$\rho(r) = \kappa \omega \frac{T^2(r)}{r^2} (\alpha^2(r) + \beta^2(r)),$$

$$p_r(r) = \kappa \frac{T(r)}{r^2} [\omega T(r)(\alpha^2(r) + \beta^2(r)) - m(\alpha^2(r) - \beta^2(r)) - \kappa \frac{\alpha(r)\beta(r)}{r}],$$

$$p_{\perp}(r) = \frac{\kappa^2}{2r^3} T(r)\alpha(r)\beta(r).$$

Comparison 1

Figure: A graphical comparison of a Einstein-Dirac energy density function and a very similar result for the Einstein-Vlasov system.

Comparison 2

Figure: A graphical comparison of a Einstein-Dirac energy density function and a very similar result for the Einstein-Vlasov system.

Properties of highly relativistic solutions

Let us recall the assumptions required for the result on the bound of sup $\frac{2m}{r}$ discussed above. If

$$p_r \ge 0 \text{ and } p_r + 2p_\perp \le \Omega \rho$$
 (1)

then

$$\sup_{r>0} \frac{2m(r)}{r} \le \frac{(1+2\Omega)^2 - 1}{(1+2\Omega)^2}$$

The question we ask is whether or not the conditions (1) are satisfied for solutions of the ED system.

Sign of the radial pressure p_r

Solutions to the ED system may have negative pressure, at least in some region. This is a quantum phenomenon since classically the pressure is non-negative.

Radial pressure results

Figure: Einstein-Dirac states for $\kappa > 16$ seems to display classical properties.

∃ ►

< < >>

$p_r + 2p_T/\rho$ at the radius with maximum compactness

Håkan Andréasson

æ

Maximum compactness of 2m/r in the case $\kappa = 180$

æ

æ

- 4 団 🕨 4 🖻 🕨 4

Thank you!

Håkan Andréasson