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Challenges of Quantum Gravity (QG)

<> Asearly as in 1916 Einstein* pointed out that
,quantum theory would have to modify not only
Maxwellian electrodynamics, but also the new
theory of gravitation”

<> After more than 100 years a complete, consistent
quantum theory of gravity is still missing
<> We have a number of interesting but incomplete
research programs
<> string theory
<> loop quantum gravity
<> group field theory

< causal set theory
A. Einstein triangulation by J. Bryan

—

<~ noncommutative geemetry- — — _ _ _ _
< BS;mptotic safety (functional RGf/OW) =~ N Sitzungsber. Preuss. Akad. Wiss. Berlin (1916) 688
$ .LaLtige QFT approaches (CDT, quantum Regge,caq’cf, ...)
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Challenges of Quantum Gravity (QG)

< Lack of experimental guidance

<> Conceptual issues

< QFT based on Einstein’s GR is perturbatively

. . . . M. Goroff, A. Sagnotti, NPB 266 (1986) 709
non-renormalizable in D > 2 dimensions

< Renormalizable extensions (eg. with R? terms) K. . Stelle, Phys. Rev. D 16 (1977) 953
have problems with unitarity



Challenges of Quantum Gravity (QG)

AIreI ant coupling

<> Lack of experimental guidance Theory Space |
<> Conceptual issues |

< QFT based on Einstein’s GR is perturbatively
non-renormalizable in D > 2 dimensions

<> Renormalizable extensions (eg. with R? terms)
have problems with unitarity
<> One is forced to use non-perturbative &
background-independent approaches (difficult !)

<> Non-perturbative renormalizability of QG ?
Asymptotic safety (AS) conjecture:  s.Weinberg, 1980

<> renormalization group (RG) flow leads to a
non-Gaussian UV fixed point =G, —

<> where QG becomes scale invariant (UV complete) oy
<> in the vicinity of the UV fixed point the RG flow (i )) e
trajectories lie in a finite dim. hypersurface (in the
theory space of coupling constants): only a finite w10 |
numer of relevant couplings should be fixed b= 10 = 0,

(measured) to make QG predictive at all scales
-




<> Lattice QFT formulation can allow to check AS

Challenges of Quantum Grav:ty (QG)‘

in a unitary, non-perturbative, background-

independent & diffeomorphism-invariant QG

<> we need dynamical lattices (DT) to encode
geometric d.o.f.

continuum limit (UV fixed point ?) should be
associated with a phase transition

¢

<> one must be able to reproduce semi-classical
gravity (IR limit)

<>

causal structure is an important ingredient: COT 0.4 f

(J. Amjarn, J. Jurkiewicz, R. Loll)

2D:
3D:
4D:
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Challenges of Quantum Grav:ty (QG)‘

< Lattice QFT formulation can allow to check AS | | /| /|
in a unitary, non-perturbative, background- Yy dvardvd
independent & diffeomorphism-invariant QG 7| - |
<> we need dynamical lattices (DT) to encode

geometric d.o.f.

<> continuum limit (UV fixed point ?) should be
associated with a phase transition

<> one must be able to reproduce semi-classical
gravity (IR limit)

< causal structure is an important ingredient: CDT 0.4 f
(J. Amjarn, J. Jurkiewicz, R. Loll) <

<> Main goals of QG as a Lattice QFT:

<> Formulate a UV complete (non-perturbatively
renormalizable) and unitary theory of QG 02

<> with a correct IR limit (consistent with GR)
<> Study the emerging background geometry
<> and fluctuations around this geometry

<> Study properties of a quantum spacetime at the
Planck scale; find some non-trivial predictions /
observational effects (construct phenomenology ?)

.dmmr vm!nf-
AR

2D: J. Ambjorn, R. Loll, Nucl.Phys. B 536 (1998) 407
3D: J. Ambjorn, J. Jurkiewicz, R. Loll, Phys.Rev.Lett. 85 (2000) 924
4D: J. Ambjorn, J. Jurkiewicz, R. Loll, Nucl.Phys. B610 (2001) 347
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Outline

<>Causal Dynamical Triangulations (CDT)
<>Phase structure and phase transitions
<>Semi-classical phase

<>Functional Renormalization Group
<*RG flow on the lattice

<IR limit

<-UV limit

<>Conclusions



Causal Dynamical Triangulations

<> CDT approach to QG is via a lattice QFT,
using the path integral (Pl) quantization

<> One has to give a precise meaing to:

<>

<>
<>

>

what class of geometries should be
included in the PI

what (classical) action should be used

which symmetries (GR diffeomorhisms ?)
should be preserved and how to do that

what is the integration measure
how to compute the Pl in practice

how to deal with unitarity and (generic)
Pl divergencies

ZQG ==

gE

Dlg]exp(i Sgrav[g])

Lor(M) ' _
Diff (M) *+ (Lorenzian) geometries




Causal Dynamical Triangulations

<> CDT approach to QG is via a lattice QFT,  Zgpg = j Dlg]lexp(i Sgrav[g])

using the path integral (Pl) quantization Lor(M)
EDiff(M) +«— (Lorenzian) geometries

<> CDT (quantum) geometries: 1
<> In classical GR one deals with smooth Z&}T — C_T eXp(i SR [T])HJ}
T

(pseudo-)Riemannian manifolds causa

triangulations

<> In the Pl one should most likely also include
non-smooth, but continuous (Lorenzian)
geometries

< CDT assumes globally hypebolic spacetimes
which can be foliated into spacial slices of ¥ 4

S

equal cosmological proper time* =

<> CDT takes a minimalistic approach and fixes
topology of the manifold, with compact
space & time periodic b.c. (S'xS? or S’xT3)

<> We use a subset of continuous geometries,
the so-called piecewise linear manifolds,
that can be constructed from identical
simplicial building blocks. We hope they are
dense in the set of continuous geometries

* Nature of the imposed foliation is not fully understood: 4-d diffeo. symetry breaking vs convenient gauge choice



Causal Dynamical Triangulations

<> CDT approach to QG is via a lattice QFT,  Zgpg = j Dlg]lexp(i Sgrav[g])

using the path integral (Pl) quantization Lor(M)
EDiff(M) +«— (Lorenzian) geometries

<> CDT action & diffeom. symmetry:

<> We use the Einstein-Hilbert action Z (%)T Z exp(i Sg[T])
. . . . causaF
<> For a piesewise linear manifold triangulations
(triangulation) it takes the f%m of S 1 j g4 \/T (R —20)
/ : . Regge, —de —
Regge’s action Nuovo Cim. A19 (1961) 558 grav — 161G
<> Curvature is defined by deficit angles ' '
around D-2 dim. , hinges” (triangles in 4D) # 4-simplices I‘1 4,1} 4;simpl. # vertices
<> Regge’s formulation uses only geometric J_ ’ - 41)
invariants (geodesic edge lengths and “R — kOWO + K4N a A(N — 6N, 0)
deficit angles) making it coordiante 1[ f ¥
free and therefore manifestly (at least 1/G a (2= -oclsz)

spatial*) diffeomorphism invariant

<> As CDT uses only 2 types of bulding blocks %
with fixed edge lenghts the Regge action is
very simple

* Nature of the imposed foliation is not fully understood: 4-d diffeo. symetry breaking vs convenient gauge choice



Causal Dynamical Triangulations

<> CDT approach to QG is via a lattice QFT,  Zgpg = j Dlg]lexp(i Sgrav[g])

using the path integral (Pl) quantization Lor(M)
EDiff(M) +«— (Lorenzian) geometries

<> CDT Pl measure and MC computations:

1
<> CDT uses a trivial measure 1/C; Z &)T = 7 —exp(i Sg[T])

(plans to investigate other measures) causa Cr # symmetries of T
triangulations

<> In order to investigate the 4D Pl one has 1 4
to use Monte Carlo (MC) simulations Sgl‘aV = 167G j d*x,/ —detg (R—2A)

<~ MC requires Euclidean formulation o M _
(Wick’s rotation) # 4'5'mp|'ces\1“ {4,1} 4-simpl.  # vertices

<> Due to the CDT imposed time foliation
each Lorentzian geometry can be

’

£\ £ N (4 1)
Sk = +kolNo HKsNy 4 AYNS* — 6N,

Wick-rotated to an Euclidean geom. o 1-1 s

<> A the level of the Regge action Wick’s 1/G A af( \tz = Oﬁlizt
rotation is achieved by an analytical 1 - a-—a
continuation (o — —ag: coupling Zg?T = C_eXp ('\_,‘SR [T])
constants are appropriately changed, = ~T
but general form of the action S, Npc

remains the same in (L) and (E) (0) = %Z Ci O[T]e™ SrlID =~ — z O[T V]
T
_8- T



Causal Dynamical Triangulations

<> CDT approach to QG is via a lattice QFT,  Zgpg = j Dlg]lexp(i Sgrav[g])

using the path integral (Pl) quantization Lor(M)
EDiff(M) +«— (Lorenzian) geometries

<> CDT unitarity and Pl divergencies: 1
<> CDT has a (time) reflection positive*, Z &)T = 7 — exp(i Sg[T])

symmetric and bounded transfer matrix. ~ causa T Cr < # symmetries of T
In standard lattice QFT it guarantees ~ (ransulations
unitarity if continuum limit exists Sgrav = 167G j d4xv —detg (R — 2A)
<> For finite N, there is no problem with M
the Pl convergence as the number of # 4-simplices Iﬁ {4,1} 4-simpl.  # vertices
configurations is exponentially bounded . \\A P /
<~ Lattice spacing (lg) plays a role of the S = {kolNo HK4N, 4 A NF'D - 6N0)
UV cutoff 151 as in ordinary lattice QFT . of a o o
< We want to investigate continuum limit 1/G A« ((:2 = al)
(I, = 0, N, — o), hopefully consistent ) - i
with the UV fixed point of QG o ng;)T _ C_ exp (l\_ ,‘SR [T])
<> CDT does not assume that spacetime is = =T
discrete in any sense ! Npyc

1 1 1 .
(0) = EZC_O[T]e_SR[TD ~ N_z O[T V]
9. = LT MC 4

* TM? is positive-definite



Phase structure & phase transitions
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Phase structure & phase tranSIt/ons

<> Phase structure:

< We perform MC simulations with fixed N,
The cosmological constant K, is tuned to
N, and we effectively have two coupling

constants: k, and A

-10-
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Phase structure & phase tranSIt/ons

<> Phase structure:
< We perform MC simulations with fixed N,.

The cosmological constant K, is tuned to 0_4:,

N, and we effectively have two coupling

constants: k, and A 02}

< Four phases (A, B, C,s, C,) of different
generic geometries were discovered

-0.2 g

02 l‘
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Phase structure & phase tranSIt/ons

Spherlcal CDT

I ‘ "Phase C4s'(sphere)
< Phase structure: | oo |.
< We perform MC simulations with fixed N,. . (k)' Phase C, (sphere)
. . 3 ~”~ 3000

The cosmological constant K, is tunedto ™,  "“~._ ds ]

N, and we effectively have two coupling <;j:: / k

constants: k, and A 02 C, T A
< Four phases (4, B, Cas Cb) of different Oo.ozo'#u(s::eré) """"" R |

generic geometries were discovered C Na(K) 3 Ns(k)"a“afﬁ ]A[‘P“ere)
<~ The observable*: physical 3-volume of P i, IR I y A

2 3

spatial layers: V3(t;) o< N3(i) - I3 + lattice spacmg"

kO 1000
Tor0|dal CDT
"7 " Phase Cgg (torus) '
s Ns(K) ]
0.@Phase Gy, (torus) 8000 .
Ns(k) 1

00000

physical proper time t; =i - I, # of tetrahedra at lattice time |

try

lattice time  lattice spacing " oo

00000

*This is formally not a gauge invariant observable if we /nSISt to keep full 4-d diffeo. sym




Phase structure & phase transitions

<> Phase structure:

< We perform MC simulations with fixed N,.

The cosmological constant K, is tuned to
N, and we effectively have two coupling

constants: k, and A

< Four phases (A, B, C,,, C,) of different

generic geometries were discovered

<> The observable*: physical 3-volume of

spatial layers: V5(t;) « N3(i) - I3

<> In toroidal CDT one can even visualize
generic geometries using ,,harmonic”

coordinates defined by scalar fields

-10-

Spherical CDT

" " Phase C4s (sphere)
f N3(K)
0.61L 5000
Phase Cy, (sphere) 4000
1zlt\1{)§(k) : S N 3000
10000 04 [ R ~ e 2000 dS
< | e K |
ol 0.2 c A
2000 [ b 1
0 : 20 _ 60 w K S :
00— phase B (spherer — == ====~ 2. /
| Phase b (sphere) Seo |
- Na(k) B -
_02 "15000 ‘ e

1 10000

5000

0.0

—02|

Eur.Phys.).C 81 (2021) 708 K,
Class.Quant.Grav. 38 (2021) 195030



Phase structure & phase tranSIt/ons

<> Phase structure:

< We perform MC simulations with fixed N,.
The cosmological constant K, is tuned to
N, and we effectively have two coupling
constants: k, and A

< Four phases (A, B, C,,, C,) of different
generic geometries were discovered

<> The observable*: physical 3-volume of
spatial layers: V5(t;) « N3(i) - I3

<> In toroidal CDT one can even visualize
generic geometries using ,,harmonic”
coordinates defined by scalar fields

<> The difference between phases C,c and C, \

is captured by effective dimensions

| Spherlcal CDT

Phase Cys'(sphere)
I N3(k)
0.6+ e
hase C, (sphere)

OB

)

oo} 0.2

0.0/

-0.2 g

7
¢ dy=o0
[ ¢

0.5
—

B

Hausdorff dimension: (N3(i)) —
rescaled average
volume profiles

(scaling for d,, = 4)

[ =

<N3(l)>
1- 1/dH
41'

1/dy
N4



Phase structure & phase tranSIt/ons

<> Phase structure:

< We perform MC simulations with fixed N,.
The cosmological constant K, is tuned to
N, and we effectively have two coupling
constants: k, and A

< Four phases (A, B, C,,, C,) of different
generic geometries were discovered

<> The observable*: physical 3-volume of
spatial layers: V5(t;) « N3(i) - I3

<> In toroidal CDT one can even visualize
generic geometries using ,,harmonic”
coordinates defined by scalar fields

<> The difference between phases C,; and C,
is captured by effective dimensions

* Dimensional reduction appears

in many approaches to QG
(S. Carlip, CQG 34 (2017) 193001)

0.6

)

Ns(k) 1

oo} 0.2

| Spherlcal CDT

hase C, (sphere)

0.0/

-02¢+

NsK)

Phase Cys'(sphere)

dglr)

o

Spectral dimension™:
related to heat kernel

sF —_ - | ——

N3 | .

): e A i \ .
: -;_';.:_':-3-:;.;.‘..:.; A REA FEL IO =5 e =05
sf - A=06
T ™ Y ‘.,\:.'n - '

]
35 K x0; 0) = AgK(x, Xo; 0)

1
Pr(o =vfdx\/§K(x,x; 0)

ds(O') = -

dlogP.(0)
dlog o



<> Phase structure:
< We perform MC simulations with fixed N,.

The cosmological constant K, is tuned to
N, and we effectively have two coupling
constants: k, and A

Four phases (A, B, C,5, C,) of different
generic geometries were discovered
The observable*: physical 3-volume of
spatial layers: V5(t;) « N3(i) - I3

In toroidal CDT one can even visualize

generic geometries using ,,harmonic”
coordinates defined by scalar fields

The difference between phases C s and C,

is captured by effective dimensions

One can also use ,,automatic” Machine
Learning classification methods !

-10-

0.6

0.2

-0.2

0.0/

| Spherlcal CDT

Phase structure & phase tranSIt/ons

Cas
Cb \
B
2 3 4
ko

A-C A-B
("weak" | order) ( 1 order)

B-Cb
(1l order)

SUPERVISED learning

Decision Tree
Gradient Boosted Trees
Logistic Regression
Nearest Neighbors
Neural Network
Random Forest

Support Vector Machines

Agglomerate (2)

DBSCAN
Gaussian Mixture

K-Means (2)

UNSUPERVISED learning

Neighborhood Contraction

Spectral (2)




Phase structure & phase tranSIt/ons

<> Phase transitions:

<> Even though we don’t study changes of

the field configurations on the fixed
spacetime but the changes of the
spacetime geometry itself, we assume
that it makes sense to use standard
(lattice) statistical physics techniques

<> They require to define order parameters

which capture symmetry differences
between generic configurations
(geometries) in different phases

-11-

Spherlcal CDT

[}
b 1
e T .
0.4 - Cas 1
e [
0.2+ A
. - - \~
0.0 / - =e===a e /
L ~<
I B e
_0-2 7\ 1 1 1 ~\~ o]
1 / 2 3 4 5
(OP) kO (oP)
10 i o 10
"B Cb C com,  °
B E <o, *°
1 < op, 04
- \\*.—__. 0.2 I :
0‘4 0‘5 0‘5 A : L - L *\r4 Ko
0P, = Ny/N, 0P5 = ) (Na(i +1) = Ns(0)
i
3,2 4,1
op, = N&? /N*Y 0P, = max, O(v)
OP || Phase A | Phase B | Phase Cgs | Phase G,
| OP || large | small | medium | medium
| OF, small | small large large
OP; || medium large | small ~ medium
OP, small large small large




Phase structure & phase transitions

Spherical CDT

<> Phase transitions: S .
0.6+
<> Even though we don’t study changes of o
the field configurations on the fixed oal el Cas
spacetime but the changes of the - ?
spacetime geometry itself, we assume 02} c/ 2ro08
. | [2/
that it makes sense to use standard - & 2 2
. .. . . 0.0 y A X E PP 2 s
(lattice) statistical physics techniques : / ; Vo3¢
<~ They require to define order parameters 2L/ | I
which capture symmetry differences 4 | el
between generic configurations 1N
(geometries) in different phases
<> Finite size scaling analysis is used to
distinguish between 15t and 2"? order b=27403 5 —1.11(2) ;
phase transitions N = O A S T
\\s f’/ \\~N:m_4’
JHEP 02 (2016) 144 Phys. Rev. D 85 (2012) 124044

Phys. Rev. D 95 (2017) 124029 Class.Quant.Grav. 36 (2019) 224001

OP | Phase A [ Phase B | Phase Cg4s | Phase C,,
OR large small medium medium
OPF, small small large large
OP; || medium large small medium
OP, small large small large

-11-



Phase structure & phase t:Farrsmons

| Spherlcal cDT

<> Phase transitions:

<> Even though we don’t study changes of
the field configurations on the fixed
spacetime but the changes of the
spacetime geometry itself, we assume
that it makes sense to use standard
(lattice) statistical physics techniques

They require to define order parameters
which capture symmetry differences
between generic configurations
(geometries) in different phases

Finite size scaling analysis is used to
distinguish between 15t and 2"? order
phase transitions

We are especially intersted in phase
transitions sourrounding (the semi-
classical, see next slides) phase C
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Semi-classical phase

~12-



Semi-classical phase

<> Phase Cy (de Sitter phase) has good semi-
classical properties !

<> Effective dimensions consistent with d =4 04

<> Dynamicaly emerging background geom. <
< (N5(i)) profile of elongated (& # w,) 4-sphere

0.0}

. . wo 4/3 .
< renormalizing I, - 1, = I (3) one obtains

symmetric S?, i.e., classicaly: Euclidean de
Sitter universe (max. sym. space with A1>0)

<> local (average) curvature* consistent with S$*
< ~homogenous and isotropic** on large scales
<> Minisuperspace behaviour of the scale factor

< From quantum fluctuations of N3 (i) one can
recover the effective action of the scale factor

<> The effective action is consistent with the MS
action (spatial homogeneity and isotropy)

<> This was ,,derived” from first principles !

-12-
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Semi-classical phase

_ Spherical CDT
< Phase Cy (de Sitter phase) has good semi- i !

classical properties ! o1

Effective dimensions consistent with d =4 0.4}

<> Dynamicaly emerging background geom. < 0_2:
< (N3 (i)) profile of elongated (@ + w,) 4-sphere |

0.0}

o . wo 4/3 .
<> renormalizing l, - l, = (E) one obtains |

: . . : -0.2}
symmetric S% i.e., classicaly: Euclidean de S S

Sitter universe (max. sym. space with A1>0) ke

<> local (average) curvature* consistent with S$* — e D

< ~homogenous and isotropic** on large scale: s . ol

— W

—
(d[o_mo) 1022005 ™
—y -

dsle —0) = 195&:010

< Minisuperspace behaviour of the scale factor —« ==l ¥

o 100 200 300 400 500
o

-1 -0.3 0 0.5 1

<> From quantum fluctuations of N3 (i) one can . t
recover the effective action of the scale factor *® Nl_Ld,, t ®W d (s)= _p 4109 Fy(S)

4 4 dlogs
<> The effective action is consistent with the MS
action (spatial homogeneity and isotropy)

<> This was ,,derived” from first principles !

-12- J. Ambjorn, J. Jurkiewicz R. Loll,
PRL95(2005) 171301



Semi-classical phase

< Phase C s (de Sitter phase) has good semi- o000
classical properties ! el

7000 £

<> Effective dimensions consistent with d = 4 6000

5000 F

Spherical

< Dynamicaly emerging background geom. w00 |
< (N5(i)) profile of elongated (® # w,) 4-sphere 3000 £

2000 [

center of volume

1000 £

o . o 4/3 .
< renormalizing I, - 1, = I (E) one obtains :
D E sovvvvv s b e e a1 T
—-40 -300 20 10 0 10 20 30 40

_ 3 1 3 [
(N3 (D)) =1N4 SNY4 cos 1/4

symmetric S?, i.e., classicaly: Euclidean de
Sitter universe (max. sym. space with /1>0)

4 5N4
Va(t) = N2~ __t=il
<v‘(/t)> 2y — JE
5(t))=—-V,———cos
i 4 (1)01/41/4 a)olél/‘l-
,—-—— S = . -
3 1/4 1o wm 4/3 il
welem) _aezG) new)
V4:l_§ltN4_

~12-



.« . N.Klitgaard, R. Loll,
= EPJC80(2020) 990

<>\ Phase C 4 (§de Sitter phase) has good semi-
classical properties !
< \Effective dimensions consistent with d = 4

<> Dynamicaly emerging background geom.
< (N5(i)) profile of elongated (® # w,) 4-sphere

o . o 4/3 .
<> renormalizing I, - 1, = I (E) one obtains

symmetric S?, i.e., classicaly: Euclidean de
Sitter universe (max. sym. space with /1>0)

<> local (average) curvature® consistent with S*
< ~homogenous and isotropic** on large scales

* Def. by Quantum Ricci Curvature: N. Klitgaard, R. Loll, PRD 97 (2018) 046008
** Homogeneity measures in CDT: R. Loll . A. Silva. PRD 107 (2023) 086013

9000
8000
7000
6000
5000 F
4000 £
3000 £
2000
1000

—40

3 1
(Ns (l)) = ZNLL pe

Semi-classical phase

0 F

Spherical

center of volume

-30 20 -10 ] 10 20 30 40
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.« . N.Klitgaard, R. Loll,
= EPJC80(2020) 990

Semi-classical phase

<>\ Phase C 4 (§de Sitter phase) has good semi- o0
classical properties ! el

7000 £

< \Effective dimensions consistent with d = 4 6000

5000 F

Spherical

<> Dynamicaly emerging background geom. .
< (N5(i)) profile of elongated (® # w,) 4-sphere 3000 £

2000 [

center of volume

1000 £

. wo\4/3 _

<> renormalizing I, - [, =1 (T) one obtains :
S (L) D E sovvvvv s b e e a1 T

symmetric S?, i.e., classicaly: Euclidean de e

Sitter universe (max. sym. space with A1>0) 3 I

. : s (Ns(D) =7 Ny—— 7 cos® 1/4
<> local (average) curvature* consistent with S 4 " SN oON
< ~homogenous and isotropic** on large scales

Va(t) = N; (DB~ __t=il
o~ _
V. (t — § V ; 3 tl
0% N0 _ L _ .
3\ |, " (wo)4/3N Y
(o) ot - i
ds? = dt? + a?(t)d0s Oy
3 is fixing V,
* Def. b litgaard, R. Loll (2018) (o =l EL L
Def. by Quantum Ricci Curvature: N. Klitgaard, R. Loll, PRD 97 (2018) 046008, _ d*xJdeta (R — 2
** Homoseneity measures in CDT: R. Loll . A Silva PRD 107 (2023) 086013 FE 167G | ¢ *V9etgiut = i)



Semi-classical phase

. Spherical
<> Phase Cy (de Sitter phase) has good semi- 140000 [ P o
classical properties ! 0000 | Effctive
<> Effective dimensions consistent with d = 4 100000

80000 |

- (Na(k))?)

<> Dynamicaly emerging background geom.
< (N5(i)) profile of elongated (©® # w,) 4-sphere

60000 |

{(N3(k)

40000

20000 f

o . o 43/3 .
< renormalizing I, - 1, = I (5) one obtains

0

cd o : 010 20 30 4 0 6 0 8
symmetric 5%, i.e., classicaly: Euclidean de )
Sitter universe (max. sym. space with A>0) P %Z <(N3(i +;’)(;)N3(i))2 N ﬁN3(l-)1/3)
<> local (average) curvature* consistent with S* ’

<> ~homogenous and isotropic** on large scales
. . . N\ — N\ 13 =9(2 2)2/3
< Minisuperspace behaviour of the scale factor CORECHES R

o~ >

< From quantum fluctuations of N5 (i) one can ¢ I i\lz lt< (V5(t; + L) — (Va(tD)? 4( 5 a: i t.)1/3>
. . 7 72 2 , 2 i
recover the effective action of the scale factor ‘s "y4 e VS(tll Ny
~\ 4/3 W 4/3 1 1
i ly _ g4 (%0 1z
“(f) Fis V= (F) M
0/ R - - 7’_ J
Ais fixing V,

-12-



Semi-classical phase

] ) Spherical
< Phase C, (de Sitter phase) has good semi- 140000 ¢ P S
classical properties ! 120000 | e
< Effective dimensions consistent with d = 4 ~
Zg; 80000 [
<> Dynamicaly emerging background geom. i o |
< (N3(i)) profile of elongated (& #+ wy) 4-sphere £ 0|
4/3 20000 |
< renormalizing I, - 1, = I (%) one obtains N A
symmetric §% i.e., classicaly: Euclidean de Co A s
Sitter universe (max. sym. space with A>0) P %Z <(N3(i +;’)(;)N3(i))2 N ﬁN3(l-)1/3)
<> local (average) curvature* consistent with S* i ’
< ~homogenous and isotropic** on large scales  Nucl-Phys. B 849 (2011) 144
agrees with

.. . . Uo = 9(27.[2)2/3
<~ Minisuperspace behaviour of the scale factor e avkne N 0

,nhoboundary” proposal

< From quantum fluctuations of N3(i) one can VIR V3(£)? § pVy (D13
recover the effective action of the scale factor ~~™° 241G Vo) 7073
. . . T 2 a \ e bty
<~ The effective action is consistent with the MS,.,, . :<g>‘”3f 2] ly, = 14 (@)4/3 N, (x% :
action (spatial homogeneity and isotropy) 1_ = \wo/ "l - . . - J
<> This was ,derived” from first principles ! ds? = dt* + a;(t)dﬂg Als fixing V,
,____{ﬁrzaﬁl____,
-12- 1Sy =¥—— | d*x\/det g(R — 2A)I
1Sue = X7 | d*x/det g(R —20)]
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Functional Renormalization Group

<> As CDT the FRG is also based on ,traditional” non-
petrurbative QFT framework to quantize gravity

<> Consider a (potenitally = dim.) space of all effective
actions* of QG (or in practice their truncations) Theory Space

<> Alternatively one has a space of scale-dependent g

dimensionless couplings related to operators appering : - Relewatcouping
in the effective actions
NTFP SUV

<> Compute the RG flow (based on solving f-functions)
of the couplings with the cutoff scale k 9

<> Find RG trajectories linking IR (k — 0) and UV (k — o)
fixed points (f = 0) of the RG flow

3

A Irrelevant coupling
I

2

Close to UVFP:

kcutoff ~ 1/ls

B(g9) dg ,
‘ ~ls— =p(g) = B'(g)(g—g")
dl,
ls(g) < |g — g*l_l/ﬁ,(g*)
R .-
[ WL s =~
g

* Effective actions govern the expectation value and quantum fluctuations of the field



Functional Renormalization Group

<> As CDT the FRG is also based on ,traditional” non-
petrurbative QFT framework to quantize gravity

<> Consider a (potenitally = dim.) space of all effective 3 yimlesan couling
actions* of QG (or in practice their truncations)

Theory Space
<> Alternatively one has a space of scale-dependent ‘

g

dimensionless couplings related to operators appering - Relewatcouping
in the effective actions \@ :

<> Compute the RG flow (based on solving B-functions) o
of the couplings with the cutoff scale k 9,

<> Find RG trajectories linking IR (k — 0) and UV (k — o)
fixed points (f = 0) of the RG flow

<> Asymptotic Safety conjecture (S. Weinberg)
<> Scale invariance of the UVFP imposes strong
constraints on most operators (couplings)

<> On RG flow trajectories leading from IR to UV fixed 8(9) Keutoft ~1/1s
points there is only a finite numer of relevant \ _lsﬂ = B(g) ~ B'(g)(g — g
operators (finite dim. subspace of relevant couplings) dl

<> Even though the values of the couplings in the UV limit 1(g) < |g— g*|~1/B' @
are not small one one can get a predictive theory of T
QG at all scales (nonperturbative renormalizability) ‘

<> There is growing evidence from FRG in favour of AS IR

Close to UVFP:

- N
. - ‘.

* Effective actions govern the expectation value and quantum fluctuations of the field g



Functional Renormalization Group

1
<> Making contact of FRG with CDT: Sk =x16n6k f d*x,/det g(R — 2A)) + gauge + ghost

<> In CDT one measures the (minisuperspace) Einstein-
Hilbert effective action

<> Therefore in FRG we take the simplest Einstein-Hilbert
truncation of the (Euclidean) effective actions with two
scale-dependent couplings: G, , A,
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Functional Renormalization Group

<> Making contact of FRG with CDT:

<>

<> An extremum of the E-H effective action is a de Sitter
universe (the four-sphere S*) with a 4-volume given

<> As in CDT we measure only a behaviour of the scale
factor a(t) (or the 3-volume V5 (t)) we will also
consider only minisuperspace fluctuations

<>

Hilbert effective action

Therefore in FRG we take the simplest Einstein-Hilbert
truncation of the (Euclidean) effective actions with two

scale-dependent couplings: G, , A,

by the cosmological constant V, o A;”

The (relative) fluctuations are goverened by a
dimensionless effective coupling ggf X G A

-14-

1
= 4 —_
Sk x167TGk f d*x,/det g(R — 2Ay) + gauge + ghost

< In CDT one measures the (minisuperspace) Einstein-

1 [3(t)2 1
/3
Swis 24nckfdt< oy TRV

fdt V5(t) =V, «x A}*

vy = Vy V2 s=t/V*

31 (t)
v3(t) =——cos3|—

—— 4wy Wo
I( V6 Ifds<f73(t)2

MS =g Gieh v(0)

T fdsv(s)zl

+ H0V3(t)1/3>



Functional Renormalization Group

1
< Making contact of FRG with CDT: Sk =x16n6k f d*x,/det g(R — 2Ay) + gauge + ghost

<> In CDT one measures the (minisuperspace) Einstein-
Hilbert effective action

<> Therefore in FRG we take the simplest Einstein-Hilbert
truncation of the (Euclidean) effective actions with two
scale-dependent couplings: G, , A,

<> An extremum of the E-H effective action is a de Sitter
universe (the four-sphere S*) with a 4-volume given

by the cosmological constant V, « /1,;2 ,,kj]) " e
<> As in CDT we measure only a behaviour of the scale o
factor a(t) (or the 3-volume V;(t)) we will also e (1)) hem
consider only minisuperspace fluctuations WA k> my
<> The (relative) fluctuations are goverened by a e
dimensionless effective coupling ggf X G A "

kp=10"%m, =100, ™y

<> There are both the IR and the UV fixed points

ﬁ(ﬂ') H. Kawai and N. Ohta, PRD 107 [2023)

n* =038, pi*=-00132
aln) o | = n* [P = |y — |

BOn) = Fn*)n — %)

o
& » 1
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Functional Renormalization Group
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< Making contact of FRG with CDT: Sk =x16n6k f d*x,/det g(R — 2Ay) + gauge + ghost

<> In CDT one measures the (minisuperspace) Einstein-
Hilbert effective action

<> Therefore in FRG we take the simplest Einstein-Hilbert
truncation of the (Euclidean) effective actions with two
scale-dependent couplings: G, , A,

<> An extremum of the E-H effective action is a de Sitter
universe (the four-sphere S*) with a 4-volume given

by the cosmological constant V, « /1,;2 ,,kj]) " e
<> As in CDT we measure only a behaviour of the scale o
factor a(t) (or the 3-volume V;(t)) we will also e (1)) hem
consider only minisuperspace fluctuations WA k> my
<> The (relative) fluctuations are goverened by a e
dimensionless effective coupling ggf X G A "

kp=10"%m, =100, ™y

<> There are both the IR and the UV fixed points
ﬁ(??) H. Kawai and N. Ohta, PRD 107 [2023)

< Inthe IR (k — 0): G, A, = 0as G,— Gy = Gy, A, = 0 p5=0386, Bl =—00132
so one recovers semiclassical universe with V, — oo ) ¢ [ [V = 1y — gt P

BOn) = Fn*)n — %)

o
& » 1
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Functional Renormalization Group

1
< Making contact of FRG with CDT: Sk =x16n6k f d*x,/det g(R — 2Ay) + gauge + ghost

<> In CDT one measures the (minisuperspace) Einstein-
Hilbert effective action

<> Therefore in FRG we take the simplest Einstein-Hilbert
truncation of the (Euclidean) effective actions with two
scale-dependent couplings: G, , A,

<> An extremum of the E-H effective action is a de Sitter
universe (the four-sphere S*) with a 4-volume given

by the cosmological constant V, « /1,;2 ,,kj]) " e
<> As in CDT we measure only a behaviour of the scale o
factor a(t) (or the 3-volume V;(t)) we will also e (1)) hem
consider only minisuperspace fluctuations WA k> my
<> The (relative) fluctuations are goverened by a e
dimensionless effective coupling ggf X G A "

kp=10"%m, =100, ™y

<> There are both the IR and the UV fixed points

ﬁ(ﬂ') H. Kawai and N. Ohta, PRD 107 [2023)

< InthelR (k = 0): G, A, = 0as G,—= Gy = Gy, A, = 0 p5=0386, Bl =—00132
so one recovers semiclassical universe with V, — oo a(n) o [ = n* [1P0) = 1 =t [
. * Ak
< Inthe UV(k2—> ®): Gy Ay — g A" ~1as o A
G, 29k *—>0,A4, 51k >00soV, -0 R - T OV

8- > 1]
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RG flow on the lattice (¢p? example)

< 4D ¢* (lattice) field theory example

<> 2 dimensionless bare couplings: my, k,

<> for each choice of m,, Kk, one can compute the
renormalized mg, kg and the correl. length &

< physical correl. length &, = mpl =&
< one can find RG flow where xy, mp = const.

<> there is a phase transition (where & — oo so
following the RG flow trajectory [ — 0)

-15-

IR
0o

broken phase

(p) #0

UV fixed point?

kg (Mo, ko)

i ($) =0

L= (auqb)2 +myp? + Kkod*

kgr < [y(p; = 0;myg, Kp)

B (o)

-l

R

kcutoff ~1/ls
dKO

Sd_ls

lS(KO) o< |K0 — KSl_l/ﬁ,(K(*))

unbroken phase

> Ko

= ko) = B'(1) (150 — K0)

", UV

» Ko



RG flow on the lattice (¢p? example)

< 4D ¢* (lattice) field theory example . —
<> 2 dimensionless bare couplings: my, k, Ky const. (¢) =0

< for each choice of my, i, one can compute the |51 K K R k)

renormalized my, Kz and the correl. length & " P A

RN

v L
< physical correl. length &, = mg* = & I Y vy ‘:,7 ry

< one can find RG flow where xy, mp = const. —— e a———

<> there is a phase transition (where & — oo so oL R R L

Ko

following the RG flow trajectory [ — 0) k(1) K = i Kéf(z)
<> The IR limit 2 , .
g L=(0,0)" +m,9> + ko

<> we approach the phase transition (¢ — )

keeping the bare coupling kK, fixed kr X T,(p; = 0;md, k)
<> we cross the kr = const RG trajectories in the

direction of Kk — KR Keutott ~1/Ls

B (ko) dicq
‘ ~ls—- = Blico) ~ B'(15) (o — Keg)

1s(kco) o | Ko — K| ~1/B (%)

R

L= .\Q
-15- K:S '-“‘UV




RG flow on the lattice (¢p? example)

< 4D ¢* (lattice) field theory example . —
<> 2 dimensionless bare couplings: my, k, Ky const. (¢) =0

< for each choice of my, i, one can compute the |51 K K R k)

renormalized my, Kz and the correl. length & " P A

RN

v L
< physical correl. length &, = mg* = & I Y vy ‘:,7 ry

< one can find RG flow where xy, mp = const. —— i >

< there is a phase transition (where § > ©so | R R L

following the RG flow trajectory [ — 0) Ki"(1) K = K K(g’(z) 0
<> The IR limit 2 5 A
g L=(0,9)" +m,¢* + Ko
<> we approach the phase transition (¢ — )
keeping the bare coupling kK, fixed kr X T,(p; = 0;md, k)
<> we cross the kr = const RG trajectories in the
direction of Kk — KR Keutott ~1/Ls
o B (o) d
< The UV limit =l = Blkg) = Bk (o — D)

< we approach the phase transition (¢ — o)

. . . ) L(ko) o |reg — 1| ~1/B' (<0
keeping the renormalized coupling Ky fixed s(ico) o€ [0 = 1|

<> in order to do that we have to tune the bare
coupling K,

R

- > >
-15- v




RG flow on the lattice (¢p? example)

< 4D ¢* (lattice) field theory example* . —
<> 2 dimensionless bare couplings: my, k, Ky const. (¢) =0

< for each choice of my, i, one can compute the |51 K K R k)

renormalized my, Kz and the correl. length & " P A

RN

v L
< physical correl. length &, = mg* = & I Y vy ‘:,7 ry

< one can find RG flow where kp, mp = const. T e a———

<> there is a phase transition (where ¢ — o so oL R e

following the RG flow trajectory [ — 0) Ki"(1) K = K K(g’(z) 0
<> The IR limit 2 5 A
g L=(0,9)" +m,¢* + Ko
<> we approach the phase transition (¢ — )
keeping the bare coupling kK, fixed kr X T,(p; = 0;md, k)
<> we cross the kr = const RG trajectories in the
direction of Kk — KR Keutott ~1/Ls
o B (o) d
< The UV limit =l = Blkg) = Bk (o — D)

< we approach the phase transition (¢ — o)

. . . ) L(ko) o |reg — 1| ~1/B' (<0
keeping the renormalized coupling Ky fixed s(ico) o€ [0 = 1|

<> in order to do that we have to tune the bare
coupling K,

R

* . . ., 15 ¢ * v " Ko
Unfortunately there is no UV fixed point in ¢4  ~12- iy




RG flow on the lattice (CDT)

crt
K, K, (K,.4)

< CDT

< 3 dimensionless bare couplings: k,, 4, K,

<> The bare cosmol. const. K, is related to lattice
volume N, : K, — K"(k,, A) when N, — oo

<> One can argue (based on 2-dim CDT results) that

incide phase Cy the correl. length: & « N41/4

<> We assume that the CDT MS effective action is
consistent with the E-H truncation in FRG

<> This implies relations between the effective
couplings

<> The IR limit

<> we will approach the K, (k,, A) critical surface
(¢ = o) keeping the bare couplings k,, 4 fixed

<> we associate it with the IR limit of FRG

< The UV limit

<> we will approach the K; (k,, A) critical surface
(¢ = ) tuning the bare couplings k,, 4 such
that the effective coupling GA stays fixed

<> we associate it with the UV limit of FRE16-



RG flow on the lattice (CDT)

< CDT

<> 3 dimensionless bare couplings: k,, 4, K,

<> The bare cosmol. const. K, is related to lattice
volume N, : K, = K" (ky, A) when N, — oo

<> One can argue (based on 2-dim CDT results) that

incide phase Cy the correl. length: & « N41/4

N4_10( 5_4'
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RG flow on the lattice (CDT)

N4_10C 5_4’

< CDT

<> 3 dimensionless bare couplings: k,, 4, K,
<> The bare cosmol. const. K, is related to lattice
volume N, : K, = K" (ky, A) when N, — oo
<> One can argue (based on 2-dim CDT results) that
incide phase Cy the correl. length: & « N41/4

<> We assume that the CDT MS effective action is
consistent with the E-H truncation in FRG 12 <(N3(i + 1) = Ny(D))?

<> This implies relations between the effective $= R N, (i)

couplings l :-:

1
4
Sk = 16 kad x+/ det g(R — 2/\)

+ ﬂNs(i)1/3>

f—_l:__a_z___\
|
—|— ] xG,Al
| \/N4(w0> * kl
B T e ————
T 4 /? - If 4 (W0 4/3 11
l24na_<_) rp2 |V4=ls(5) Ny x5
-16- I— — _(1)2 —— -ol - e e, /



RG flow on the lattice (CDT)

N4_10( 5_4'

< CDT

<> 3 dimensionless bare couplings: k,, 4, K,
<> The bare cosmol. const. K, is related to lattice
volume N, : K, — K" (k,, A) when N, — oo
<> One can argue (based on 2-dim CDT results) that
incide phase Cy the correl. length: & « N41/4

<> We assume that the CDT MS effective action is

consistent with the E-H truncation in FRG 1 N3G+ 1) = Na(D)? s
<> This implies relations between the effective = %2 N5 (D) + N5 (D
couplings PR ——— - l
. j k->0: GeApy -0 | :-:
< The IR limit | Goo G~ Go A — 0]
koo Nk ) 1 .
<> we will approach the K (k, K) Triticalsurface Sk = 167G, f d*x,/det g(R — 2/;)

(¢ — o0) keeping the bare couplings k,, 4 fixed
<> we associate it with the IR limit of FRG

,__l:__@_z___‘
|
—|— ] xG,Al
| \/N4<w0> * kl
L —
- 4 /; - |, 4 (@0 4/3 11
I247TG_<—> flzsl |V4:ls(5) Ny OCA2|
-16- I— P— _(1)2 — — -ol o - i N B W L /



RG flow on the lattice (CDT)

N4_10( 5_4'

< CDT

<> 3 dimensionless bare couplings: k,, 4, K,
<> The bare cosmol. const. K, is related to lattice
volume N, : K, — K" (k,, A) when N, — oo
<> One can argue (based on 2-dim CDT results) that
incide phase Cy the correl. length: & « N41/4

<> We assume that the CDT MS effective action is

consistent with the E-H truncation in FRG . N (N2
L . . . Sziz (N3(l+1) : N3(I-)) +ﬂN (1)1/3
< This implies relations between the effective r N5 (D) 3
couplings PR ——— - l
.. j k->0: GeApy -0 | :-:
<> The IR limit - |
| Gk_) GO ~ GNI Ak i O’ 1
<> we will approach the' K7 (k,, &) Triticalsurface Sk = 167G, f d*x/det g(R — 2/,)
(¢ = o0) keeping the bare couplings k,, 4 fixed
< we associate it with-the {R4imit-of FRG )\
k- oo: G,A, » g'A* e = = =
.. [ kg = 9 / A g \
<> The UV limit | G g2, Ay > Xk i L(g) G|
————— —— - 0]
<> we will approach the KI(kO,A-j critical surface \ _@_ A
(§ = o) tuning the bare couplings k,, 4 sych _
that the effective coupling GA stays fixed r— T 43 ) |, Wy /3 11
o - 12476 = rel W=t(2) e
< we associate it with the UV limit of FRGq g. | W sp 1 rer A J
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IR limit

_Spherical CDT

<> IR limit , :
0.6+
< we approach the K, (k,, A) critical surface o (&
(¢ = oo, i.e. N, = o) keeping the bare 04l v Cas B
couplings k,, 4 fixed ’ §‘
~ < i -
<> for fixed k,, Awe have I', @ = const.> 0 021 Cy 2nu°rd A
L e,
: ~ — p2 ,
< from FRG fork —» 0: G, — Gy = Gy = 5, 00 TR,
<> therefore in CDT lattice spacing remains ’ B \‘\.\
constant : I, ~ £p, o020
< as N, - o and l, > 0 the volume of the CDT ’ ’ ) ’
universe V, — o Ko
<> this is consistent with FRG as for k — 0 : 3 i
-2 (N : ) — N3/4_ 3
Ap = 0 soV, «c Ap® - 3(0) 4 25508 SN
<> CDT (relative) fluctuations vanish and one ! ,
reproduces (semi) classical spacetime (|6N3(D)]) = ['1/2 Ni/ 2 F( 11/4)
<> this is also consistent with FRG where WN,
Gl = 0 (16V5(t)])  (I8Ns (D))  VT@? 0
Va(t)) — (Na@) N
(o= f e W ghlpie Tt
I24nc_( > 2l 'V4_l‘§(@) Ny <25
17- ! w) ] T S )
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UV limit

<> UV limit

¢

we approach the K, (k,, A) critical surface
(¢ = oo, i.e. N, = 00) tuning the bare
couplings k,, 4 such that the effective
G\, = g A" = const

<> from FRG: G,— g*k~?

<>
¢

therefore in CDT : I, ~ k1
(relative) fluctuations stay constant

<> This requires finding RG flow trajectories
(ko (Ny), A(N4)) parametrized by N,

<> Is only possible by approaching the

Cas

¢
¢

— A phase transition line

we fix A (A = 0)* and change only k,

one can compute critical exponents related
to scaling of I and @ at the transition

the results show that it may be possible to
approach the UV limit

however it is done at the 1% order transition

-18-
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UV limit

<> UV limit
< we approach the K, (k,, A) critical surface

(§ > oo, i.e. N, — ) tuning the bare
couplings k,, 4 such that the effective
G\, = g A" = const

< from FRG: G~ g*k~?

<>
¢

<> This requires finding RG flow trajectories

therefore in CDT : I ~ k=1
(relative) fluctuations stay constant

(ko (Ny), A(N4)) parametrized by N,
<> Is only possible by approaching the

Cas

<>
<>

<>

— A phase transition line
we fix A (A = 0)* and change only k,

one can compute critical exponents related

to scaling of T' and @ at the transition

the results show that it may be possible to

approach the UV limit

however it is done at the 1% order transition

-18-

— 3900

— 3380

— 2860

2340

1820

1300

780

260




UV limit

<> UV limit

<>

we approach the K, (k,, A) critical surface
(¢ = oo, i.e. N, = 00) tuning the bare
couplings k,, 4 such that the effective
G\, = g A" = const

< from FRG: G~ g*k~?

<>
¢

therefore in CDT : I ~ k=1
(relative) fluctuations stay constant

<> This requires finding RG flow trajectories
(ko (Ny), A(N4)) parametrized by N,

<> Is only possible by approaching the

Cas

<>
<>

<>

— A phase transition line

we fix A (A = 0)* and change only k,

one can compute critical exponents related
to scaling of [ and @ at the transition

the results show that it may be possible to
approach the UV limit

however it is done at the 1% order transition
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UV limit

<> UV limit

< we approach the K, (k,, A) critical surface
(¢ = oo, i.e. N, = 00) tuning the bare
couplings k,, 4 such that the effective
G\, = g A" = const
< from FRG: G~ g*k~?
<> thereforein CDT: I, ~ k™1
< (relative) fluctuations stay constant
<> This requires finding RG flow trajectories
(ko (N,), A(N4)) parametrized by N,
<> Is only possible by approaching the
C4s — A phase transition line
< we fix A (A = 0)* and change only k,

<> one can compute critical exponents related
to scaling of I' and @ at the transition

<> the results show that it may be possible to
approach the UV limit

<> however it is done at the 15t order transition
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UV limit

<> UV limit

< we approach the K, (k,, A) critical surface
(¢ = oo, i.e. N, = 00) tuning the bare
couplings k,, 4 such that the effective
G\, = g A" = const

< from FRG: G~ g*k~?

<> thereforein CDT: I, ~ k™1

< (relative) fluctuations stay constant

<> This requires finding RG flow trajectories
(ko (N,), A(N4)) parametrized by N,
<> Is only possible by approaching the
C4s — A phase transition line
< we fix A (A = 0)* and change only k,

<> one can compute critical exponents related
to scaling of I' and @ at the transition

<> the results show that it may be possible to
approach the UV limit

<> however it is done at the 15t order transition
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U\/limit kY(N,) = k¥ —

Ni/‘l‘vuv
-
< UV limit : S o 40K
< we approach the K; (k,, A) critical surface : ' R * 80k
(¢ > oo,i.e. Ny & ) tuning the bare 20000} - 160k
couplings k,, 4 such that the effective sonol . 200k
GkAk =9 A" = const 10000; o 480k
< from FRG: Gy— g*'k™* - 0 soool , .
<> thereforein CDT: Iy, ~ k™1 >0 : YRR Ko
<> (relative) fluctuations stay constant
<> This requires finding RG flow trajectories F(KX(N,)) o Na/4vuv
(ko (N,), A(N4)) parametrized by N,  _ _ _ _ _ _ _ _ _ _ o ______
<~ Is only possible by approaching the ' F(ko(N4) A(N,))@%(ko(N,), A(N,)) o N, ! |
C,s — A phase transition line """ — fit aldvy=1.00£002
< we fix A (A = 0)* and change only k| M(xo™)

<> one can compute critical exponents related

to scaling of T and & at the transition |
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(§ > o, i.e. N, - o) tuning the bare o ; LT 60k
couplings k,, 4 such that the effective 0'35, ' : P . 200k
G\, = g"A" = const oo} - 80k
<> from FRG: Gk_) g*k—Z -0 0.25% . 720k
<~ therefore in CDT: I; ~ k™1 T Sy s e Syl
<> (relative) fluctuations stay constant
<> This requires finding RG f/ow trajectories Bk (N,)) o N‘B/‘“’m’
(ko (N,), A(N4)) parametrized by N,  _ _ _ _ _ _ _ __ o _______
<~ Is only possible by approaching the : F(ko(N4) A(N,))@%(ko(N,), A(N,)) o N, | i
C,s — A phase transition line """ " Tt pava023t002
< we fix A (A = 0)* and change only k| w(ko™)
<> one can compute critical exponents related P50
to scaling of T and & at the transition i
0.40
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UVlimit: k¥P(N,) = k¥ —

Mw
< UV limit o]
< we approach the K, (k,, A) critical surface 7
(¢ = oo, i.e. N, = 00) tuning the bare ,
couplings k,, 4 such that the effective 1000

G\, = g"A" = const

< from FRG: G~ g*k~?

<> thereforein CDT: I, ~ k™1

<> (relative) fluctuations stay constant

e 40k

I e 80k
1500 -
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500 -

e 720k

<> This requires finding RG flow trajectories
(ko (N,), A(N4)) parametrized by N, _ _ _ _ _ _ _ _ _ o ______

\
<~ Is only possible by approaching the : F(ko(N4) A(N,))@%(ko(N,), A(N,)) o N, |

C,s — A phase transition line """ " Tt (a2B4vn054t008

< we fix A (A = 0)* and change only k| Fw? (k")
<> one can compute critical exponents related 2000
to scaling of I and @ at the transition
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<> UV limit

<>

we approach the K, (k,, A) critical surface
(¢ = oo, i.e. N, = 00) tuning the bare
couplings k,, 4 such that the effective
G\, = g"A" = const

< from FRG: G~ g*k~?

<>
<>

therefore in CDT : I, ~ k™1
(relative) fluctuations stay constant

<> This requires finding RG flow trajectories
(ko(N,),A(N,)) parametrized by N,

<> Is only possible by approaching the

Cas

¢
<>

— A phase transition line

we fix A (A = 0)* and change only k,

one can compute critical exponents related
to scaling of I' and @ at the transition

the results show that it may be possible to
approach the UV limit

however it is done at the 15t order transition
-18-
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< UV limit 2°°°°§
< we approach the K, (k,, A) critical surface 150()0;

(¢ = oo, i.e. N, = 00) tuning the bare
couplings k,, 4 such that the effective
G\, = g"A" = const

< from FRG: G~ g*k~?

10000 -

5000

o N4=80k, A=0

N4=80k , A=-0.02

= N;=80k, A=0.2

s N4=80k, A=0.8

N4=160k , A=0

N4=160k , A=-0.02

= N4=160k, A=0.2

<> thereforein CDT: I, ~ k™1
<> (relative) fluctuations stay constant

<> This requires finding RG flow trajectories
(ko(N,),A(N,)) parametrized by N,

<> Is only possible by approaching the
C4s — A phase transition line
< we fix A (A = 0)* and change only k|
<> one can compute critical exponents related
to scaling of I' and @ at the transition

<> the results show that it may be possible to
approach the UV limit

< however it is done at the 1% order transition
-18-

*Results seem independent of A choice !
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UV limit

(f) e N4=80k, A=-0.02
¢ UV /Imlt 0'45; . = Ny=80k , A=0.2
: o =? s+ Ny=80k, A=0.8
< we approach the K, (k,, A) critical surface **: _ o L e o
(¢ = oo, i.e. N, = 00) tuning the bare ossl ¢ . ° A'“‘.' e T ] o N=160k, A=-0.02
couplings k,, 4 such that the effective osoi L et e W - Ni=160k, A=02
. * 1%k R C e ° ° CO‘. o 4. . 2 N4=160k, A=0.8
GkAk o g /1 = const . ., e os © R o Ng=480k , A=0
—_ o0 ‘ ° ol !tw
<> from FRG: Gk—) g*k 2 5 0 i « % . : o Ny=480k , A=-0.02
R _ 8 B S uv = Ny=480k, A=0.2
<> thereforein CDT: Iy, ~ k™1 >0 : oa7 0s8 0ss 10 0/Ko
L e e — \A N4=480k , A=0.8
< (relative) fluctuations stay constant : (a —2B)/4v,, = 1/2 |

<> This requires finding RG flow trajectories
(ko (N,), A(N4)) parametrized by N,  _ _ _ _ _ _ _ _ _ o ______
<~ Is only possible by approaching the ' F(ko(N4) A(N,))@%(ko(N,), A(N,)) o N, ! |
C,;s — A phase transition line "~ T T T T T T ETETTT
< we fix A (A = 0)* and change only k|
NeU Ny RN

<> one can compute critical exponents related 3 : KN = k& — — ¢ e
. =~ ~ . y 0 T 0 NY4vuw
to scaling of I and @ at the transition

. : L k(M) = K
<> the results show that it may be possible to K N,
approach the UV limit

kz constant along «,(N,)

< however it is done at the 1% order transition
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Conclusions

CDT is a lattice QFT and a promising candidate for a unitary and (if asymptotic safety
is valid) UV complete (?) theory of QG formulated in a fully non-perturbative and
background independent way

One can study dynamically emerging background geometry and quantum fluctuations
CDT has a rich phase structure including the semi-classical phase C s
<> correct IR limit of the scale factor (spatial volume) consistent with (Eucl.) de Sitter space
<> quantum fluctuations very well described by the minisuperspace action
Phase Cyis surrounded by a 2" order phase transition (in S> CDT) & 1°t order phase
transitions with potentially higher order endpoints
CDT can provide independent tests of the asymptotic safety conjecture in a fully non-
perturbative setting, not dependent on FRG truncations
One can make contact with FRG approach to QG by defining RG flow in CDT and
search for the UV fixed point (?). The results seem promising.
Open problems and questions:
<> the UV limit of CDT is obtained at the 1°t order phase transition (non-standard)
<> this is possible because we assumed (following 2-dim CDT) that ¢ o N41/ *

< flow in FRG cutoff (k) seems to be independent from the flow in the CDT bare coupling
space (k.. A) and thus renormalized T . &. Probably more "observables" needed.



Thank You !
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