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Background and Outline (1/2)

We consider a system of two point masses (i.e. monopolar, pointlike bodies),
which interact gravitationally according to general relativity theory.
Spin- and tidal-related effects will not be discussed here (but these effects can be
and have been added to the formalism).

We model point masses by means of Dirac δ distributions.

We employ the ADM canonical formalism in D = d + 1 spacetime dimensions.

We work in asymptotically flat D-dimensional spacetime
and use asymptotically Minkowskian reference frame.

All calculations are done within the post-Newtonian (PN) approximation:
0th order—Newtonian gravity;
nPN order—corrections to the Newtonian gravity of order( v

c

)2n
∼
(
Gm

rc2

)n

.

δ-sources lead to ultraviolet (UV) divergences, i.e., divergences at the locations
of the particles. We control them by means of dimensional regularization (DR).

PN expansion of the retardations in the field functions (which is essentially
a near-zone expansion) lead to infrared (IR) divergences.



Background and Outline (2/2)

We treat differently conservative and dissipative sections of dynamics:
to solve (perturbatively) equations for the field degrees of freedom,
we use time-symmetric (half-retarded half-advanced) Green’s function for
conservative dynamics, and retarded Green’s function for dissipative dynamics.

The following conservative Hamiltonians were uniquely calculated:
at Newtonian, 1PN, 2PN, 3PN, and 4PN orders (at 3PN and 4PN
by Damour/Jaranowski/Schäfer in 2001 and 2014, respectively);
dissipative Hamiltonians were computed at 2.5PN and 3.5PN orders
(by Jaranowski/Schäfer in 1997).

For conservative dynamics, near-zone IR divergences show up at the 4PN order,
they are linked to nonlocal-in-time tail effects and were analytically regulated

using a new (i.e., different from DR-related one ℓ0, GD = GNℓd−3
0 ) length scale.

The result of regularization was ambiguous and the ambiguity was resolved by
using a beyond-near-zone information (delivered by gravitational self-force
approach).

For dissipative dynamics, IR divergences are not an issue at 2.5PN, 3.5PN,
and 4.5PN orders (but they will be an issue for the higher orders).

From 2.5PN and 3.5PN dissipative Hamiltonians one can deduce (and it was
done) the leading-order (Newtonian) and 1PN formulae for GW luminosities.

In this report, we propose a new formula for calculating GW luminosities that
does not require finding an explicit form of dissipative Hamiltonians.

Using the new formula we calculated Newtonian and 1PN GW luminosities,
calculation of GW luminosity at the 2PN order is in progress (2PN-order
GW luminosity can also be derived from 4.5PN dissipative Hamiltonian).



Gravitational Waves from Inspiralling Binary on Circular Orbits

The dimensionless GW strain measured by the laser-interferometric detector,
induced by gravitational waves from coalescing compact binary made of
nonspinning bodies in circular orbits during the inspiral phase:

h(t) =
C

D

[
ϕ̇(t)

]2/3
sin
[
2ϕ(t) + α

]
,

where ϕ(t) is the orbital phase of the binary [ϕ̇(t) := dϕ(t)
dt

is the angular frequency],

D is the luminosity distance of the binary to the Earth (C and α are some constants).

The time evolution of the orbital phase ϕ(t) is computed from the balance equation
(E—binding energy, L—GW luminosity):

dE

dt
= −L =⇒ ϕ = ϕ(t),

where both sides are calculated within the PN approximation (the dates: for
energies—the first complete and correct derivations of equations of motion at a given PN order;
for luminosities—often the dates of the first derivation of formula valid only for circular orbits):

E =

1687

EN +
1

c2

1917

E1PN +
1

c4

1982

E2PN +
1

c6

2001

E3PN +
1

c8

2014

E4PN + O
(
(v/c)10

)
,

L =

1918/1963

LN +
1

c2

1976

L1PN +
1

c3

1992

L1.5PN +
1

c4

1995

L2PN +
1

c5

1996

L2.5PN

+
1

c6

2004

L3PN +
1

c7

1998

L3.5PN +
1

c8

2023

L4PN +
1

c9

2023

L4.5PN + O
(
(v/c)10

)
.



4.5PN-Accurate Binding Energy in the Center-of-Mass Frame
for Circular Orbits

Notation:

masses of the bodies: m1,m2, M := m1 +m2, µ :=
m1m2

M
,

ν :=
µ

M
=

m1m2

(m1 +m2)2
, 0 ≤ ν ≤

1

4
;

x :=
(GMϕ̇)2/3

c2
(dimensionless PN parameter for circular orbits).

Binding energy of two-point-mass system in circular orbits:

E(x, ν) = −
µc2x

2

(
1 + e1PN(ν) x + e2PN(ν) x2 + e3PN(ν) x3 +

(
e4PN(ν) +

448

15
ν ln x

)
x4 + O

(
x5
))

,

e1PN(ν) = −
3

4
−

1

12
ν, e2PN(ν) = −

27

8
+

19

8
ν −

1

24
ν
2

,

e3PN(ν) = −
675

64
+

( 34445

576
−

205

96
π
2
)

ν −
155

96
ν
2 −

35

5184
ν
3

,

e4PN(ν) = −
3969

128
+

(
−

123671

5760
+

9037

1536
π
2 +

896

15
(2 ln 2 + γE)

)
ν

+

(
−

498449

3456
+

3157

576
π
2
)

ν
2 +

301

1728
ν
3 +

77

31104
ν
4

(γE is the Euler’s constant).



4.5PN-Accurate GW Luminosity for Circular Orbits

L(x, ν) =
32c5

5G
ν
2x5

{
1 + ℓ1PN(ν) x + 4π x3/2 + ℓ2PN(ν) x2 + ℓ2.5PN(ν) x5/2 +

(
ℓ3PN(ν) −

856

105
ln(16x)

)
x3

+ ℓ3.5PN(ν) x7/2 +

(
ℓ4PN(ν) +

( 232597

8820
+

20739

245
ν

)
ln x

)
x4

+
(

ℓ4.5PN(ν) −
3424

105
π ln(16 x)

)
x9/2 + O

(
x5
)}

,

ℓ1PN(ν) = −
1247

336
−

35

12
ν, ℓ2PN(ν) = −

44711

9072
+

9271

504
ν +

65

18
ν
2

, ℓ2.5PN(ν) =

(
−

8191

672
−

535

24
ν

)
π,

ℓ3PN(ν) =
6643739519

69854400
+

16

3
π
2 −

1712

105
γE +

(
−

134543

7776
+

41

48
π
2
)

ν −
94403

3024
ν
2 −

775

324
ν
3

,

ℓ3.5PN(ν) =

(
−

16285

504
+

214745

1728
ν +

193385

3024
ν
2
)

π,

ℓ4PN(ν) = −
323105549467

3178375200
+

232597

4410
γE −

1369

126
π
2 +

39931

294
ln 2 −

47385

1568
ln 3

+

(
−

1452202403629

1466942400
+

41478

245
γE −

267127

4608
π
2 +

479062

2205
ln 2 +

47385

392
ln 3

)
ν

+

( 1607125

6804
−

3157

384
π
2
)

ν
2 +

6875

504
ν
3 +

5

6
ν
4

,

ℓ4.5PN(ν) =

(
265978667519

745113600
−

6848

105
γE +

( 2062241

22176
+

41

12
π
2
)

ν −
133112905

290304
ν
2 −

3719141

38016
ν
3
)

π.



Project’s Goals

Short-Term Goals

Higher-PN-order perturbative solutions of two-body problem are complicated,
both from computational and from conceptual point of view. Therefore it is
highly desired to have more than one independent derivation of any analytical
result: making independent derivation within the ADM Hamiltonian approach of
GW luminosities of two-point-mass system
at the N, 1PN, 1.5PN, 2PN, 2.5PN, 3PN, 3.5PN, 4PN, and 4.5PN order.

Recompute and regularize IR divergences in the 4PN two-point-mass ADM
Hamiltonian, without usage of gravitational self-force results.

Long-Term Goals

Completion of computations of 5PN, 5.5PN, 6PN, . . . EOM of two-point-mass
systems together with computation of GW luminosities at 5PN, 5.5PN, 6PN,
. . . orders, and construction of ≥5PN-accurate templates for inspiralling compact
binaries.

Computation, within the PN framework, higher-order spin-dependent effects and,
in the case of binaries containing neutron stars, higher-order tidal corrections,
both in conservative dynamics and in GW luminosities.
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Notation and Units

Spacetime coordinates: x0 = c t, x = (x1, . . . , xd ).

Particle labels: a, b ∈ {1, 2},
masses of the particles: ma,

position vectors of the particles: xa = (x1a , . . . , xda ),

linear momentum vectors of the particles: pa = (pa1, . . . , pad ).

For any d-vectors v = (v1, . . . , vd ) and w = (w1, . . . ,wd ):

v · w := δijv
iw j , |v| :=

√
v · v.

ra := x − xa, ra := |ra|, na := ra/ra;

for a ̸= b: rab := xa − xb, rab := |rab|, nab := rab/rab.

Units: quite often c = 1 and GD = 1/(16π).



A (d + 1)-Splitting of Spacetime Metric gµν

ds2 = gµνdx
µdxν = −(N dt)2 + γij (dx

i + N i dt)(dx j + N j dt),

where N and N i are respectively lapse and shift functions,

γij := gij , N := (−g00)−1/2, N i = γ ijNj with Ni := g0i ,

here γ ij is the metric inverse to γjk (γ ijγjk = δik ),

γ := det(γij );

lowering and raising of spatial indices is with γij .

Canonical Matter+Field Variables

Canonical matter variables:

xa = (x1a , . . . , xda ),

pa = (pa1, . . . , pad ),
a = 1, 2.

Canonical field variables:

γij := gij ,

πij :=
√

γ(K ij − γ ijγklKkl ),

Kij is the extrinsic curvature of the hypersurface t = const.



ADM Hamiltonian

The full Einstein field equations in D dimensions in an asymptotically flat
space-time and in an asymptotically Minkowskian coordinate system
are derivable from the Hamiltonian

H[xa, pa, γij , πij ,N,N i ] =

∫
ddx (NH − N iHi ) +

∮
i0
dd−1Si ∂j (γij − δijγkk ),

i0 denotes spacelike infinity and dd−1Si is the (d − 1)-dimensional
out-pointing surface element there.

The super-Hamiltonian H and super-momentum Hi are defined as follows:

H(xa, pa, γij , πij ) :=
√

γN2
(
T 00 − 2G00

)
,

Hi (xa, pa, γij , πij ) :=
√

γN
(
T 0
i − 2G0

i

)
.

where Tµν and Gµν denote the energy-momentum and the Einstein tensor,
respectively,

Constraint Equations

The lapse and shift functions are Lagrangian multipliers and deliver the Hamiltonian
and momentum constraint equations of the Einstein theory,

H = 0, Hi = 0.



2-Point-Mass Energy-Momentum Tensor

Source terms for the constraint equations are derived from the 2-point-mass
energy-momentum tensor

Tαβ(xµ) :=
2∑

a=1

ma

+∞∫
−∞

uα
a u

β
a√

− det(gµν)
δd+1

(
xµ − ξµ

a (τa)
)
dτa,

τa is the proper time along the world line xµ = ξµ
a (τa) of the ath particle,

and uα
a := dξα

a /dτa.

Constraint Equations for 2-Point-Mass Systems

The constraint equations:

√
γ R −

1
√

γ

(
γik γjℓ πij πkℓ −

(γij πij )2

d − 1

)
=

2∑
a=1

√
γ ij
a paipaj +m2

a δd (x − xa),

−2Djπ
ij =

2∑
a=1

γ ij
a paj δd (x − xa),

R is the spatial scalar curvature of the hypersurface t = const,
Dj is the spatial d-dimensional covariant derivative
(acting on a tensor density of weight one),

γ ij
a := γ ij

reg(xa) is perturbatively unambigously defined and finite
(at least up to the 4.5PN order).



Fixing the Gauge: ADMTT Gauge (1/2)

The ADM Transverse-Traceless (TT) gauge:

γij =

(
1 +

d − 2

4(d − 1)
ϕ

)4/(d−2)

δij + hTTij , πii = 0,

where hTTii = 0 and ∂jh
TT
ij = 0.

Splitting of the field momentum:

πij = π̃ij (V k ) + πij
TT,

π̃ij (V k ) = ∂iV
j + ∂jV

i −
2

d
δij ∂kV

k ,

where πii
TT = 0 and ∂jπ

ij
TT = 0.

The super/subscript TT denotes the application of the d-dimensional
(spatially nonlocal) TT-projection operator:

f TTij := δ
TTkl
ij fkl ,

where δ
TTkl
ij :=

1

2
(δikδjl + δilδjk ) −

1

d − 1
δijδkl

−
1

2
(δik∂j∂l + δjl∂i∂k + δil∂j∂k + δjk∂i∂l )∆

−1

+
1

d − 1
(δij∂k∂l + δkl∂i∂j )∆

−1 +
d − 2

d − 1
∂i∂j∂k∂l∆

−2
.



Fixing the Gauge: ADMTT Gauge (2/2)

Asymptotic behavior for r → ∞:

ϕ ∼
1

rd−2
, V i ∼

1

rd−2
, hTTij ∼

1

rd−2
, πij

TT ∼
1

rd−1
.

A Perturbative Solving of the Constraints

ϕ and V i are expressed in terms of (xa, pa, hTTij , πij
TT) by a perturbative solving of

the constraint equations—this is done by the PN expansion of the constraints
together with the PN expansion of the functions ϕ and V i

(the numbers within parentheses denote the order in the inverse velocity of light,

e.g. ϕ(2) ∼ O(c−2)):

ϕ = ϕ(2) + ϕ(4) + ϕ(6) + · · · , V i = V i
(3) + V i

(5) + · · · .



Reduced Matter+Field ADM Hamiltonian

If the constraint equations and the gauge conditions are both satisfied,
the total matter+field Hamiltonian can be written in its reduced form:

Hred

[
xa, pa, hTTij , πij

TT

]
= −

∞∑
n=2

∫
ddx ∆ϕ(n)

[
xa, pa, hTTij , πij

TT

]
The equations of motion for the particles:

ṗa = −
δHred

δxa
, ẋa =

δHred

δpa
(a = 1, 2).

Evolution equations for the field degrees of freedom:

∂

∂t
hTTij = δTTklij

δHred

δπkl
TT

,
∂

∂t
πij
TT = −δTTijkl

δHred

δhTTkl
.

There is no involvement of lapse and shift functions in the equations of motion
and in the field equations for the independent degrees of freedom.
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Field Equations (1/3)

For computing 2PN-order GW luminosity one needs to use field equations which
follow from the 4.5PN-accurate reduced Hamiltonian:

Hred
≤4.5PN[xa, pa, hTTij , πij

TT] =

∫
ddx h≤4.5PN[x − xa, pa, hTTij , πij

TT],

where

h≤4.5PN[x − xa, pa, hTTij , πij
TT] =

∑
a

maδd (x − xa) + h(4)
(
x − xa, pa

)
+ h(6)

(
x − xa, pa

)
+ h(8)

(
x − xa, pa, hTTij

)
+ h(10)

(
x − xa, pa, hTTij , πij

TT

)
+ h(12)[x − xa, pa, hTTij , πij

TT].

For this Hamiltonian the field equations take the form

ḣTTij = δTTklij

∂h≤4.5PN

∂πkl
TT

+ O(c−9),

π̇ij
TT = −δTTijkl

{
δh≤4.5PN

δhTTkl
−
(

∂h≤4.5PN

∂hTTkl,m

)
,m

+

(
∂h≤4.5PN

∂hTTkl,mn

)
,mn

}
+ O(c−10).



Field Equations (2/3)

More explicitly (we display only leading-order and next-to-leading-order terms),

ḣTTij = δTTklij

{
2πkl

TT −
2(d − 2)

d − 1
ϕ(2)π̃

kl
(3)

}
+ O(c−7),

π̇ij
TT = −δTTklij

{
1

2
S(4)kl −

1

2
∆hTTkl + B(6)kl

+
1

2(d − 1)

(
ϕ(2)∆hTTkl +∆

(
ϕ(2)h

TT
kl

))}
+ O(c−8).

By combining these two equations one gets the equation for hTTij ,

□hTTij = STT
ij , □ := −∂2

t +∆,

where the source term is

STT
ij = δTTklij

{
S(4)kl + 2B(6)kl +

2(d − 2)

d − 1
∂t
(
ϕ(2)π̃

kl
(3)

)
+

1

d − 1

(
ϕ(2)∆hTTkl +∆

(
ϕ(2)h

TT
kl

))}
+ O(c−8).

After solving field equation for hTTij one can obtain πij
TT:

πij
TT =

1

2
ḣTTij +

d − 2

d − 1
δTTklij

(
ϕ(2)π̃

kl
(3)

)
+ O(c−7).



Field Equations (3/3)

After making the PN expansion of the formal retarded solution of the field
equation, one gets (conservative dynamics does not depend on the functions
marked in red)

hTTij = hTT(4)ij + hTT(5)ij + hTT(6)ij + hTT(7)ij + O(c−8),

πij
TT = π

(5)ij
TT + π

(6)ij
TT + O(c−7).

The PN expansion of the retardations in the field functions
leads to new functions which diverge for r → ∞:

hTTij (t, nr) =
hij (t − r , n)

rd−2
+ O

( 1

rd−1

)
=

hij (t, n)

rd−2
− ḣij (t, n)r

3−d +
1

2
ḧij (t, n)r

4−d + · · · + O
( 1

rd−1

)
.

This is the source of infrared near-zone divergences.
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3.5PN-Accurate Dissipative Matter Hamiltonian (1/2)

More detailed and refined treatment can be found in Section 3 of 2024
Schäfer/Jaranowski Living Reviews in Relativity article.

The split of the total reduced Hamiltonian:

Hred
≤3.5PN[xa, pa, hTTij , πij

TT] = Hmatter
≤3.5PN(xa, pa) + H int

≤3.5PN[xa, pa, hTTij , πij
TT]

+ Hfield
≤3.5PN[h

TT
ij , πij

TT].

We define a new Hamiltonian H̃≤3.5PN, which is the Hamiltonian H≤3.5PN
after dropping its field part,

H̃≤3.5PN := Hmatter
≤3.5PN + H int

≤3.5PN.



3.5PN-Accurate Dissipative Matter Hamiltonian (2/2)

The Hamiltonian H̃≤3.5PN can be decomposed into
conservative and dissipative parts:

H̃≤3.5PN(xa, pa, t) = Hcon
≤3PN(xa, pa, t) + Hdiss

≤3.5PN(xa, pa, t),

where

Hcon
≤3PN(xa, pa, t) := Hmatter

N (xa, pa) + Hmatter
1PN (xa, pa)

+ Hmatter
2PN (xa, pa) + H int

2PN[xa, pa, hTTij (t)]

+ Hmatter
3PN (xa, pa) + H int

3PN[xa, pa, hTTij (t), πij
TT(t)],

Hdiss
≤3.5PN(xa, pa, t) := H int

2.5PN[xa, pa, hTTij (t), πij
TT(t)]

+ H int
3.5PN[xa, pa, hTTij (t), πij

TT(t)].



1PN-Accurate GW Luminosity

The instantaneous energy loss of the matter system due to the GW emission is
defined as

Linst
≤3.5PN(t) := −

∂

∂t
Hdiss

≤3.5PN (xa, pa, t) .

2PN and 3PN interaction Hamiltonians do not contribute to dissipation,
because one can show that

∂

∂t
H int

2PN(xa, pa, t) = total time derivative,

∂

∂t
H int

3PN(xa, pa, t) = total time derivative.

GW luminosity of the matter system is the time average of the instantaneous
energy loss:

L≤3.5PN :=
〈

Linst
≤3.5PN(t)

〉
= −

〈
∂

∂t
Hdiss

≤3.5PN(xa, pa, t)

〉
,

where ⟨· · · ⟩ denotes time averaging over one period of the motion.

This formula was applied to derive, at the leading (Newtonian) and 1PN orders,
to derive GW luminosity of the two-point-mass system in quasi-elliptical motion.
This was a direct derivation of the leading-order/next-to-leading-order GW
luminosities (not assuming that the balance equation holds).



1 Background and Outline of the Project,
Its Motivation and Goals

2 Dissipative Matter ADM Hamiltonian and GW Luminosity
Reduced Matter+Field Hamiltonian
4.5PN-Accurate Field Equations
3.5PN-accurate Dissipative Matter Hamiltonian
and 1PN-accurate GW Luminosity

3 A New Formula for GW Luminosity

4 The Results

5 Bibliography



An Auxiliary Formula for GW Luminosity (1/2)〈
∂

∂t
H int

[
xa, pa, hTTij (t), πij

TT(t)
]〉

=
1

2

〈∫
ddx ḣTTij STT

ij

〉
Proof (we mostly omit indices, arguments and integration measures).

1 Hred =

∫ [ 1

4
(hTTij,k )

2 + (π
ij
TT

)2
]
+ I (hTTij , π

ij
TT

) + H int(xa, pa, hTTij , π
ij
TT

) + Hmatter(xa, pa);

2

ḣTT =

(
δHred

δπTT

)TT
= 2πTT +

(
δI

δπTT

)TT
+

 δH int

δπTT

TT

,

π̇TT = −
(

δHred

δhTT

)TT
=

1

2
∆hTT −

(
δI

δhTT

)TT
−

 δH int

δhTT

TT

;

3

ḧTT = 2π̇TT +

[(
δI

δπTT

)·]TT
+

 δH int

δπTT

·TT

= ∆hTT − 2

(
δI

δhTT

)TT
− 2

 δH int

δhTT

TT

+

[(
δI

δπTT

)·]TT
+

 δH int

δπTT

·TT ;

4

□hTT = −ḧTT + ∆hTT = 2

(
δI

δhTT

)TT
+ 2

 δH int

δhTT

TT

−
[(

δI

δπTT

)·]TT
−

 δH int

δπTT

·TT =: STT;



An Auxiliary Formula for GW Luminosity (2/2)

Proof (contd).

5

1

2
ḣTTSTT = ḣTT

(
δI

δhTT

)TT
+ ḣTT

 δH int

δhTT

TT

−
1

2
ḣTT

[(
δI

δπTT

)·]TT
−

1

2
ḣTT

 δH int

δπTT

·TT

= ḣTT

(
δI

δhTT

)TT
+ ḣTT

 δH int

δhTT

TT

+
1

2
ḧTT

(
δI

δπTT

)TT
+

1

2
ḧTT

 δH int

δπTT

TT

+ (total time derivative)1

= ḣTT

(
δI

δhTT

)TT
+ ḣTT

 δH int

δhTT

TT

+π̇TT

(
δI

δπTT

)TT
+ π̇TT

 δH int

δπTT

TT

+
1

2

[(
δI

δπTT

)·]TT ( δI

δπTT

)TT
+

1

2

[(
δI

δπTT

)·]TT  δH int

δπTT

TT

+
1

2

 δH int

δπTT

·TT ( δI

δπTT

)TT
+

1

2

 δH int

δπTT

·TT  δH int

δπTT

TT

+ (total time derivative)1

= ḣTT

 δH int

δhTT

TT

+ ˙πTT

 δH int

δπTT

TT

+(total time derivative)2;

6 using the property
∫

ATT
ij Bij =

∫
Aij B

TT
ij =

∫
ATT
ij BTT

ij , one shows that

1

2

〈∫
ḣTTSTT

〉
=

〈∫ [
ḣTT

(
δH int

δhTT

)TT
+ π̇TT

(
δH int

δπTT

)TT]〉

=

〈∫ (
ḣTT

δH int

δhTT
+ π̇TT

δH int

δπTT

)〉
=

〈
∂

∂t
H int

〉
.



D-Dimensional Retarded Green’s Function

For the wave equation in D-dimensional Minkowski spacetime:

□ϕ(t, x) = S(t, x),

the retarded Green’s function Gret fulfills equation

□Gret(t, x) = δ(t)δd (x).

Using the momentum representation and spherical coordinates
in the d-dimensional k space, Gret can be written as

Gret(t, x) = −
Θ(t)

(2π)(D−1)/2

1

r (D−3)/2

∫ +∞

0
k(D−3)/2J(D−3)/2(kr) sin(kt)dk,

r := |x|, J(D−3)/2 is a Bessel function, Θ is the Heaviside step function.

The structure of Gret depends on the parity of D. For even D,

Gret(t, x) =
1

4π

(
−

1

2πr

∂

∂r

)(D−4)/2 ( δ(t − r)

r

)
.



A New Formula for GW Luminosity

The formal retarded solution of the wave equation

□hTTij = STT
ij ,

one expresses in terms of the retarded Green’s function,

hTTij (t, x) =

(∫
dt′
∫
ddx ′Gret(t − t′, x − x′)Sij (t

′, x′)

)TT

.

This, after expanding δ(t − r) into the PN series (here
(n)

δ denotes the nth derivative of the δ),

δ(t − r) =
∞∑
n=0

rn

n!

(n)

δ (t),

is substituted into the expression − 1
2

〈∫
ddx ḣTTij STT

ij

〉
.

After some manipulations one gets the final formula for “instantaneous” GW

luminosity (here
(k + 1)

Sij denotes the (k + 1)th time derivative of the source Sij):

L =
1

8π

(
−

1

π

)(d−3)/2 ∞∑
k=0

(−1)kΓ(k + 1)

Γ(2k + 2)Γ(k + 5−d
2

)

×
∫

ddx

∫
ddx ′(|x − x′|2k−(d−3)

)TT 〈(k + 1)

Sij (t, x)
(k + 1)

Sij (t, x
′)

〉
.
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The Results

Leading-order (Newtonian) and 1PN-order GW luminosities recomputed.

2PN-order GW luminosity is being calculated.

Work on including tail-related effects into GW luminosity is in progress.
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8 T.Damour, P.Jaranowski, and G.Schäfer, Poincaré invariance in the ADM Hamiltonian approach to the general relativistic
two-body problem, Phys Rev D 62:021501(R) (2000), arXiv:gr-qc/0003051; Erratum: Phys Rev D 63:029903(E) (2000).
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