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Motivation

Motivation

The Coherent States (CS) quantization method is a method of
construction of a quantum counterpart of a given classical system. It is
used effectively to quantize gravitational systems.

Scheme of quantization

1 Every point κ configuration space T is represented by projection operator
in some carrier space H:

(κ) → |κ⟩⟨κ|

2 Quantization:

f (κ) → f̂ =

∫
T

dµ(κ)|κ⟩f (κ)⟨κ|
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Motivation

Motivation

Because of a direct correlation between spacetime points and appropriate
projection operators time operator can be constructed in the same footing
as position.

CS quantization method provides a proper transition to the classical
picture. In coherent states expectation value of quantum observable
comes from CS quantization is very close to classical value.

Construction of |κ⟩⟨κ| depends on fiducial vector Φ0.

What is the interpretation of a fiducial vector in CS quantization?

Is the fiducial vector dependence qualitative or quantitative?
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CS quantization method-building blocks

Classical model
T is a space of required variables κ,
Observables f : T → R

Group
G is a locally compact group
χ : T

1:1−−→ G

Carrier space Hx = L2(X , dν(x))

Coherent state construction
Representation of group
ϕg (x) = Û(g)ϕ(x)
Fiducial vector Φ0(x) ∈ L2(X , dν(x))

Quantization

Example

Spherically symmetric models of
spacetime:

T = {(t, r) | (t, r) ∈ R× R+}

where t and r are time and radial
coordinate respectively.

Minkowski spacetime phase space:

T = {(p, x) | (p, x) ∈ R4 × R4}

where
x space-time coordinates,
p four-momentum coordinates.
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CS quantization method-building blocks

Classical model
T is a space of required variables κ,
Observables f : T → R

Group
G is a locally compact group
χ : T

1:1−−→ G

Carrier space Hx = L2(X , dν(x))

Coherent state construction
Representation of group
ϕg (x) = Û(g)ϕ(x)
Fiducial vector Φ0(x) ∈ L2(X , dν(x))

Quantization

G is a locally compact group;

dµ(g) is a left Haar measure on
this group;

G–group manifold (set of group
parameters);

There exist one to one
correspondence between space of
parameters and group manifold
χ : T

1:1−−→ G

Example

Spherically symmetric models of
spacetime: G = Aff(R)
Minkowski spacetime:
G = HW (4)/U(1)

Aleksandra Pędrak Coherent states quantization. The fiducial vector dependence.



CS quantization method-building blocks

Classical model
T is a space of required variables κ,
Observables f : T → R

Group
G is a locally compact group
χ : T

1:1−−→ G

Carrier space Hx = L2(X , dν(x))

Coherent state construction
Representation of group
ϕg (x) = Û(g)ϕ(x)
Fiducial vector Φ0(x) ∈ L2(X , dν(x))

Quantization

Example

Carrier space in case of Affine group:
Hx = L2(R+, dν(x)) where
dν(x) = dx

x

where (t, r) ∈ R× R+ is
configuration space in spherically
symmetric models of spacetime;

Carrier space in case of
Heisenberg-Weyl group:
Hx = L2(R4, d4ξ)

where (p, x) ∈ R8 is phase space in
Minkowski spacetime.
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CS quantization method-building blocks

Classical model
T is a space of required variables κ,
Observables f : T → R

Group
G is a locally compact group
χ : T

1:1−−→ G

Carrier space Hx = L2(X , dν(x))

Coherent state construction
Representation of group
ϕg (x) = Û(g)ϕ(x)
Fiducial vector Φ0(x) ∈ L2(X , dν(x))

Quantization

Irreducible unitary representation
of G in space L2(X , dν(x))
Û(g)ϕ(x) = ϕg (x)

Fiducial vector
Φ0(x) ∈ L2(X , dν(x)),
⟨x |g⟩ = Û(g)Φ0(x)

If the condition is satisfied∫
G
dµ(g)|g⟩⟨g | = 1̂1

in the weak sense on the Hilbert
space L2(X , dν(x)), then
⟨x |g⟩
are coherent states in space Hx .
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CS quantization method-building blocks

Classical model
T is a space of required variables κ,
Observables f : T → R

Group
G is a locally compact group
χ : T

1:1−−→ G

Carrier space Hx = L2(X , dν(x))

Coherent state construction
Representation of group
ϕg (x) = Û(g)ϕ(x)
Fiducial vector Φ0(x) ∈ L2(X , dν(x))

Quantization

Representation of point in Hilbert
space

(κ) → |χ(κ)⟩⟨χ(κ)| = |g⟩⟨g |

One can map any observable
f : T → R into a symmetric
operator f̂ : Hx → Hx as follows

f̂ :=

∫
G

dµ(g)|g⟩f (g)⟨g |
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CS quantization method- nonlocal inner product

In CS quantization method quantum observables are defined as a
operators on carrier space. It is more convenient to transform the model
to the space L2(G , dµ(g)).

Quantum space of state is L2(X , dν(x))

f̂Xψ(x) =

∫
X

dν(y)

[∫
G

dµ(g)⟨x |g⟩ f (g) ⟨g |y⟩
]
ψ(y)

Quantum space of state is L2(G , dµ(g))/N

f̂Gψ(g) =

∫
G

dµ(g ′′)

[∫
G

dµ(g ′)⟨g |g ′⟩ f (g ′) ⟨g ′|g ′′⟩
]
ψ(g ′′)

N =
{
ψ ∈ L2(G , dµ(g)) :

∫
dµ(g ′)⟨g |g ′⟩ψ(g ′) = 0

}
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CS quantization method- nonlocal inner product

One can construct isometry between spaces L2(X , dν(x)) and
L2(G , dµ(g))/N

Ψ(x) =

∫
G
dµ(g) ⟨x |g⟩ Ψ(g)

Φ(g) =

∫
X
dν(x) ⟨g |x⟩ Φ(x)

Representations f̂G on space L2(G , dµ(g))/N and
f̂X on space L2(X , dν(x)) are equivalent.
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CS quantization method- nonlocal inner product

On the other hand space L2(G , dµ(g))/N can be interpret as a
Hilbert H space of functions f : G → C with nonlocal inner
product:

⟨ψ|ϕ⟩ =
∫
G
dµ(g)

∫
G
dµ(g ′) ψ(g)⋆ ⟨g |g ′⟩ ϕ(g ′), ψ, ϕ ∈ H

CS quantization method leads to quantum Hilbert space with
nonlocal inner product. The fiducial vectors shapes nonlocality
in this model.
⟨g |g ′⟩ denotes transition amplitude from coherent state |g ′⟩ to
|g⟩.
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CS quantization of Minkowski spacetime

Building blocks for Heisenberg-Weyl group CS quantization

The group G = HW (4)/U(1)
it is parametrized by 8 parameters pµ, x

µ ∈ R µ = 0, . . . , 3.
The multiplication law for the group reads

g(p, x)g(p̃, x̃) = exp

(
− i

2ℏ
(xµp̃µ − pµx̃

µ)Î

)
g(p + p̃, x + x̃) .

Carrier space is Hx = L2(R4, d4ξ).

The unitary irreducible representation

Û(p, x)ψ(ξ) = exp

(
−ipµx

µ

2ℏ

)
exp

(
ipµξ

µ

ℏ

)
ψ(ξ − x) ,

The coherent states are defined as follows

|p, x⟩ = Û(p, x)|Φ0⟩,
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Examples

Extreme fiducial vectors

Case 1

Φ0(ξ) =
1

(2πℏ)

⟨p′′, x ′′|p′, x ′⟩ = exp

[
i
p′′(x ′′ − x ′)

2ℏ

]
δ4(p′′ − p′)

If the fiducial vector is constant function the integrating kernel is
orthogonal in momenta and x ′′, x ′ gives only phase shift.

Case 2

Φ0(ξ) = δ4(ξ)

⟨p′′, x ′′|p′, x ′⟩ = exp

[
−i

(p′′ − p′)x ′

2ℏ

]
δ4(x ′′ − x ′)

If the fiducial vector is a Dirac delta of x the integrating kernel is
orthogonal in position and p′′, p′ gives the phase shift.
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Examples

4D harmonic oscillator ground state
It is convenient to use the fiducial vector in the form of the 4D harmonic
oscillator ground state function

Φ0(ξ) =
∏3

µ=0

(
λµ

πℏ

) 1
4
exp

(
− (ξµ)2

2ℏ 1
λµ

)

⟨p′′, x ′′|p′, x ′⟩ = exp

(
i
p′′x ′′ − p′x ′

ℏ

)
exp

(
i
p′′x ′ − p′x ′′

2ℏ

)
3∏

µ=0

exp

(
−(x ′′µ − x ′µ)2

4ℏ 1
λµ

−
(p′′µ − p′µ)

2

4ℏλµ

)

The transition amplitude is given by Gaussian distribution where the variance is
equal to ℏλµ for momentum and ℏ/λµ for position coordinate.
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Examples

Uncertainty principle
By using variance one can also construct the uncertainty principle a

var(Â;ψ)var(B̂;ψ) ≥ 1
4

∣∣∣⟨ψ|[Â, B̂]|ψ⟩∣∣∣2
a H. P. Robertson, “The Uncertainty Principle”, Phys. Rev. 34, 163 (1929).

For opeartors p̂µ, x̂
ν one gets (Φ0(ξ) ∈ R)

1
4
|⟨p, x |[p̂µ, x̂ν ]|p, x⟩|2 = ℏ2

∣∣∣∣∫
R4

d4ξ ξνΦ0(ξ)
d

dξµ
Φ0(ξ)

∣∣∣∣2

Incase of Φ0(ξ) taken as 4D harmonic oscillator ground state one gets

1
4
|⟨p, x |[p̂µ, x̂ν ]|p, x⟩|2 =

{
0 for ν ̸= µ
ℏ2

4 for ν = µ
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Nonlocality analysis

It is interesting to analyze the influence of non-locality generated by
fiducial vector in this Minkowski space-time model to elementary
observables

qualitative analysis of eigenproblems of elementary
observables;

analysis of transition probability of test particle.
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Fiducial vector dependence

Eigensolution of momentum operator
It is easy to show that states

ηk(ξ) = ⟨ξ|ηk⟩ :=
(

1√
2πℏ

)4

exp

(
i
k ξ

ℏ

)
,

where x ξ := kµξ
µ, with µ = 0, 1, 2, 3, are generalized eigenstates

of p̂µ

⟨ηk |p̂µ|ηk ′⟩ =
[
kµ +

∫
d4p|Φ̃0(p)|2pµ

]
δ4(k − k ′)

where Φ̃0(p) is the Fourier transform of the fiducial vector.
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Fiducial vector dependence

Eigensolution of position operator

It is easy to show that states

κq(ξ) = δ4(ξ − q)

are generalized eigenstates of x̂µ

⟨κq|x̂µ|κq′⟩ = (2π)2
[
qµ −

∫
d4x |Φ0(x)|2xµ

]
δ4(q − q′)

In both cases the fiducial vector the eigenvectors does not depend on
fiducial vector. A dependence appears only as shift of eigenvalues.

One can lead the shift to zero by properly choose of Φ0. It is sufficient to
take Φ0 as an even or odd function of each of its variables to provide this
property.

Aleksandra Pędrak Coherent states quantization. The fiducial vector dependence.



Fiducial vector dependence

Eigensolution of position operator

It is easy to show that states

κq(ξ) = δ4(ξ − q)

are generalized eigenstates of x̂µ

⟨κq|x̂µ|κq′⟩ = (2π)2
[
qµ −

∫
d4x |Φ0(x)|2xµ

]
δ4(q − q′)

In both cases the fiducial vector the eigenvectors does not depend on
fiducial vector. A dependence appears only as shift of eigenvalues.

One can lead the shift to zero by properly choose of Φ0. It is sufficient to
take Φ0 as an even or odd function of each of its variables to provide this
property.

Aleksandra Pędrak Coherent states quantization. The fiducial vector dependence.



Fiducial vector dependence

Eigensolution of Hamiltonian operator

Ĥ = (2πℏ)−4
∫
R8

d4p d4x |p, x⟩1
2
gµνpµpν⟨p, x |

The eigenvectors of Hamiltonian are the same as in momentum operator

⟨ηk′ |Ĥ|ηk⟩ = 1
2g

αβ

[
kαkβ +

+2kα
∫
R4

d4p pβ |Φ̃0(p)|2 +

+

∫
R4

d4p pαpβ |Φ̃0(p)|2
]
δ4(k ′ − k)

Taking Φ0 as a harmonic oscillator ground state with λ0/3 = λ1 = λ2 = λ3 the
second and third terms vanish.
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Transition probability of a test particle

The mass layer of thickness ϵ for a test particle m ≥ 0

Jm,ϵ =
{
p : −

√
m2 + p⃗2 + ϵ ≤ p0 ≤ −

√
m2 + p⃗2, p⃗ ∈ R3

}
,

The operator which projecting onto the mass layer

PJm,ϵ =

∫
R4

d4p |ηp⟩χ(p ∈ Jm,ϵ)⟨ηp| ,

where

χ(p ∈ Q) =

{
1 if p ∈ Q
0 if p ̸∈ Q

Transition amplitude

The transition amplitude of the particle of mass m from the state ⟨p′, x ′| to the
state ⟨p′′, x ′′| is given as follows

Am,ϵ = ⟨p′′, x ′′|PJm,ϵ |p
′, x ′⟩ =

∫
R4

d4p ⟨p′′, x ′′|ηp⟩χ(p ∈ Jm,ϵ)⟨ηp|p′, x ′⟩
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Transition probability of a test particle–Examples
λ0 = 3λ3 = 3

Φ0(ξ) =

4
√

λ0λ3
3

πℏ
exp

(
−
λ0(ξ0)2

2ℏ

)
exp

(
−
λ3ξ⃗2

2ℏ

)

Plot of |Am,ϵ(x⃗
′′)/ϵ|2, as a function of x⃗ ′′, in the xy -plane

m = 1, p⃗ ′ = (1, 0, 0), x⃗ ′ = (0, 0, 0), p′0 = −
√

m2 + (p⃗ ′)2

p′ = p′′.
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Transition probability of a test particle–Examples
λ0 = 3λ3 = 0.3

Φ0(ξ) =

4
√

λ0λ3
3

πℏ
exp

(
−
λ0(ξ0)2

2ℏ

)
exp

(
−
λ3ξ⃗2

2ℏ

)

Plot of |Am,ϵ(x⃗
′′)/ϵ|2, as a function of x⃗ ′′, in the xy -plane

m = 1, p⃗ 0 = (1, 0, 0), x⃗ ′ = (0, 0, 0), p′0 = −
√

m2 + (p⃗ ′)2

p′ = p′′.
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Transition probability of a test particle–Examples
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√

λ0λ3
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πℏ
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λ0(ξ0)2

2ℏ
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2ℏ
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Expectation value
Expectation vale of space position xn, n = 1, 2, 3 with probability distribution
given by transition amplitude

P(x⃗ ′ → x⃗ ′′) =
1
N

∣∣⟨p′′, x ′′|PJm,ϵ |p
′, x ′⟩

∣∣2
under condition p′, p′′, x ′, x ′′0 = const.

E (xn) =
1
N

∫
R2

d3x⃗ ′′ x ′′n
∣∣⟨p′′, x ′′|PJm,ϵ |p′, x ′⟩

∣∣2 =

= x ′n + (x ′′0 − x ′0)⟨pn⟩

where

⟨pn⟩ =
(2πℏ)2

N

∫
R3

d3p⃗
pn√

m2 + p⃗2
|F(p⃗)|2

F(p⃗) = Φ̃0(p
′′ − p)⋆Φ̃0(p

′ − p)
∣∣∣
p0=−

√
m2+p⃗2

Φ̃0(p) ∈ R
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Summary

The CS quantization leads to quantum Hilbert space with
nonlocal inner product where nonlocality is shaped by a
fiducial vector.
In the quantum Minkowski spacetime model based on
HW (4)/U(1) CS quantization method the position,
momentum, and Hamiltonian observables have eigenfunctions
independent of the fiducial vector. The fiducial vector shifts
the eigenvalues but it can be reduced by the selection of
required properties.
The expectation value of the position of a test particle keeps
the classical behavior of the test particle. The fiducial vector
scales the value of the “momentum” in expectation value
dependence.
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