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 As early as in 1916 Einstein* pointed out that 
„quantum theory would have to modify not only 
Maxwellian electrodynamics, but also the new 
theory of gravitation”

 After more than 100 years a complete, consistent 
quantum theory of gravity is still missing

 We have a number of interesting but incomplete 
research programs

 string theory 

 loop quantum gravity

 group field theory

 causal set theory

 noncommutative geometry

 asymptotic safety (functional RG flow)

 lattice QFT approaches (CDT, quantum Regge calc., …)

 …
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* Sitzungsber. Preuss. Akad. Wiss. Berlin (1916) 688 

A. Einstein triangulation by J. Bryan

Challenges of Quantum Gravity (QG)



 Lack of experimental guidance 

 Conceptual issues 

 QFT based on Einstein’s GR is perturbatively 
non-renormalizable in D > 2 dimensions 

 Renormalizable extensions (eg. with R2 terms) 
have problems with unitarity

 One is forced to use non-perturbative & 
background-independent approaches (difficult !)

 Non-perturbative renormalizability of QG ? 
Asymptotic safety (AS) conjecture:

 renormalization group (RG) flow leads to a 
non-Gaussian UV fixed point 

 where QG becomes scale invariant (UV complete)

 in the vicinity of the UV fixed point the RG flow 
trajectories lie in a finite dim. hypersurface (in the 
theory space of coupling constants): only a finite 
numer of relevant couplings should be fixed 
(measured) to make QG predictive at all scales 
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Challenges of Quantum Gravity (QG)

S. Weinberg, 1980



 Lattice QFT formulation can allow to check AS 
in a unitary, non-perturbative, background-
independent & diffeomorphism-invariant QG
 we need dynamical lattices (DT) to encode 

geometric d.o.f.
 continuum limit (UV fixed point ?) should be 

associated with a phase transition
 one must be able to reproduce semi-classical 

gravity (IR limit) 
 causal structure is an important ingredient: CDT

(J. Amjørn, J. Jurkiewicz, R. Loll) 

 Main goals of QG as a Lattice QFT:
 Formulate a UV complete (non-perturbatively 

renormalizable) and unitary theory of QG
 with a correct IR limit (consistent with GR)
 Study the emerging background geometry
 and fluctuations around this geometry
 Study properties of a quantum spacetime at the 

Planck scale; find some non-trivial predictions / 
observational effects (construct phenomenology ?)

 (Unify with QFT(s) of the matter content )
 …
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Causal Dynamical Triangulations
 CDT approach to QG is via a lattice QFT, 

using the path integral (PI) quantization

 One has to give a precise meaing to:
 what class of geometries should be 

included  in the PI

 what (classical) action should be used

 which symmetries (GR diffeomorhisms ?) 
should be preserved and how to do that

 what is the integration measure

 how to compute the PI in practice

 how to deal with unitarity and (generic) 
PI divergencies

 (how to include matter fields)  

𝑍𝑄𝐺 = න

𝑔∈
𝐿𝑜𝑟 𝑀

𝐷𝑖𝑓𝑓 𝑀

𝐷 𝑔 exp(𝑖 𝑆grav[𝑔])

(Lorenzian) geometries



Causal Dynamical Triangulations
 CDT approach to QG is via a lattice QFT, 

using the path integral (PI) quantization

 CDT (quantum) geometries:
 In classical GR one deals with smooth 

(pseudo-)Riemannian manifolds

 In the PI one should most likely also include 
non-smooth, but continuous (Lorenzian) 
geometries

 CDT assumes globally hypebolic spacetimes 
which can be foliated into spacial slices of 
equal cosmological proper time*

 CDT takes a minimalistic approach and fixes 
topology of the manifold, with compact  
space & time periodic b.c. (S1xS3 or S1xT3)

 We use a subset of continuous geometries, 
the so-called piecewise linear manifolds, 
that can be constructed from identical 
simplicial building blocks. We hope they are 
dense in the set of continuous geometries

space

ti
m

e

* Nature of the imposed foliation is not fully understood: 4-d diffeo. symetry breaking vs convenient gauge choice 
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𝑍𝑄𝐺 = න

𝑔∈
𝐿𝑜𝑟 𝑀

𝐷𝑖𝑓𝑓 𝑀

𝐷 𝑔 exp(𝑖 𝑆grav[𝑔])

𝑍𝐶𝐷𝑇
(𝐿)

= 

𝑇

1

𝐶𝑇
exp(𝑖 𝑆𝑅[𝑇])

causal 
triangulations

(Lorenzian) geometries
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Causal Dynamical Triangulations
 CDT approach to QG is via a lattice QFT, 

using the path integral (PI) quantization

 CDT action & diffeom. symmetry:

 We use the Einstein-Hilbert action 

 For a piesewise linear manifold 
(triangulation) it takes the form of 
Regge’s action

 Curvature is defined by deficit angles 
around D-2 dim. „hinges” (triangles in 4D)

 Regge’s formulation uses only geometric 
invariants (geodesic edge lengths and 
deficit angles) making it coordiante 
free and therefore manifestly (at least 
spatial*) diffeomorphism invariant

 As CDT uses only 2 types of bulding blocks 
with fixed edge lenghts the Regge action is 
very simple

* Nature of the imposed foliation is not fully understood: 4-d diffeo. symetry breaking vs convenient gauge choice 

1/G   (lt
2 = -ls

2)

𝑍𝑄𝐺 = න

𝑔∈
𝐿𝑜𝑟 𝑀

𝐷𝑖𝑓𝑓 𝑀

𝐷 𝑔 exp(𝑖 𝑆grav[𝑔])

𝑍𝐶𝐷𝑇
(𝐿)

= 

𝑇

1

𝐶𝑇
exp(𝑖 𝑆𝑅[𝑇])

𝑆grav =
1

16𝜋𝐺
න

𝑀

𝑑4𝑥 − det 𝑔 𝑅 − 2Λ

causal 
triangulations

𝑆𝑅 = −𝑘0𝑁0 + 𝐾4𝑁4 + Δ 𝑁4
4,1

− 6𝑁0

(Lorenzian) geometries

# 4-simplices # vertices# {4,1} 4-simpl.

T. Regge, 
Nuovo Cim. A19 (1961) 558



𝑍𝐶𝐷𝑇
(𝐸)

= 

𝑇

1

𝐶𝑇
exp(− 𝑆𝑅[𝑇])
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Causal Dynamical Triangulations
 CDT approach to QG is via a lattice QFT, 

using the path integral (PI) quantization

 CDT PI measure and MC computations:

 CDT uses a trivial measure 1/CT 

(plans to investigate other measures) 

 In order to investigate the 4D PI one has 
to use Monte Carlo (MC) simulations

 MC requires Euclidean formulation 
(Wick’s rotation)

 Due to the CDT imposed time foliation 
each Lorentzian geometry can be 
Wick-rotated to an Euclidean geom.

 A the level of the Regge action Wick’s 
rotation is achieved by an analytical 
continuation (𝛼 → −α):  coupling 
constants are appropriately changed, 
but general form of the action SR 
remains the same in (L) and (E)

1/G   (lt
2 = ls

2)

𝑍𝑄𝐺 = න

𝑔∈
𝐿𝑜𝑟 𝑀

𝐷𝑖𝑓𝑓 𝑀

𝐷 𝑔 exp(𝑖 𝑆grav[𝑔])

𝑍𝐶𝐷𝑇
(𝐿)

= 

𝑇

1

𝐶𝑇
exp(𝑖 𝑆𝑅[𝑇])

causal 
triangulations

# symmetries of T

𝑆𝑅 = −𝑘0𝑁0 + 𝐾4𝑁4 + Δ 𝑁4
4,1

− 6𝑁0

𝒪 =
1

𝑍


𝑇

1

𝐶𝑇
𝒪[𝑇]e− 𝑆𝑅[𝑇]) ≈

1

𝑁𝑀𝐶


𝑖=1

𝑁𝑀𝐶

𝒪[𝑇(𝑖)]

𝑆grav =
1

16𝜋𝐺
න

𝑀

𝑑4𝑥 − det 𝑔 𝑅 − 2Λ

(Lorenzian) geometries

# 4-simplices # vertices# {4,1} 4-simpl.

𝛼 → −α
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Causal Dynamical Triangulations
 CDT approach to QG is via a lattice QFT, 

using the path integral (PI) quantization

 CDT unitarity and PI divergencies:

 CDT has a (time) reflection positive*, 
symmetric and bounded  transfer matrix.
In standard lattice QFT it guarantees 
unitarity if continuum limit exists

 For finite N4 there is no problem with 
the PI convergence as the number of 
configurations is exponentially bounded

 Lattice spacing (𝑙𝑠) plays a role of the 
UV cutoff 𝑙𝑠

−1 as in ordinary lattice QFT

 We want to investigate continuum limit 
(𝑙𝑠 → 0, 𝑁4 → ∞), hopefully consistent 
with the UV fixed point of QG

 CDT does not assume that spacetime is 
discrete in any sense !

1/G   (lt
2 = ls

2)

𝑍𝑄𝐺 = න

𝑔∈
𝐿𝑜𝑟 𝑀

𝐷𝑖𝑓𝑓 𝑀

𝐷 𝑔 exp(𝑖 𝑆grav[𝑔])

𝑍𝐶𝐷𝑇
(𝐿)

= 

𝑇

1

𝐶𝑇
exp(𝑖 𝑆𝑅[𝑇])

causal 
triangulations

# symmetries of T

𝑆𝑅 = −𝑘0𝑁0 + 𝐾4𝑁4 + Δ 𝑁4
4,1

− 6𝑁0

𝑍𝐶𝐷𝑇
(𝐸)

= 

𝑇

1

𝐶𝑇
exp(− 𝑆𝑅[𝑇])

𝑆grav =
1

16𝜋𝐺
න

𝑀

𝑑4𝑥 − det 𝑔 𝑅 − 2Λ

(Lorenzian) geometries

𝒪 =
1

𝑍


𝑇

1

𝐶𝑇
𝒪[𝑇]e− 𝑆𝑅[𝑇]) ≈

1

𝑁𝑀𝐶


𝑖=1

𝑁𝑀𝐶

𝒪[𝑇(𝑖)]
* TM2 is positive-definite

# 4-simplices # vertices# {4,1} 4-simpl.

𝛼 → −α



Phase structure & phase transitions
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 Phase structure:

 We perform MC simulations with fixed N4 
The cosmological constant K4 is tuned to 
N4 and we effectively have two coupling 
constants: k0 and Δ

 Four phases (A, B, CdS, Cb) of different 
generic geometries were discovered

 The observable*:  physical 3-volume of 
spatial layers: 𝑉3 𝑡𝑖 ∝  𝑁3(𝑖) ⋅ 𝑙𝑠

3

 In toroidal CDT one can even visualize 
generic geometries using „harmonic” 
coordinates defined by scalar fields

 The difference between phases CdS and Cb 
is captured by effective dimensions

 One can also use „automatic” Machine 
Learning classification methods !

Phase structure & phase transitions
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Phase structure & phase transitions

* This is formally not a gauge invariant observable if we insist to keep full 4-d diffeo. symetry

physical proper time 𝑡𝑖 = 𝑖 ⋅ 𝑙𝑡 

lattice time

# of tetrahedra at lattice time i

lattice spacing
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Phase structure & phase transitions
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Hausdorff dimension:
rescaled average 
volume profiles

(scaling for dH  = 4)
 

𝑁3(𝑖) →
𝑁3(𝑖)

𝑁4
1−1/𝑑𝐻

𝑖 →
𝑖

𝑁4
1/𝑑𝐻

dH  = 4dH  = ∞
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Phase structure & phase transitions

𝜕

𝜕𝜎
𝐾(𝑥, 𝑥0; 𝜎) = Δ𝑔𝐾(𝑥, 𝑥0; 𝜎)

𝑃𝑅 𝜎 =
1

𝑉
න 𝑑𝑥 𝑔𝐾(𝑥, 𝑥; 𝜎)

𝑑𝑆 𝜎 = −2
𝑑 log 𝑃𝑟(𝜎)

𝑑 log  𝜎

Spectral dimension*:
related to heat kernel 

of the Laplace operator
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* Dimensional reduction appears 
   in many approaches to QG 
  (S. Carlip, CQG 34 (2017) 193001)
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A-C A-B B-Cb

("weak" I order) ( I order) (II order)

Decision Tree

Gradient Boosted Trees

Logistic Regression

Nearest Neighbors

Neural Network

Random Forest

Support Vector Machines

Agglomerate (2)

DBSCAN

Gaussian Mixture

K-Means (2)

MeanShift

Neighborhood Contraction

Spectral (2)

SU
P

ER
V

IS
E

D
 le

ar
n

in
g

U
N

S
U

PE
R

V
IS

E
D

 l
ea

rn
in

g

 Phase structure:

 We perform MC simulations with fixed N4. 
The cosmological constant K4 is tuned to 
N4 and we effectively have two coupling 
constants: k0 and Δ

 Four phases (A, B, CdS, Cb) of different 
generic geometries were discovered

 The observable*:  physical 3-volume of 
spatial layers: 𝑉3 𝑡𝑖 ∝  𝑁3(𝑖) ⋅ 𝑙𝑠

3

 In toroidal CDT one can even visualize 
generic geometries using „harmonic” 
coordinates defined by scalar fields

 The difference between phases CdS and Cb 
is captured by effective dimensions

 One can also use „automatic” Machine 
Learning classification methods !

Phase structure & phase transitions

-10-



 Phase transitions:

 Even though we don’t study changes of 
the field configurations on the fixed 
spacetime but the changes of the 
spacetime geometry itself, we assume 
that it makes sense to use standard 
(lattice) statistical physics techniques

 They require to define order parameters 
which capture symmetry differences 
between generic configurations 
(geometries) in different phases

 Finite size scaling analysis is used to 
distinguish between 1st and 2nd order 
phase transitions

 We are especially intersted in phase 
transitions sourrounding (the semi-
classical, see next slides) phase CdS 

Phase structure & phase transitions

𝑂𝑃1 = 𝑁0/𝑁4  

𝑂𝑃2 = 𝑁4
(3,2)

/𝑁4
(4,1)

𝑂𝑃3 = 

𝑖

𝑁3(𝑖 + 1) − 𝑁3(𝑖 2

𝑂𝑃4 = maxv O(v)

B Cb C Cb C A
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Phase structure & phase transitions

ν = 2.7 ± 0.3

?

Phys. Rev. D 85 (2012) 124044
Class.Quant.Grav. 36 (2019) 224001

JHEP 02 (2016) 144    
Phys. Rev. D 95 (2017) 124029
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?
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Semi-classical phase



 Phase CdS (de Sitter phase) has good semi-
classical properties !

 Effective dimensions consistent with d = 4

 Dynamicaly emerging background geom.

 𝑁3(𝑖)  profile of elongated ( 𝜔 ≠ 𝜔0) 4-sphere

 renormalizing 𝑙𝑡 → 𝑙𝑡 = 𝑙𝑠
𝜔0

𝜔

4/3

one obtains 

symmetric S4, i.e., classicaly: Euclidean de 
Sitter universe (max. sym. space with 𝛬>0)

 local (average) curvature* consistent with S4 

 ~homogenous and isotropic** on large scales

 Minisuperspace behaviour of the scale factor

 From quantum fluctuations of 𝑁3(𝑖) one can 
recover the effective action of the scale factor 

  The effective action is consistent with the MS  
action  (spatial homogeneity and isotropy)

 This was „derived” from first principles !

-12-

Semi-classical phase
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recover the effective action of the scale factor 

  The effective action is consistent with the MS  
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Functional Renormalization Group
 As CDT the FRG is also based on „traditional” non-

petrurbative QFT framework to quantize gravity
 Consider a (potenitally ∞ dim.) space of all effective 

actions* of QG (or in practice their truncations)

 Alternatively one has a space of scale-dependent 
dimensionless couplings related to operators appering 
in the effective actions

 Compute the RG flow (based on solving 𝛽-functions) 
of the couplings with the cutoff scale k

 Find RG trajectories linking IR (𝑘 → 0) and UV (𝑘 → ∞) 
fixed points (𝛽 = 0) of the RG flow

 Asymptotic Safety conjecture (S. Weinberg)
 Scale invariance of the UVFP imposes strong 

constraints on most operators (couplings)

 On RG flow trajectories leading from IR to UV fixed 
points there is only a finite numer of relevant 
operators (finite dim. subspace of relevant couplings) 

 Even though the values of the couplings in the UV limit 
are not small one one can get a predictive theory of 
QG at all scales (nonperturbative renormalizability)

 There is growing evidence from FRG in favour of AS  

* Effective actions govern the expectation value and quantum fluctuations of the field 

Close to UVFP:

𝑘cutoff ~1/𝑙𝑠

𝑔

𝛽(𝑔)

𝑔∗

𝑙𝑠 𝑔 ∝ 𝑔 − 𝑔∗ −1/𝛽′(𝑔∗)
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 Making contact of FRG with CDT:
 In CDT one measures the (minisuperspace) Einstein-

Hilbert effective action 

 Therefore in FRG we take the simplest Einstein-Hilbert 
truncation of the (Euclidean) effective actions with two 
scale-dependent couplings: 𝐺𝑘  , 𝛬𝑘

 An extremum of the E-H effective action is a de Sitter 
universe (the four-sphere S4) with a 4-volume given 

by the cosmological constant 𝑉4 ∝ 𝛬𝑘
−2

 As in CDT we measure only a behaviour of the scale 
factor 𝑎(𝑡) (or the 3-volume 𝑉3(𝑡)) we will also 
consider only minisuperspace fluctuations

 The (relative) fluctuations are goverened by a 

dimensionless effective coupling 𝑔𝑒𝑓
2 ∝  𝐺𝑘𝛬𝑘  

 There are both the IR and the UV fixed points  

 In the IR (𝑘 → 0): 𝐺𝑘𝛬𝑘 → 0 as 𝐺𝑘→ 𝐺0 ≈ 𝐺𝑁 , 𝛬𝑘 → 0
so one recovers semiclassical universe with 𝑉4 → ∞

 In the UV (𝑘 → ∞): 𝐺𝑘𝛬𝑘 → 𝑔∗𝜆∗ ∼ 1 as
𝐺𝑘 → 𝑔∗𝑘−2 → 0, 𝛬𝑘 → 𝜆∗𝑘2 → ∞ so 𝑉4 → 0
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S𝑘 = −
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16𝜋𝐺𝑘
න 𝑑4𝑥 det 𝑔 𝑅 − 2Λk + 𝑔𝑎𝑢𝑔𝑒 + 𝑔ℎ𝑜𝑠𝑡
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RG flow on the lattice (𝜙4 example)
 4D 𝜙4 (lattice) field theory example*

 2 dimensionless bare couplings: m0
 , 𝜅0 

 for each choice of m0
 , 𝜅0 one can compute the 

renormalized mR
 , 𝜅R and the correl. length 𝜉

 physical correl. length 𝜉𝑝ℎ = 𝑚𝑅
−1 = 𝜉 𝑙𝑠

 one can find RG flow where 𝜅𝑅 , 𝑚𝑅 = 𝑐𝑜𝑛𝑠𝑡.

 there is a phase transition (where 𝜉 → ∞ so 
following the RG flow trajectory 𝑙𝑠 → 0)

 The IR limit

 we approach the phase transition (𝜉 → ∞) 
keeping the bare coupling 𝜅0 fixed

 we cross the 𝜅𝑅 = 𝑐𝑜𝑛𝑠𝑡 RG trajectories in the 

direction of 𝜅𝑅 → 𝜅𝑅
𝑖𝑟

 The UV limit

 we approach the phase transition (𝜉 → ∞) 
keeping the renormalized coupling 𝜅R fixed

 in order to do that we have to tune the bare 
coupling 𝜅0

𝜅0

−𝑚0

𝑘cutoff ~1/𝑙𝑠

𝜅0

𝐿 = 𝜕𝜇𝜙
2

+ 𝑚𝑜
 𝜙2 + 𝜅0𝜙4

𝜅𝑅 ∝ Γ4(𝑝𝑖 = 0; 𝑚0, 𝜅0)

𝛽(𝜅0)

𝜅0
∗

−𝑙𝑠

𝑑𝜅0

𝑑𝑙𝑠
= 𝛽 𝜅0 ≈ 𝛽′(𝜅0

∗)(𝜅0 − 𝜅0
∗)

𝑙𝑠 𝜅0 ∝ 𝜅0 − 𝜅0
∗ −1/𝛽′(𝜅0

∗)

𝜅𝑅(𝑚0, 𝜅0) 𝜙 = 0

𝜙 ≠ 0



−𝑙𝑠

𝑑𝜅0

𝑑𝑙𝑠
= 𝛽 𝜅0 ≈ 𝛽′(𝜅0

∗)(𝜅0 − 𝜅0
∗)

𝑙𝑠 𝜅0 ∝ 𝜅0 − 𝜅0
∗ −1/𝛽′(𝜅0

∗)

𝑘cutoff ~1/𝑙𝑠
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RG flow on the lattice (𝜙4 example)
 4D 𝜙4 (lattice) field theory example*
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−1 = 𝜉 𝑙𝑠

 one can find RG flow where 𝜅𝑅 , 𝑚𝑅 = 𝑐𝑜𝑛𝑠𝑡.
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following the RG flow trajectory 𝑙𝑠 → 0)

 The IR limit
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𝛽(𝜅0)

𝜅0
∗

= 𝜅0
∗

unbroken phase
𝜙 = 0
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∗)

𝑙𝑠 𝜅0 ∝ 𝜅0 − 𝜅0
∗ −1/𝛽′(𝜅0

∗)

𝑘cutoff ~1/𝑙𝑠
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−1 = 𝜉 𝑙𝑠
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 there is a phase transition (where 𝜉 → ∞ so 
following the RG flow trajectory 𝑙𝑠 → 0)
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 we approach the phase transition (𝜉 → ∞) 
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 in order to do that we have to tune the bare 
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2, 𝜅0)

𝛽(𝜅0)

𝜅0
∗

= 𝜅0
∗

unbroken phase
𝜙 = 0



−𝑙𝑠

𝑑𝜅0

𝑑𝑙𝑠
= 𝛽 𝜅0 ≈ 𝛽′(𝜅0

∗)(𝜅0 − 𝜅0
∗)

𝑙𝑠 𝜅0 ∝ 𝜅0 − 𝜅0
∗ −1/𝛽′(𝜅0

∗)

𝑘cutoff ~1/𝑙𝑠
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RG flow on the lattice (𝜙4 example)
 4D 𝜙4 (lattice) field theory example*

 2 dimensionless bare couplings: m0
 , 𝜅0 

 for each choice of m0
 , 𝜅0 one can compute the 

renormalized mR
 , 𝜅R and the correl. length 𝜉

 physical correl. length 𝜉𝑝ℎ = 𝑚𝑅
−1 = 𝜉 𝑙𝑠

 one can find RG flow where 𝜅𝑅 , 𝑚𝑅 = 𝑐𝑜𝑛𝑠𝑡.

 there is a phase transition (where 𝜉 → ∞ so 
following the RG flow trajectory 𝑙𝑠 → 0)

 The IR limit

 we approach the phase transition (𝜉 → ∞) 
keeping the bare coupling 𝜅0 fixed

 we cross the 𝜅𝑅 = 𝑐𝑜𝑛𝑠𝑡 RG trajectories in the 

direction of 𝜅𝑅 → 𝜅𝑅
𝑖𝑟

 The UV limit

 we approach the phase transition (𝜉 → ∞) 
keeping the renormalized coupling 𝜅R fixed

 in order to do that we have to tune the bare 
coupling 𝜅0

𝐿 = 𝜕𝜇𝜙
2

+ 𝑚𝑜
 𝜙2 + 𝜅0𝜙4

𝜅𝑅 ∝ Γ4(𝑝𝑖 = 0; 𝑚0
2, 𝜅0)

*Unfortunately there is no UV fixed point in 𝜙4

𝛽(𝜅0)

𝜅0
∗

= 𝜅0
∗

unbroken phase
𝜙 = 0
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RG flow on the lattice (CDT)

∝ 𝜉−1

Cb

dS

 CDT

 3 dimensionless bare couplings: k0
 , 𝛥, K4 

 The bare cosmol. const. K4 is related to lattice 

volume 𝑁4 : 𝐾4 → 𝐾4
𝑐𝑟𝑖𝑡 𝑘0, Δ  when 𝑁4 → ∞

 One can argue (based on 2-dim CDT results) that 

incide phase CdS the correl. length: 𝜉 ∝ 𝑁4
1/4

 We assume that the CDT MS effective action is 
consistent with the E-H truncation in FRG 

 This implies relations between the effective 
couplings 

 The IR limit

 we will approach the 𝐾4
∗ 𝑘0, Δ  critical surface 

(𝜉 → ∞) keeping the bare couplings k0 , 𝛥 fixed

 we associate it with the IR limit of FRG

 The UV limit

 we will approach the 𝐾4
∗ 𝑘0, Δ  critical surface 

(𝜉 → ∞) tuning the bare couplings k0 , 𝛥 such 
that the effective coupling 𝐺Λ stays fixed

 we associate it with the UV limit of FRG
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RG flow on the lattice (CDT)
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 We assume that the CDT MS effective action is 
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 This implies relations between the effective 
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(𝜉 → ∞) keeping the bare couplings k0 , 𝛥 fixed
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RG flow on the lattice (CDT)

∝ 𝜉−1

Cb

dS

∝ 𝜉−4

S𝑘 =
1

16𝜋𝐺𝑘
න 𝑑4𝑥 det 𝑔 𝑅 − 2Λk

1
෨Γ

𝑁4

𝜔

𝜔0

2

∝ 𝐺𝑘Λ𝑘/

𝑆 =
1

෨Γ


𝑖

(𝑁3 𝑖 + 1 − 𝑁3 𝑖 )2 

𝑁3 𝑖
+ 𝜇𝑁3 𝑖 1/3

1 /
𝜔

𝜔0

4/3

෨Γ 𝑙 𝑠
2 𝑉4 = 𝑙 𝑠

4
𝜔0

𝜔

4/3

𝑁424𝜋𝐺 =
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∝

1

Λ2



𝑘 → 0 ∶  𝐺𝑘 𝛬𝑘 → 0 
 𝐺𝑘→ 𝐺0 ≈ 𝐺𝑁, 𝛬𝑘 → 0

 CDT

 3 dimensionless bare couplings: k0
 , 𝛥, K4 

 The bare cosmol. const. K4 is related to lattice 

volume 𝑁4 : 𝐾4 → 𝐾4
𝑐𝑟𝑖𝑡 𝑘0, Δ  when 𝑁4 → ∞

 One can argue (based on 2-dim CDT results) that 

incide phase CdS the correl. length: 𝜉 ∝ 𝑁4
1/4

 We assume that the CDT MS effective action is 
consistent with the E-H truncation in FRG 

 This implies relations between the effective 
couplings 

 The IR limit

 we will approach the 𝐾4
∗ 𝑘0, Δ  critical surface 

(𝜉 → ∞) keeping the bare couplings k0 , 𝛥 fixed

 we associate it with the IR limit of FRG

 The UV limit

 we will approach the 𝐾4
∗ 𝑘0, Δ  critical surface 

(𝜉 → ∞) tuning the bare couplings k0 , 𝛥 such 
that the effective coupling 𝐺Λ stays fixed

 we associate it with the UV limit of FRG
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෨Γ 𝑙 𝑠
2 𝑉4 = 𝑙 𝑠

4
𝜔0

𝜔

4/3

𝑁424𝜋𝐺 =
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1

Λ2
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incide phase CdS the correl. length: 𝜉 ∝ 𝑁4
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 We assume that the CDT MS effective action is 
consistent with the E-H truncation in FRG 

 This implies relations between the effective 
couplings 

 The IR limit

 we will approach the 𝐾4
∗ 𝑘0, Δ  critical surface 

(𝜉 → ∞) keeping the bare couplings k0 , 𝛥 fixed

 we associate it with the IR limit of FRG

 The UV limit

 we will approach the 𝐾4
∗ 𝑘0, Δ  critical surface 

(𝜉 → ∞) tuning the bare couplings k0 , 𝛥 such 
that the effective coupling 𝐺Λ stays fixed

 we associate it with the UV limit of FRG

𝑘 → 0 ∶  𝐺𝑘 𝛬𝑘 → 0 
 𝐺𝑘→ 𝐺0 ≈ 𝐺𝑁, 𝛬𝑘 → 0

RG flow on the lattice (CDT)

∝ 𝜉−1

Cb

dS

∝ 𝜉−4

S𝑘 =
1

16𝜋𝐺𝑘
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𝜔

𝜔0

2

∝ 𝐺𝑘Λ𝑘/

𝑆 =
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𝑖

(𝑁3 𝑖 + 1 − 𝑁3 𝑖 )2 

𝑁3 𝑖
+ 𝜇𝑁3 𝑖 1/3

1 /
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2 𝑉4 = 𝑙 𝑠
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𝜔0

𝜔

4/3

𝑁424𝜋𝐺 =
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∝

1

Λ2

𝑘 → ∞ ∶  𝐺𝑘𝛬𝑘 → 𝑔∗𝜆∗  
 𝐺𝑘→ 𝑔∗𝑘−2, 𝛬𝑘 → 𝜆∗𝑘2 
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IR limit
 IR limit 

 we approach the 𝐾4
∗ 𝑘0, Δ  critical surface 

(𝜉 → ∞, i.e. 𝑁4 → ∞) keeping the bare 
couplings k0 , 𝛥 fixed

 for fixed k0 , Δ we have ෨Γ , 𝜔 = 𝑐𝑜𝑛𝑠𝑡. > 0

 from FRG for 𝑘 → 0 : 𝐺𝑘 → 𝐺0 ≈ 𝐺𝑁 = ℓ𝑃𝑙
2

  therefore in CDT lattice spacing remains 
constant : 𝑙𝑠 ∼ ℓ𝑃𝑙

 as 𝑁4 → ∞ and 𝑙𝑠 > 0 the volume of the CDT 
universe 𝑉4 → ∞

 this is consistent with FRG as for 𝑘 → 0 : 

Λ𝑘 → 0 so 𝑉4 ∝ Λ𝑘
−2 → ∞

 CDT (relative) fluctuations vanish and one 
reproduces (semi) classical spacetime

 this is also consistent with FRG where 
𝐺𝑘𝛬𝑘 → 0 

𝑁3(𝑖) = 𝑁4
3/4 3

4 𝜔
cos3

𝑖

𝜔𝑁4
1/4

 

|𝛿𝑁3(𝑖)| = ෨Γ1/2𝑁4
1/2

 F
𝑖

𝜔𝑁4
1/4

 

|𝛿𝑉3 𝑡𝑖 |

⟨𝑉3(𝑡𝑖)⟩ 
=

|𝛿𝑁3(𝑖)|

⟨𝑁3(𝑖)⟩ 
∝

෨Γ 𝜔2

𝑁4
1/4

→ 0

1 /
𝜔

𝜔0

4/3

෨Γ 𝑙 𝑠
224𝜋𝐺 = 𝑉4 = 𝑙 𝑠

4
𝜔0

𝜔

4/3

𝑁4 ∝
1

Λ2
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UV limit
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UV limit
 UV limit 

 we approach the 𝐾4
∗ 𝑘0, Δ  critical surface 

(𝜉 → ∞, i.e. 𝑁4 → ∞) tuning the bare 
couplings k0 , 𝛥 such that the effective 
𝐺𝑘Λ𝑘 = 𝑔∗𝜆∗ = 𝑐𝑜𝑛𝑠𝑡

 from FRG: 𝐺𝑘→ 𝑔∗𝑘−2 → 0

 therefore in CDT :  𝑙𝑠 ∼ 𝑘−1 → 0

 (relative) fluctuations stay constant

 This requires finding RG flow trajectories

𝑘0 𝑁4 , Δ 𝑁4  parametrized by N4

 Is only possible by approaching the
𝐶𝑑𝑆 − 𝐴 phase transition line

 we fix Δ (Δ = 0)* and change only 𝑘0 

 one can compute critical exponents related 
to scaling of ෨Γ and 𝜔 at the transition

 the results show that it may be possible to 
approach the UV limit

 however it is done at the 1st order transition

|𝛿𝑉3 𝑡𝑖 |

⟨𝑉3(𝑡𝑖)⟩ 
=

|𝛿𝑁3(𝑖)|

⟨𝑁3(𝑖)⟩ 
∝

෨Γ 𝜔2

𝑁4
1/4

→ 𝑐𝑜𝑛𝑠𝑡 ∼ 1

1 /
𝜔

𝜔0

4/3

෨Γ 𝑙 𝑠
224𝜋𝐺 = 𝑉4 = 𝑙 𝑠

4
𝜔0

𝜔

4/3

𝑁4 ∝
1

Λ2

?

𝑁4(𝑠𝑡𝑎𝑟𝑡)

1
෨Γ

𝑁4

𝜔

𝜔0

2

∝ 𝐺𝑘Λ𝑘 = 𝑔∗𝜆∗ = 𝑐𝑜𝑛𝑠𝑡/

෨Γ 𝑘0 𝑁4 , Δ 𝑁4 𝜔2 𝑘0 𝑁4 , Δ 𝑁4 ∝ 𝑁4
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UV limit
 UV limit 

 we approach the 𝐾4
∗ 𝑘0, Δ  critical surface 

(𝜉 → ∞, i.e. 𝑁4 → ∞) tuning the bare 
couplings k0 , 𝛥 such that the effective 
𝐺𝑘Λ𝑘 = 𝑔∗𝜆∗ = 𝑐𝑜𝑛𝑠𝑡

 from FRG: 𝐺𝑘→ 𝑔∗𝑘−2 → 0

 therefore in CDT :  𝑙𝑠 ∼ 𝑘−1 → 0

 (relative) fluctuations stay constant

 This requires finding RG flow trajectories

𝑘0 𝑁4 , Δ 𝑁4  parametrized by N4

 Is only possible by approaching the
𝐶𝑑𝑆 − 𝐴 phase transition line

 we fix Δ (Δ = 0)* and change only 𝑘0 

 one can compute critical exponents related 
to scaling of ෨Γ and 𝜔 at the transition

 the results show that it may be possible to 
approach the UV limit

 however it is done at the 1st order transition

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4

- 0.05

0.00

0.05

0.10

0.15

0.20

κ0

Δ

Γ
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2340

2860

3380

3900

𝑁4 = 160𝑘

෨Γ 𝑘0 𝑁4 , Δ 𝑁4 𝜔2 𝑘0 𝑁4 , Δ 𝑁4 ∝ 𝑁4
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UV limit
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𝑁4 = 160𝑘

෨Γ 𝑘0 𝑁4 , Δ 𝑁4 𝜔2 𝑘0 𝑁4 , Δ 𝑁4 ∝ 𝑁4

 UV limit 
 we approach the 𝐾4

∗ 𝑘0, Δ  critical surface 
(𝜉 → ∞, i.e. 𝑁4 → ∞) tuning the bare 
couplings k0 , 𝛥 such that the effective 
𝐺𝑘Λ𝑘 = 𝑔∗𝜆∗ = 𝑐𝑜𝑛𝑠𝑡

 from FRG: 𝐺𝑘→ 𝑔∗𝑘−2 → 0

 therefore in CDT :  𝑙𝑠 ∼ 𝑘−1 → 0

 (relative) fluctuations stay constant

 This requires finding RG flow trajectories

𝑘0 𝑁4 , Δ 𝑁4  parametrized by N4

 Is only possible by approaching the
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Conclusions
 CDT is a lattice QFT and a promising candidate for a unitary and (if asymptotic safety 

is valid) UV complete (?) theory of QG formulated in a fully non-perturbative and 
background independent way

 One can study dynamically emerging background geometry and quantum fluctuations

 CDT has a rich phase structure including the semi-classical phase CdS 

 correct IR limit of the scale factor (spatial volume) consistent with (Eucl.) de Sitter space

 quantum fluctuations very well described by the minisuperspace action 

 Phase CdS is surrounded by a 2nd order phase transition (in S3 CDT) & 1st order phase 
transitions with potentially higher order endpoints

 CDT can provide independent tests of the asymptotic safety conjecture in a fully non-
perturbative setting, not dependent on FRG truncations

 One can make contact with FRG approach to QG by defining RG flow in CDT and 
search for the UV fixed point (?). The results seem promising.

 Open problems and questions:

 the UV limit of CDT is obtained at the 1st order phase transition (non-standard)

 this is possible because we assumed (following 2-dim CDT) that 𝜉 ∝ 𝑁4
1/4

 flow in FRG cutoff (k) seems to be independent from the flow in the CDT bare coupling 
space 𝑘0, Δ  and thus renormalized ෨Γ , 𝜔. Probably more "observables" needed.



Thank You !
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