Dissipative Effects in the ADM Hamiltonian Formalism for Point-Mass Systems

Arkadiusz Błaut¹ Piotr Jaranowski² Gerhard Schäfer³

¹Faculty of Physics and Astronomy, University of Wrocław, Poland

²Faculty of Physics, University of Białystok, Poland

³INSTITUTE OF THEORETICAL PHYSICS, FRIEDRICH SCHILLER UNIVERSITY JENA, GERMANY

The 10th Conference of Polish Society on Relativity Kazimierz Dolny, September 16–20, 2024

BACKGROUND AND OUTLINE OF THE PROJECT, ITS MOTIVATION AND GOALS

2 Dissipative Matter ADM Hamiltonian and GW Luminosity

- Reduced Matter+Field Hamiltonian
- 4.5PN-Accurate Field Equations
- 3.5PN-accurate Dissipative Matter Hamiltonian and 1PN-accurate GW Luminosity
- 3 A New Formula for GW Luminosity

4 The Results

BACKGROUND AND OUTLINE OF THE PROJECT, ITS MOTIVATION AND GOALS

Dissipative Matter ADM Hamiltonian and GW Luminosity

- Reduced Matter+Field Hamiltonian
- 4.5PN-Accurate Field Equations
- 3.5PN-accurate Dissipative Matter Hamiltonian and 1PN-accurate GW Luminosity

3) A New Formula for GW Luminosity

• The Results

BIBLIOGRAPHY

Background and Outline (1/2)

- We consider a system of two point masses (i.e. monopolar, pointlike bodies), which interact gravitationally according to general relativity theory.
 Spin- and tidal-related effects will not be discussed here (but these effects can be and have been added to the formalism).
- We model point masses by means of Dirac δ distributions.
- We employ the ADM canonical formalism in D = d + 1 spacetime dimensions.
- We work in asymptotically flat *D*-dimensional spacetime and use asymptotically Minkowskian reference frame.
- All calculations are done within the post-Newtonian (PN) approximation: Oth order—Newtonian gravity;
 apple and a second sec

n PN order—corrections to the Newtonian gravity of order

$$\left(\frac{v}{c}\right)^{2n} \sim \left(\frac{Gm}{rc^2}\right)^n$$

- δ-sources lead to ultraviolet (UV) divergences, i.e., divergences at the locations of the particles. We control them by means of dimensional regularization (DR).
- PN expansion of the retardations in the field functions (which is essentially a near-zone expansion) lead to infrared (IR) divergences.

Background and Outline (2/2)

- We treat differently conservative and dissipative sections of dynamics: to solve (perturbatively) equations for the field degrees of freedom, we use time-symmetric (half-retarded half-advanced) Green's function for conservative dynamics, and retarded Green's function for dissipative dynamics.
- The following conservative Hamiltonians were uniquely calculated: at Newtonian, 1PN, 2PN, 3PN, and 4PN orders (at 3PN and 4PN by Damour/Jaranowski/Schäfer in 2001 and 2014, respectively); dissipative Hamiltonians were computed at 2.5PN and 3.5PN orders (by Jaranowski/Schäfer in 1997).
- For conservative dynamics, near-zone IR divergences show up at the 4PN order, they are linked to nonlocal-in-time tail effects and were analytically regulated using a new (i.e., different from DR-related one ℓ_0 , $G_D = G_N \ell_0^{d-3}$) length scale. The result of regularization was ambiguous and the ambiguity was resolved by using a beyond-near-zone information (delivered by gravitational self-force approach).
- For dissipative dynamics, IR divergences are not an issue at 2.5PN, 3.5PN, and 4.5PN orders (but they will be an issue for the higher orders).
- From 2.5PN and 3.5PN dissipative Hamiltonians one can deduce (and it was done) the leading-order (Newtonian) and 1PN formulae for GW luminosities.
- In this report, we propose a new formula for calculating GW luminosities that does not require finding an explicit form of dissipative Hamiltonians.
- Using the new formula we calculated Newtonian and 1PN GW luminosities, calculation of GW luminosity at the 2PN order is in progress (2PN-order GW luminosity can also be derived from 4.5PN dissipative Hamiltonian).

GRAVITATIONAL WAVES FROM INSPIRALLING BINARY ON CIRCULAR ORBITS

The dimensionless GW strain measured by the laser-interferometric detector, induced by gravitational waves from coalescing compact binary made of nonspinning bodies in circular orbits during the inspiral phase:

$$h(t) = \frac{C}{D} \left[\dot{\phi}(t) \right]^{2/3} \sin \left[2\phi(t) + \alpha \right],$$

where $\phi(t)$ is the orbital phase of the binary $[\dot{\phi}(t) := \frac{d\phi(t)}{dt}$ is the angular frequency], D is the luminosity distance of the binary to the Earth (C and α are some constants).

The time evolution of the orbital phase $\phi(t)$ is computed from the balance equation (*E*—binding energy, *L*—GW luminosity):

$$rac{\mathrm{d} E}{\mathrm{d} t} = -\mathcal{L} \implies \phi = \phi(t),$$

where both sides are calculated within the PN approximation (the dates: for energies—the first complete and correct derivations of equations of motion at a given PN order; for luminosities—often the dates of the first derivation of formula valid only for circular orbits):

$$\begin{split} E &= \overbrace{\mathcal{L}_{N}}^{1687} + \frac{1}{c^{2}} \overbrace{\mathcal{L}_{1PN}}^{1917} + \frac{1}{c^{4}} \overbrace{\mathcal{L}_{2PN}}^{1982} + \frac{1}{c^{6}} \overbrace{\mathcal{L}_{3PN}}^{2001} + \frac{1}{c^{8}} \overbrace{\mathcal{L}_{4PN}}^{2014} + \mathcal{O}((v/c)^{10}), \\ \mathcal{L} &= \overbrace{\mathcal{L}_{N}}^{1918/1963} + \frac{1}{c^{2}} \overbrace{\mathcal{L}_{1PN}}^{1976} + \frac{1}{c^{3}} \overbrace{\mathcal{L}_{1.5PN}}^{1992} + \frac{1}{c^{4}} \overbrace{\mathcal{L}_{2PN}}^{1995} + \frac{1}{c^{5}} \overbrace{\mathcal{L}_{2.5PN}}^{1996} \\ &+ \frac{1}{c^{6}} \overbrace{\mathcal{L}_{3PN}}^{2004} + \frac{1}{c^{7}} \overbrace{\mathcal{L}_{3.5PN}}^{1998} + \frac{1}{c^{8}} \overbrace{\mathcal{L}_{4PN}}^{2023} + \frac{1}{c^{9}} \overbrace{\mathcal{L}_{4.5PN}}^{2023} + \mathcal{O}((v/c)^{10}). \end{split}$$

4.5PN-Accurate Binding Energy in the Center-of-Mass Frame for Circular Orbits

Notation:

masses of the bodies: $m_1, m_2, \qquad M := m_1 + m_2, \qquad \mu := \frac{m_1 m_2}{M},$ $\nu := \frac{\mu}{M} = \frac{m_1 m_2}{(m_1 + m_2)^2}, \quad 0 \le \nu \le \frac{1}{4};$ $x := \frac{(GM\dot{\phi})^{2/3}}{c^2}$ (dimensionless PN parameter for circular orbits).

Binding energy of two-point-mass system in circular orbits:

$$\begin{split} E(x,\nu) &= -\frac{\mu c^2 x}{2} \left(1 + \mathbf{e_{IPN}}(\nu) x + \mathbf{e_{2PN}}(\nu) x^2 + \mathbf{e_{3PN}}(\nu) x^3 + \left(\mathbf{e_{4PN}}(\nu) + \frac{448}{15} \nu \ln x\right) x^4 + \mathcal{O}(x^5) \right), \\ \mathbf{e_{IPN}}(\nu) &= -\frac{3}{4} - \frac{1}{12} \nu, \qquad \mathbf{e_{2PN}}(\nu) = -\frac{27}{8} + \frac{19}{8} \nu - \frac{1}{24} \nu^2, \\ \mathbf{e_{3PN}}(\nu) &= -\frac{675}{64} + \left(\frac{34445}{576} - \frac{205}{96} \pi^2\right) \nu - \frac{155}{96} \nu^2 - \frac{35}{5184} \nu^3, \\ \mathbf{e_{4PN}}(\nu) &= -\frac{3969}{128} + \left(-\frac{123671}{5760} + \frac{9037}{1536} \pi^2 + \frac{896}{15} (2\ln 2 + \gamma_E)\right) \nu \\ &+ \left(-\frac{498449}{3456} + \frac{3157}{576} \pi^2\right) \nu^2 + \frac{301}{1728} \nu^3 + \frac{77}{31104} \nu^4 \\ (\gamma_E \text{ is the Euler's constant).} \end{split}$$

$$\begin{split} \mathcal{L}(\mathbf{x},\nu) &= \frac{32c^5}{5G} \nu^2 x^5 \bigg\{ 1 + \ell_{1\mathrm{PN}}(\nu) \, \mathbf{x} + 4\pi \, \mathbf{x}^{3/2} + \ell_{2\mathrm{PN}}(\nu) \, \mathbf{x}^2 + \ell_{2.5\mathrm{PN}}(\nu) \, \mathbf{x}^{5/2} + \left(\ell_{3\mathrm{PN}}(\nu) - \frac{856}{105} \ln(16x)\right) \mathbf{x}^3 \\ &+ \ell_{3.5\mathrm{PN}}(\nu) \, \mathbf{x}^{7/2} + \left(\ell_{4\mathrm{PN}}(\nu) + \left(\frac{232597}{8820} + \frac{20739}{245}\nu\right) \ln \mathbf{x}\right) \mathbf{x}^4 \\ &+ \left(\ell_{4.5\mathrm{PN}}(\nu) - \frac{3424}{105} \pi \ln(16x)\right) \mathbf{x}^{9/2} + \mathcal{O}(\mathbf{x}^5) \bigg\}, \end{split}$$

$$\begin{split} \ell_{1\mathrm{PN}}(\nu) &= -\frac{1247}{336} - \frac{35}{12}\nu, \qquad \ell_{2\mathrm{PN}}(\nu) = -\frac{44711}{9072} + \frac{9271}{504}\nu + \frac{65}{18}\nu^2, \qquad \ell_{2.5\mathrm{PN}}(\nu) = \left(-\frac{8191}{672} - \frac{535}{24}\nu\right)\pi, \\ \ell_{3\mathrm{PN}}(\nu) &= \frac{6643739519}{69854400} + \frac{16}{3}\pi^2 - \frac{1712}{105}\gamma_{\mathrm{E}} + \left(-\frac{134543}{7776} + \frac{41}{48}\pi^2\right)\nu - \frac{94403}{3024}\nu^2 - \frac{775}{324}\nu^3, \\ \ell_{3.5\mathrm{PN}}(\nu) &= \left(-\frac{16285}{504} + \frac{214745}{1728}\nu + \frac{193385}{3024}\nu^2\right)\pi, \\ \ell_{4\mathrm{PN}}(\nu) &= -\frac{323105549467}{3178375200} + \frac{232597}{4410}\gamma_{\mathrm{E}} - \frac{1369}{126}\pi^2 + \frac{39931}{294}\ln 2 - \frac{47385}{1568}\ln 3 \\ &+ \left(-\frac{1452202403629}{1466942400} + \frac{41478}{245}\gamma_{\mathrm{E}} - \frac{267127}{4608}\pi^2 + \frac{479062}{2205}\ln 2 + \frac{47385}{392}\ln 3\right)\nu \\ &+ \left(\frac{1607125}{6804} - \frac{3157}{384}\pi^2\right)\nu^2 + \frac{6875}{504}\nu^3 + \frac{5}{6}\nu^4, \\ \ell_{4.5\mathrm{PN}}(\nu) &= \left(\frac{265978667519}{745113600} - \frac{6848}{105}\gamma_{\mathrm{E}} + \left(\frac{2062241}{22176} + \frac{41}{12}\pi^2\right)\nu - \frac{133112905}{290304}\nu^2 - \frac{3719141}{38016}\nu^3\right)\pi. \end{split}$$

PROJECT'S GOALS

SHORT-TERM GOALS

- Higher-PN-order perturbative solutions of two-body problem are complicated, both from computational and from conceptual point of view. Therefore it is highly desired to have more than one independent derivation of any analytical result: making independent derivation within the ADM Hamiltonian approach of GW luminosities of two-point-mass system at the N, 1PN, 1.5PN, 2PN, 2.5PN, 3PN, 3.5PN, 4PN, and 4.5PN order.
- Recompute and regularize IR divergences in the 4PN two-point-mass ADM Hamiltonian, without usage of gravitational self-force results.

Long-Term Goals

- Completion of computations of 5PN, 5.5PN, 6PN, ...EOM of two-point-mass systems together with computation of GW luminosities at 5PN, 5.5PN, 6PN, ...orders, and construction of ≥5PN-accurate templates for inspiralling compact binaries.
- Computation, within the PN framework, higher-order spin-dependent effects and, in the case of binaries containing neutron stars, higher-order tidal corrections, both in conservative dynamics and in GW luminosities.

2 Dissipative Matter ADM Hamiltonian and GW Luminosity

- Reduced Matter+Field Hamiltonian
- 4.5PN-Accurate Field Equations
- 3.5PN-accurate Dissipative Matter Hamiltonian and 1PN-accurate GW Luminosity

3) A New Formula for GW Luminosity

• The Results

BIBLIOGRAPHY

2 Dissipative Matter ADM Hamiltonian and GW Luminosity • Reduced Matter+Field Hamiltonian

• 4.5PN-Accurate Field Equations

• 3.5PN-accurate Dissipative Matter Hamiltonian and 1PN-accurate GW Luminosity

3) A New Formula for GW Luminosity

• The Results

Spacetime coordinates: $x^0 = c t$, $\mathbf{x} = (x^1, \dots, x^d)$. Particle labels: $a, b \in \{1, 2\}$, masses of the particles: m_a , position vectors of the particles: $\mathbf{x}_a = (x_a^1, \dots, x_a^d)$, linear momentum vectors of the particles: $\mathbf{p}_a = (p_{a1}, \dots, p_{ad})$.

For any *d*-vectors $\mathbf{v} = (\mathbf{v}^1, \dots, \mathbf{v}^d)$ and $\mathbf{w} = (\mathbf{w}^1, \dots, \mathbf{w}^d)$: $\mathbf{v} \cdot \mathbf{w} := \delta_{ij} \mathbf{v}^i \mathbf{w}^j, \quad |\mathbf{v}| := \sqrt{\mathbf{v} \cdot \mathbf{v}}.$ $\mathbf{r}_a := \mathbf{x} - \mathbf{x}_a, \quad r_a := |\mathbf{r}_a|, \quad \mathbf{n}_a := \mathbf{r}_a/r_a;$ for $a \neq b$: $\mathbf{r}_{ab} := \mathbf{x}_a - \mathbf{x}_b, \quad r_{ab} := |\mathbf{r}_{ab}|, \quad \mathbf{n}_{ab} := \mathbf{r}_{ab}/r_{ab}.$

Units: quite often c = 1 and $G_D = 1/(16\pi)$.

A (d + 1)-Splitting of Spacetime Metric $g_{\mu\nu}$

$$\mathrm{d}s^2 = g_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} = -(N\,\mathrm{d}t)^2 + \gamma_{ij}(\mathrm{d}x^i + N^i\,\mathrm{d}t)(\mathrm{d}x^j + N^j\,\mathrm{d}t),$$

where N and N^i are respectively lapse and shift functions,

$$\gamma_{ij} := g_{ij}, \quad N := (-g^{00})^{-1/2}, \quad N^i = \gamma^{ij} N_j \quad \text{with} \quad N_i := g_{0i},$$

here γ^{ij} is the metric inverse to γ_{jk} ($\gamma^{ij}\gamma_{jk}=\delta^i_k$),

 $\gamma := \det(\gamma_{ij});$

lowering and raising of spatial indices is with γ_{ij} .

CANONICAL MATTER+FIELD VARIABLES

Canonical matter variables:

$$\begin{aligned} \mathbf{x}_a &= (x_a^1, \dots, x_a^d), \\ \mathbf{p}_a &= (p_{a1}, \dots, p_{ad}), \end{aligned}$$

$$a &= 1, 2. \end{aligned}$$

Canonical field variables:

$$egin{aligned} &\gamma_{ij}:=\mathbf{g}_{ij},\ &\pi^{ij}:=\sqrt{\gamma}(\mathcal{K}^{ij}-\gamma^{ij}\gamma^{kl}\mathcal{K}_{kl}), \end{aligned}$$

 K_{ii} is the extrinsic curvature of the hypersurface t = const.

ADM HAMILTONIAN

• The full Einstein field equations in *D* dimensions in an asymptotically flat space-time and in an asymptotically Minkowskian coordinate system are derivable from the Hamiltonian

$$H[\mathbf{x}_a, \mathbf{p}_a, \gamma_{ij}, \pi^{ij}, N, N^i] = \int \mathrm{d}^d x \left(N\mathcal{H} - N^i \mathcal{H}_i \right) + \oint_{j^0} \mathrm{d}^{d-1} S_i \, \partial_j (\gamma_{ij} - \delta_{ij} \gamma_{kk}),$$

 i^0 denotes spacelike infinity and $\mathrm{d}^{d-1}S_i$ is the (d-1)-dimensional out-pointing surface element there.

• The super-Hamiltonian \mathcal{H} and super-momentum \mathcal{H}_i are defined as follows:

$$\begin{split} \mathcal{H}(\mathbf{x}_a,\mathbf{p}_a,\gamma_{ij},\pi^{ij}) &:= \sqrt{\gamma} N^2 \left(T^{00} - 2G^{00}\right) \\ \mathcal{H}_i(\mathbf{x}_a,\mathbf{p}_a,\gamma_{ij},\pi^{ij}) &:= \sqrt{\gamma} N \left(T^0_i - 2G^0_i\right). \end{split}$$

where ${\cal T}^{\mu\nu}$ and ${\cal G}^{\mu\nu}$ denote the energy-momentum and the Einstein tensor, respectively,

Constraint Equations

The lapse and shift functions are Lagrangian multipliers and deliver the Hamiltonian and momentum constraint equations of the Einstein theory,

$$\mathcal{H}=0, \quad \mathcal{H}_i=0.$$

Source terms for the constraint equations are derived from the 2-point-mass energy-momentum tensor

$$T^{\alpha\beta}(x^{\mu}) := \sum_{a=1}^{2} m_{a} \int_{-\infty}^{+\infty} \frac{u_{a}^{\alpha} u_{a}^{\beta}}{\sqrt{-\det(g_{\mu\nu})}} \delta^{d+1}(x^{\mu} - \xi_{a}^{\mu}(\tau_{a})) \, \mathrm{d}\tau_{a},$$

 τ_a is the proper time along the world line $x^{\mu} = \xi^{\mu}_a(\tau_a)$ of the *a*th particle, and $u^{\alpha}_a := \mathrm{d}\xi^{\alpha}_a/\mathrm{d}\tau_a$.

CONSTRAINT EQUATIONS FOR 2-POINT-MASS SYSTEMS

• The constraint equations:

$$\begin{split} \sqrt{\gamma} R - \frac{1}{\sqrt{\gamma}} \left(\gamma_{ik} \gamma_{j\ell} \pi^{ij} \pi^{k\ell} - \frac{(\gamma_{ij} \pi^{ij})^2}{d-1} \right) &= \sum_{a=1}^2 \sqrt{\gamma_a^{ij} p_{ai} p_{aj}} + m_a^2 \, \delta^d (\mathbf{x} - \mathbf{x}_a), \\ &- 2D_j \pi^{ij} = \sum_{a=1}^2 \gamma_a^{ij} p_{aj} \, \delta^d (\mathbf{x} - \mathbf{x}_a), \end{split}$$

R is the spatial scalar curvature of the hypersurface t = const, D_j is the spatial *d*-dimensional covariant derivative (acting on a tensor density of weight one), $\gamma_a^{ji} := \gamma_{reg}^{ij}(\mathbf{x}_a)$ is perturbatively unambigously defined and finite (at least up to the 4.5PN order).

• The ADM Transverse-Traceless (TT) gauge:

$$\gamma_{ij} = \left(1 + \frac{d-2}{4(d-1)}\phi\right)^{4/(d-2)} \delta_{ij} + \boldsymbol{h}_{ij}^{\mathsf{TT}}, \quad \pi^{ii} = 0,$$

where $h_{ii}^{TT} = 0$ and $\partial_j h_{ij}^{TT} = 0$.

• Splitting of the field momentum:

$$\begin{aligned} \pi^{ij} &= \widetilde{\pi}^{ij} (\boldsymbol{V}^k) + \pi^{ij}_{\mathsf{TT}}, \\ \widetilde{\pi}^{ij} (\boldsymbol{V}^k) &= \partial_i \boldsymbol{V}^j + \partial_j \boldsymbol{V}^i - \frac{2}{d} \, \delta^{ij} \, \partial_k \boldsymbol{V}^k, \end{aligned}$$

where $\pi_{TT}^{ii} = 0$ and $\partial_j \pi_{TT}^{ij} = 0$.

The super/subscript TT denotes the application of the *d*-dimensional (spatially nonlocal) TT-projection operator:

$$f_{ij}^{\mathsf{TT}} := \delta_{ij}^{\mathsf{TT}kl} f_{kl}$$

where
$$\begin{split} \delta_{ij}^{\mathsf{TT}kl} &:= \frac{1}{2} (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) - \frac{1}{d-1} \delta_{ij} \delta_{kl} \\ &- \frac{1}{2} (\delta_{ik} \partial_j \partial_l + \delta_{jl} \partial_i \partial_k + \delta_{il} \partial_j \partial_k + \delta_{jk} \partial_i \partial_l) \Delta^{-1} \\ &+ \frac{1}{d-1} (\delta_{ij} \partial_k \partial_l + \delta_{kl} \partial_i \partial_j) \Delta^{-1} + \frac{d-2}{d-1} \partial_i \partial_j \partial_k \partial_l \Delta^{-1} \end{split}$$

FIXING THE GAUGE: ADMTT GAUGE (2/2)

Asymptotic behavior for $r \to \infty$:

$$\phi \sim \frac{1}{r^{d-2}}, \quad V^i \sim \frac{1}{r^{d-2}}, \quad h^{\mathrm{TT}}_{ij} \sim \frac{1}{r^{d-2}}, \quad \pi^{ij}_{\mathrm{TT}} \sim \frac{1}{r^{d-1}}.$$

A Perturbative Solving of the Constraints

φ and Vⁱ are expressed in terms of (x_a, p_a, h^{TT}_T, π^{jj}_T, π^{jj}_T) by a perturbative solving of the constraint equations—this is done by the PN expansion of the constraints together with the PN expansion of the functions φ and Vⁱ (the numbers within parentheses denote the order in the inverse velocity of light, e.g. φ₍₂₎ ~ O(c⁻²)):

$$\phi = \phi_{(2)} + \phi_{(4)} + \phi_{(6)} + \cdots, \qquad V^{i} = V^{i}_{(3)} + V^{i}_{(5)} + \cdots$$

REDUCED MATTER+FIELD ADM HAMILTONIAN

 If the constraint equations and the gauge conditions are both satisfied, the total matter+field Hamiltonian can be written in its reduced form:

$$\mathcal{H}_{\mathsf{red}}\big[\mathbf{x}_{a},\mathbf{p}_{a},h_{ij}^{\mathsf{TT}},\pi_{\mathsf{TT}}^{ij}\big] = -\sum_{n=2}^{\infty}\int\!\!\mathrm{d}^{d} x\,\Delta\phi_{(n)}\big[\mathbf{x}_{a},\mathbf{p}_{a},h_{ij}^{\mathsf{TT}},\pi_{\mathsf{TT}}^{ij}\big]$$

The equations of motion for the particles:

$$\dot{\mathbf{p}}_{a} = -\frac{\delta H_{\text{red}}}{\delta \mathbf{x}_{a}}, \quad \dot{\mathbf{x}}_{a} = \frac{\delta H_{\text{red}}}{\delta \mathbf{p}_{a}} \quad (a = 1, 2).$$

Evolution equations for the field degrees of freedom:

$$\frac{\partial}{\partial t}h_{ij}^{\mathsf{TT}} = \delta_{ij}^{\mathsf{TT}kl} \frac{\delta H_{\mathsf{red}}}{\delta \pi_{\mathsf{TT}}^{kl}}, \quad \frac{\partial}{\partial t} \pi_{\mathsf{TT}}^{ij} = -\delta_{kl}^{\mathsf{TT}ij} \frac{\delta H_{\mathsf{red}}}{\delta h_{kl}^{\mathsf{TT}}}.$$

• There is no involvement of lapse and shift functions in the equations of motion and in the field equations for the independent degrees of freedom.

Dissipative Matter ADM Hamiltonian and GW Luminosity

- Reduced Matter+Field Hamiltonian
- 4.5PN-Accurate Field Equations
- 3.5PN-accurate Dissipative Matter Hamiltonian and 1PN-accurate GW Luminosity

3) A New Formula for GW Luminosity

• The Results

BIBLIOGRAPHY

Field Equations (1/3)

• For computing 2PN-order GW luminosity one needs to use field equations which follow from the 4.5PN-accurate reduced Hamiltonian:

$$H^{\text{red}}_{\leq 4.5\text{PN}}[\mathbf{x}_a, \mathbf{p}_a, h^{\text{TT}}_{ij}, \pi^{ij}_{\text{TT}}] = \int \! \mathrm{d}^d x \, \mathfrak{h}_{\leq 4.5\text{PN}}[\mathbf{x} - \mathbf{x}_a, \mathbf{p}_a, h^{\text{TT}}_{ij}, \pi^{ij}_{\text{TT}}],$$

where

$$\begin{split} \mathfrak{h}_{\leq 4.5\text{PN}}[\mathbf{x} - \mathbf{x}_a, \mathbf{p}_a, h_{ij}^{\mathsf{TT}}, \pi_{\mathsf{TT}}^{ij}] &= \sum_a m_a \delta^d(\mathbf{x} - \mathbf{x}_a) + \mathfrak{h}_{(4)} \big(\mathbf{x} - \mathbf{x}_a, \mathbf{p}_a \big) \\ &+ \mathfrak{h}_{(6)} \big(\mathbf{x} - \mathbf{x}_a, \mathbf{p}_a \big) + \mathfrak{h}_{(8)} \big(\mathbf{x} - \mathbf{x}_a, \mathbf{p}_a, h_{ij}^{\mathsf{TT}} \big) + \mathfrak{h}_{(10)} \big(\mathbf{x} - \mathbf{x}_a, \mathbf{p}_a, h_{ij}^{\mathsf{TT}}, \pi_{\mathsf{TT}}^{ij} \big) \\ &+ \mathfrak{h}_{(12)} [\mathbf{x} - \mathbf{x}_a, \mathbf{p}_a, h_{ij}^{\mathsf{TT}}, \pi_{\mathsf{TT}}^{ij}]. \end{split}$$

• For this Hamiltonian the field equations take the form

$$\begin{split} \dot{h}_{ij}^{\mathsf{TT}} &= \delta_{ij}^{\mathsf{TT}kl} \, \frac{\partial \mathfrak{h}_{\leq 4.5\mathsf{PN}}}{\partial \pi_{\mathsf{TT}}^{kl}} + \mathcal{O}(c^{-9}), \\ \dot{\pi}_{\mathsf{TT}}^{ij} &= -\delta_{kl}^{\mathsf{TT}ij} \left\{ \frac{\delta \mathfrak{h}_{\leq 4.5\mathsf{PN}}}{\delta h_{kl}^{\mathsf{TT}}} - \left(\frac{\partial \mathfrak{h}_{\leq 4.5\mathsf{PN}}}{\partial h_{kl,m}^{\mathsf{TT}}} \right)_{,m} + \left(\frac{\partial \mathfrak{h}_{\leq 4.5\mathsf{PN}}}{\partial h_{kl,mn}^{\mathsf{TT}}} \right)_{,mn} \right\} + \mathcal{O}(c^{-10}). \end{split}$$

• More explicitly (we display only leading-order and next-to-leading-order terms),

$$\begin{split} \dot{h}_{ij}^{\mathsf{TT}} &= \delta_{ij}^{\mathsf{TT}kl} \bigg\{ 2\pi_{\mathsf{TT}}^{kl} - \frac{2(d-2)}{d-1} \phi_{(2)} \tilde{\pi}_{(3)}^{kl} \bigg\} + \mathcal{O}(c^{-7}), \\ \dot{\pi}_{\mathsf{TT}}^{ij} &= -\delta_{ij}^{\mathsf{TT}kl} \bigg\{ \frac{1}{2} S_{(4)kl} - \frac{1}{2} \Delta h_{kl}^{\mathsf{TT}} + B_{(6)kl} \\ &+ \frac{1}{2(d-1)} \bigg(\phi_{(2)} \Delta h_{kl}^{\mathsf{TT}} + \Delta \big(\phi_{(2)} h_{kl}^{\mathsf{TT}} \big) \bigg) \bigg\} + \mathcal{O}(c^{-8}). \end{split}$$

By combining these two equations one gets the equation for h^{TT}_{ij}

$$\Box h_{ij}^{\mathsf{TT}} = S_{ij}^{\mathsf{TT}}, \quad \Box := -\partial_t^2 + \Delta,$$

where the source term is

$$\begin{split} S_{ij}^{\mathsf{TT}} &= \delta_{ij}^{\mathsf{TT}kl} \bigg\{ S_{(4)kl} + 2B_{(6)kl} + \frac{2(d-2)}{d-1} \partial_t \big(\phi_{(2)} \tilde{\pi}_{(3)}^{kl} \big) \\ &+ \frac{1}{d-1} \bigg(\phi_{(2)} \Delta h_{kl}^{\mathsf{TT}} + \Delta \big(\phi_{(2)} h_{kl}^{\mathsf{TT}} \big) \bigg) \bigg\} + \mathcal{O}(c^{-8}) \end{split}$$

• After solving field equation for h_{ij}^{TT} one can obtain π_{TT}^{ij} :

$$\pi_{\text{TT}}^{ij} = \frac{1}{2}\dot{h}_{ij}^{\text{TT}} + \frac{d-2}{d-1}\delta_{ij}^{\text{TT}kl} \Big(\phi_{(2)}\tilde{\pi}_{(3)}^{kl}\Big) + \mathcal{O}(c^{-7}).$$

FIELD EQUATIONS (3/3)

 After making the PN expansion of the formal retarded solution of the field equation, one gets (conservative dynamics does not depend on the functions marked in red)

$$\begin{split} h_{ij}^{\mathsf{TT}} &= h_{(4)ij}^{\mathsf{TT}} + h_{(5)ij}^{\mathsf{TT}} + h_{(6)ij}^{\mathsf{TT}} + h_{(7)ij}^{\mathsf{TT}} + \mathcal{O}(c^{-8}), \\ \pi_{\mathsf{TT}}^{ij} &= \pi_{\mathsf{TT}}^{(5)ij} + \pi_{\mathsf{TT}}^{(6)ij} + \mathcal{O}(c^{-7}). \end{split}$$

 The PN expansion of the retardations in the field functions leads to new functions which diverge for r → ∞:

$$egin{aligned} h_{ij}^{\mathsf{TT}}(t,\mathbf{n}r) &= rac{h_{ij}(t-r,\mathbf{n})}{r^{d-2}} + \mathcal{O}\Big(rac{1}{r^{d-1}}\Big) \ &= rac{h_{ij}(t,\mathbf{n})}{r^{d-2}} - \dot{h}_{ij}(t,\mathbf{n})r^{3-d} + rac{1}{2}\ddot{h}_{ij}(t,\mathbf{n})r^{4-d} + \dots + \mathcal{O}\Big(rac{1}{r^{d-1}}\Big). \end{aligned}$$

This is the source of infrared near-zone divergences.

Dissipative Matter ADM Hamiltonian and GW Luminosity

- REDUCED MATTER+FIELD HAMILTONIAN
- 4.5PN-Accurate Field Equations
- 3.5PN-ACCURATE DISSIPATIVE MATTER HAMILTONIAN AND 1PN-ACCURATE GW LUMINOSITY

3) A New Formula for GW Luminosity

• The Results

3 Bibliography

3.5PN-Accurate Dissipative Matter Hamiltonian (1/2)

- More detailed and refined treatment can be found in Section 3 of 2024 Schäfer/Jaranowski *Living Reviews in Relativity* article.
- The split of the total reduced Hamiltonian:

$$\begin{split} H^{\text{red}}_{\leq 3.5\text{PN}}[\mathbf{x}_{a},\mathbf{p}_{a},h^{\text{TT}}_{ij},\pi^{ij}_{\text{TT}}] &= H^{\text{matter}}_{\leq 3.5\text{PN}}(\mathbf{x}_{a},\mathbf{p}_{a}) + H^{\text{int}}_{\leq 3.5\text{PN}}[\mathbf{x}_{a},\mathbf{p}_{a},h^{\text{TT}}_{ij},\pi^{ij}_{\text{TT}}] \\ &+ H^{\text{field}}_{\leq 3.5\text{PN}}[h^{\text{TT}}_{ij},\pi^{ij}_{\text{TT}}]. \end{split}$$

• We define a new Hamiltonian $\widetilde{H}_{\leq 3.5 \text{PN}}$, which is the Hamiltonian $H_{\leq 3.5 \text{PN}}$ after dropping its field part,

$$\widetilde{H}_{\leq 3.5 \mathrm{PN}} := H^{\mathrm{matter}}_{\leq 3.5 \mathrm{PN}} + H^{\mathrm{int}}_{\leq 3.5 \mathrm{PN}}$$

3.5PN-Accurate Dissipative Matter Hamiltonian (2/2)

 $\bullet\,$ The Hamiltonian $\widetilde{H}_{\leq 3.5\rm PN}$ can be decomposed into conservative and dissipative parts:

$$\widetilde{H}_{\leq 3.5 \mathrm{PN}}(\mathbf{x}_{a},\mathbf{p}_{a},t) = H^{\mathsf{con}}_{\leq 3 \mathrm{PN}}(\mathbf{x}_{a},\mathbf{p}_{a},t) + H^{\mathsf{diss}}_{\leq 3.5 \mathrm{PN}}(\mathbf{x}_{a},\mathbf{p}_{a},t),$$

where

$$\begin{split} H^{\text{con}}_{\leq 3\text{PN}}(\mathbf{x}_{a},\mathbf{p}_{a},t) &:= H^{\text{matter}}_{N}(\mathbf{x}_{a},\mathbf{p}_{a}) + H^{\text{matter}}_{1\text{PN}}(\mathbf{x}_{a},\mathbf{p}_{a}) \\ &+ H^{\text{matter}}_{2\text{PN}}(\mathbf{x}_{a},\mathbf{p}_{a}) + H^{\text{int}}_{2\text{PN}}[\mathbf{x}_{a},\mathbf{p}_{a},h^{\text{TT}}_{ij}(t)] \\ &+ H^{\text{matter}}_{3\text{PN}}(\mathbf{x}_{a},\mathbf{p}_{a}) + H^{\text{int}}_{3\text{PN}}[\mathbf{x}_{a},\mathbf{p}_{a},h^{\text{TT}}_{ij}(t),\pi^{ij}_{\text{TT}}(t)], \end{split}$$

$$\begin{split} H_{\leq 3.5\text{PN}}^{\text{diss}}(\mathbf{x}_a, \mathbf{p}_a, t) &:= H_{2.5\text{PN}}^{\text{int}}[\mathbf{x}_a, \mathbf{p}_a, h_{ij}^{\text{TT}}(t), \pi_{\text{TT}}^{ij}(t)] \\ &+ H_{3.5\text{PN}}^{\text{int}}[\mathbf{x}_a, \mathbf{p}_a, h_{ij}^{\text{TT}}(t), \pi_{\text{TT}}^{ij}(t)]. \end{split}$$

1PN-ACCURATE GW LUMINOSITY

• The instantaneous energy loss of the matter system due to the GW emission is defined as

$$\mathcal{L}^{\text{inst}}_{\leq 3.5\text{PN}}(t) := -\frac{\partial}{\partial t} H^{\text{diss}}_{\leq 3.5\text{PN}}\left(\mathbf{x}_{a}, \mathbf{p}_{a}, t\right).$$

• 2PN and 3PN interaction Hamiltonians do not contribute to dissipation, because one can show that

$$\begin{split} & \frac{\partial}{\partial t} H_{2\text{PN}}^{\text{int}}(\mathbf{x}_a, \mathbf{p}_a, t) = \text{total time derivative}, \\ & \frac{\partial}{\partial t} H_{3\text{PN}}^{\text{int}}(\mathbf{x}_a, \mathbf{p}_a, t) = \text{total time derivative}. \end{split}$$

• GW luminosity of the matter system is the time average of the instantaneous energy loss:

$$\mathcal{L}_{\leq 3.5\mathrm{PN}} := \Big\langle \mathcal{L}_{\leq 3.5\mathrm{PN}}^{\mathrm{inst}}(t) \Big\rangle = - \Big\langle \frac{\partial}{\partial t} \mathcal{H}_{\leq 3.5\mathrm{PN}}^{\mathrm{diss}}(\mathbf{x}_{a}, \mathbf{p}_{a}, t) \Big\rangle,$$

where $\langle \cdots \rangle$ denotes time averaging over one period of the motion.

This formula was applied to derive, at the leading (Newtonian) and 1PN orders, to derive GW luminosity of the two-point-mass system in quasi-elliptical motion. This was a direct derivation of the leading-order/next-to-leading-order GW luminosities (not assuming that the balance equation holds).

Dissipative Matter ADM Hamiltonian and GW Luminosity

- REDUCED MATTER+FIELD HAMILTONIAN
- 4.5PN-Accurate Field Equations
- 3.5PN-accurate Dissipative Matter Hamiltonian and 1PN-accurate GW Luminosity

3 A New Formula for GW Luminosity

• The Results

BIBLIOGRAPHY

An Auxiliary Formula for GW Luminosity (1/2)

$$\left\langle \frac{\partial}{\partial t} H^{\text{int}} \big[\mathbf{x}_{a}, \mathbf{p}_{a}, h_{ij}^{\text{TT}}(t), \pi_{\text{TT}}^{ij}(t) \big] \right\rangle = \frac{1}{2} \left\langle \int \mathrm{d}^{d} x \, \dot{h}_{ij}^{\text{TT}} S_{ij}^{\text{TT}} \right\rangle$$

Proof (we mostly omit indices, arguments and integration measures).

1 2

3

4

$$\begin{split} \mathcal{H}_{\text{red}} &= \int \left[\frac{1}{4}(h_{ij,k}^{\text{TT}})^2 + (\pi_{\text{TT}}^{ij})^2\right] + I(h_{ij}^{\text{TT}}, \pi_{\text{TT}}^{ij}) + \mathcal{H}^{\text{int}}(\mathbf{x}_a, \mathbf{p}_a, h_{ij}^{\text{TT}}, \pi_{\text{TT}}^{ij}) + \mathcal{H}^{\text{matter}}(\mathbf{x}_a, \mathbf{p}_a);\\ \dot{h}^{\text{TT}} &= \left(\frac{\delta \mathcal{H}_{\text{red}}}{\delta \pi_{\text{TT}}}\right)^{\text{TT}} = 2\pi_{\text{TT}} + \left(\frac{\delta I}{\delta \pi_{\text{TT}}}\right)^{\text{TT}} + \left(\frac{\delta \mathcal{H}^{\text{int}}}{\delta \pi_{\text{TT}}}\right)^{\text{TT}},\\ \dot{\pi}_{\text{TT}} &= -\left(\frac{\delta \mathcal{H}_{\text{red}}}{\delta h^{\text{TT}}}\right)^{\text{TT}} = \frac{1}{2}\Delta h^{\text{TT}} - \left(\frac{\delta I}{\delta h^{\text{TT}}}\right)^{\text{TT}} - \left(\frac{\delta \mathcal{H}^{\text{int}}}{\delta h^{\text{TT}}}\right)^{\text{TT}}; \end{split}$$

$$\begin{split} \dot{h}^{\mathsf{TT}} &= 2\dot{\pi}_{\mathsf{TT}} + \left[\left(\frac{\delta I}{\delta \pi_{\mathsf{TT}}} \right)^{*} \right]^{\mathsf{TT}} + \left[\left(\frac{\delta H^{\mathsf{int}}}{\delta \pi_{\mathsf{TT}}} \right)^{*} \right]^{\mathsf{TT}} \\ &= \Delta h^{\mathsf{TT}} - 2 \left(\frac{\delta I}{\delta h^{\mathsf{TT}}} \right)^{\mathsf{TT}} - 2 \left(\frac{\delta H^{\mathsf{int}}}{\delta h^{\mathsf{TT}}} \right)^{\mathsf{TT}} + \left[\left(\frac{\delta I}{\delta \pi_{\mathsf{TT}}} \right)^{*} \right]^{\mathsf{TT}} + \left[\left(\frac{\delta H^{\mathsf{int}}}{\delta \pi_{\mathsf{TT}}} \right)^{*} \right]^{\mathsf{TT}} ; \end{split}$$

$$\Box h^{\mathsf{TT}} = -\ddot{h}^{\mathsf{TT}} + \Delta h^{\mathsf{TT}} = 2\left(\frac{\delta I}{\delta h^{\mathsf{TT}}}\right)^{\mathsf{TT}} + 2\left(\frac{\delta H^{\mathsf{int}}}{\delta h^{\mathsf{TT}}}\right)^{\mathsf{TT}} - \left[\left(\frac{\delta I}{\delta \pi_{\mathsf{TT}}}\right)^{\mathsf{TT}} - \left[\left(\frac{\delta H^{\mathsf{int}}}{\delta \pi_{\mathsf{TT}}}\right)^{\mathsf{TT}}\right]^{\mathsf{TT}} =: S^{\mathsf{TT}};$$

An Auxiliary Formula for GW Luminosity (2/2)

Proof (contd).

$$\begin{split} \frac{1}{2}\dot{h}^{\text{TT}}S^{\text{TT}} &= \dot{h}^{\text{TT}} \left(\frac{\delta I}{\delta h^{\text{TT}}}\right)^{\text{TT}} + \dot{h}^{\text{TT}} \left(\frac{\delta \mu^{\text{int}}}{\delta h^{\text{TT}}}\right)^{\text{TT}} - \frac{1}{2}\dot{h}^{\text{TT}} \left[\left(\frac{\delta I}{\delta \pi_{\text{TT}}}\right)^{\text{T}}\right]^{\text{TT}} - \frac{1}{2}\dot{h}^{\text{TT}} \left[\left(\frac{\delta \mu^{\text{int}}}{\delta \pi_{\text{TT}}}\right)^{\text{T}}\right]^{\text{TT}} \\ &= \dot{h}^{\text{TT}} \left(\frac{\delta I}{\delta h^{\text{TT}}}\right)^{\text{TT}} + \dot{h}^{\text{TT}} \left(\frac{\delta \mu^{\text{int}}}{\delta h^{\text{TT}}}\right)^{\text{TT}} + \frac{1}{2}\dot{h}^{\text{TT}} \left(\frac{\delta I}{\delta \pi_{\text{TT}}}\right)^{\text{TT}} + \frac{1}{2}\dot{h}^{\text{TT}} \left(\frac{\delta \mu^{\text{int}}}{\delta \pi_{\text{TT}}}\right)^{\text{TT}} + (\text{total time derivative})_{\text{I}} \\ &= \dot{h}^{\text{TT}} \left(\frac{\delta I}{\delta h^{\text{TT}}}\right)^{\text{TT}} + \dot{h}^{\text{TT}} \left(\frac{\delta \mu^{\text{int}}}{\delta h^{\text{TT}}}\right)^{\text{TT}} + \dot{\pi}_{\text{TT}} \left(\frac{\delta I}{\delta \pi_{\text{TT}}}\right)^{\text{TT}} + \dot{\pi}_{\text{TT}} \left(\frac{\delta I}{\delta \pi_{\text{TT}}}\right)^{\text{TT}} + \dot{\pi}_{\text{TT}} \left(\frac{\delta I}{\delta \pi_{\text{TT}}}\right)^{\text{TT}} \\ &+ \frac{1}{2} \left[\left(\frac{\delta I}{\delta \pi_{\text{TT}}}\right)^{\text{T}} \left(\frac{\delta I}{\delta \pi_{\text{TT}}}\right)^{\text{TT}} + \frac{1}{2} \left[\left(\frac{\delta I}{\delta \pi_{\text{TT}}}\right)^{\text{T}}\right]^{\text{TT}} \left(\frac{\delta I}{\delta \pi_{\text{TT}}}\right)^{\text{TT}} + \frac{1}{2} \left[\left(\frac{\delta \mu^{\text{int}}}{\delta \pi_{\text{TT}}}\right)^{\text{TT}} + (\text{total time derivative})_{1} \\ &+ \frac{1}{2} \left[\left(\frac{\delta \mu^{\text{int}}}{\delta \pi_{\text{TT}}}\right)^{\text{TT}} \left(\frac{\delta I}{\delta \pi_{\text{TT}}}\right)^{\text{TT}} + \frac{1}{2} \left[\left(\frac{\delta \mu^{\text{int}}}{\delta \pi_{\text{TT}}}\right)^{\text{TT}} + (\text{total time derivative})_{1} \\ &= \dot{h}^{\text{TT}} \left(\frac{\delta \mu^{\text{int}}}{\delta h^{\text{TT}}}\right)^{\text{TT}} + \pi_{\text{TT}} \left(\frac{\delta \mu^{\text{int}}}{\delta \pi_{\text{TT}}}\right)^{\text{TT}} + (\text{total time derivative})_{2}; \end{split}$$

6 using the property $\int A_{ij}^{TT} B_{ij} = \int A_{ij} B_{ij}^{TT} = \int A_{ij}^{TT} B_{ij}^{TT}$, one shows that

$$\begin{split} \frac{1}{2} \left\langle \int \dot{h}^{\text{TT}} S^{\text{TT}} \right\rangle &= \left\langle \int \left[\dot{h}^{\text{TT}} \left(\frac{\delta \mathcal{H}^{\text{int}}}{\delta h^{\text{TT}}} \right)^{\text{TT}} + \dot{\pi}_{\text{TT}} \left(\frac{\delta \mathcal{H}^{\text{int}}}{\delta \pi_{\text{TT}}} \right)^{\text{TT}} \right] \right\rangle \\ &= \left\langle \int \left(\dot{h}^{\text{TT}} \frac{\delta \mathcal{H}^{\text{int}}}{\delta h^{\text{TT}}} + \dot{\pi}_{\text{TT}} \frac{\delta \mathcal{H}^{\text{int}}}{\delta \pi_{\text{TT}}} \right) \right\rangle = \left\langle \frac{\partial}{\partial t} \mathcal{H}^{\text{int}} \right\rangle \end{split}$$

D-DIMENSIONAL RETARDED GREEN'S FUNCTION

• For the wave equation in D-dimensional Minkowski spacetime:

$$\Box \phi(t,\mathbf{x}) = S(t,\mathbf{x}),$$

the retarded Green's function G_{ret} fulfills equation

$$\Box G_{\rm ret}(t,{\rm x}) = \delta(t)\delta^d({\rm x}).$$

• Using the momentum representation and spherical coordinates in the *d*-dimensional k space, *G*_{ret} can be written as

$$G_{\rm ret}(t,{\rm x}) = -\frac{\Theta(t)}{(2\pi)^{(D-1)/2}} \frac{1}{r^{(D-3)/2}} \int_0^{+\infty} k^{(D-3)/2} J_{(D-3)/2}(kr) \sin(kt) {\rm d}k,$$

 $r := |\mathbf{x}|, J_{(D-3)/2}$ is a Bessel function, Θ is the Heaviside step function.

• The structure of G_{ret} depends on the parity of D. For even D,

$$G_{\rm ret}(t,\mathbf{x}) = \frac{1}{4\pi} \left(-\frac{1}{2\pi r} \frac{\partial}{\partial r} \right)^{(D-4)/2} \left(\frac{\delta(t-r)}{r} \right)$$

A New Formula for GW Luminosity

The formal retarded solution of the wave equation

$$\Box h_{ij}^{\mathsf{TT}} = S_{ij}^{\mathsf{TT}},$$

one expresses in terms of the retarded Green's function,

$$h_{ij}^{\mathsf{TT}}(t,\mathbf{x}) = \left(\int \!\mathrm{d}t' \!\int\!\mathrm{d}^d \mathbf{x}' \mathcal{G}_{\mathsf{ret}}(t-t',\mathbf{x}-\mathbf{x}') \mathcal{S}_{ij}(t',\mathbf{x}')
ight)^{\mathsf{TT}}$$

• This, after expanding $\delta(t-r)$ into the PN series (here $\delta denotes the nth derivative of the <math>\delta$),

$$\delta(t-r) = \sum_{n=0}^{\infty} \frac{r^n {n \choose n}}{n!} \delta(t),$$

is substituted into the expression $-\frac{1}{2} \left\langle \int d^d x \, \dot{h}_{ij}^{TT} S_{ij}^{TT} \right\rangle$.

After some manipulations one gets the final formula for "instantaneous" GW luminosity (here $S_{ij}^{(k+1)}$ denotes the (k + 1)th time derivative of the source S_{ij}):

$$\begin{split} \mathcal{L} &= \frac{1}{8\pi} \left(-\frac{1}{\pi} \right)^{(d-3)/2} \sum_{k=0}^{\infty} \frac{(-1)^k \Gamma(k+1)}{\Gamma(2k+2) \Gamma(k+\frac{5-d}{2})} \\ & \times \int \mathrm{d}^d x \int \mathrm{d}^d x' \big(|\mathbf{x}-\mathbf{x}'|^{2k-(d-3)} \big)^{\mathsf{TT}} \left\langle \begin{matrix} {}^{(k+1)} \\ S_{ij}(t,\mathbf{x}) \end{matrix} \begin{matrix} {}^{(k+1)} \\ S_{ij}(t,\mathbf{x}') \end{matrix} \right\rangle. \end{split}$$

Dissipative Matter ADM Hamiltonian and GW Luminosity

- REDUCED MATTER+FIELD HAMILTONIAN
- 4.5PN-Accurate Field Equations
- 3.5PN-accurate Dissipative Matter Hamiltonian and 1PN-accurate GW Luminosity

3) A New Formula for GW Luminosity

4 The Results

BIBLIOGRAPHY

The Results

- Leading-order (Newtonian) and 1PN-order GW luminosities recomputed.
- 2PN-order GW luminosity is being calculated.
- Work on including tail-related effects into GW luminosity is in progress.

Dissipative Matter ADM Hamiltonian and GW Luminosity

- REDUCED MATTER+FIELD HAMILTONIAN
- 4.5PN-Accurate Field Equations
- 3.5PN-accurate Dissipative Matter Hamiltonian and 1PN-accurate GW Luminosity

3) A New Formula for GW Luminosity

• The Results

5 Bibliography

BIBLIOGRAPHY 1/2 (GENERAL)

- M. Maggiore, Gravitational Waves, Oxford University Press;
 - Vol. 1: Theory and Experiments, Oxford 2008,
 - Vol. 2: Astrophysics and Cosmology, Oxford 2018.
- 2 S. Hassani, Mathematical Physics. A Modern Introduction to Its Foundations, 2nd ed., Springer, Cham 2013.
- 3 P. Jaranowski and A. Królak, Analysis of Gravitational-Wave Data, Cambridge University Press, Cambridge 2009.
- T. Damour, The problem of motion in Newtonian and Einsteinian gravity, in Three hundred years of gravitation (edited by S.W. Hawking and W. Israel), Cambridge University Press, Cambridge 1987, pp. 128–198.
- 5 T. Damour, The general relativistic two body problem, arXiv:1312.3505 [gr-qc].
- T. Futamase and Y. Itoh, The post-Newtonian approximation for relativistic compact binaries, Living Reviews in Relativity 10:2 (2007), https://doi.org/10.12942/lrr-2007-2.
- G. Schäfer and P. Jaranowski, Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries, Living Reviews in Relativity 27:2 (2024), https://doi.org/10.1007/s41114-024-00048-7.
- L. Blanchet, Post-Newtonian theory for gravitational waves, Living Reviews in Relativity 27:4 (2024), https://doi.org/10.1007/s41114-024-00050-z.

Bibliography 2/2

- T. Regge and C.Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Ann Phys (NY) 88:286–318 (1974).
- G.Schäfer, The gravitational quadrupole radiation-reaction force and the canonical formalism of ADM, Ann Phys (NY) 161:81 (1985).
- U.Blanchet and T.Damour, Tail transported temporal correlations in the dynamics of a gravitating system, Phys Rev D 37:1410 (1988).
- T.Damour and G.Schäfer, Redefinition of position variables and the reduction of higher order lagrangians, J Math Phys 32, 127 (1991).
- P.Jaranowski and G.Schäfer, Radiative 3.5 post-Newtonian ADM Hamiltonian for many-body point-mass systems, Phys Rev D 55:4712 (1997).
- T.Damour, P.Jaranowski, and G.Schäfer, Determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation, Phys Rev D 62:084011 (2000), arXiv:gr-qc/0005034.
- T.Damour, P.Jaranowski, and G.Schäfer, Dynamical invariants for general relativistic two-body systems at the third post-Newtonian approximation, Phys Rev D 62:044024 (2000), arXiv:gr-qc/9912092.
- T.Damour, P.Jaranowski, and G.Schäfer, Poincaré invariance in the ADM Hamiltonian approach to the general relativistic two-body problem, Phys Rev D 62:021501(R) (2000), arXiv:gr-qc/0003051; Erratum: Phys Rev D 63:029903(E) (2000).
- T.Damour, P.Jaranowski, and G.Schäfer, Dimensional regularization of the gravitational interaction of point masses, Phys Lett B 513:147 (2001), arXiv:gr-qc/0105038.
- D.Bini and T.Damour, Analytical determination of two-body gravitational interaction potential at the fourth post-Newtonian approximation, Phys Rev D 87:121501(R) (2013), arXiv:1305.4884.
- T.Damour, P.Jaranowski, and G.Schäfer, Nonlocal-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems, Phys Rev D 89:064058 (2014), arXiv:1401.4548.
- P.Jaranowski and G.Schäfer, Derivation of local-in-time fourth post-Newtonian ADM Hamiltonian for spinless compact binaries, Phys Rev D 92:124043 (2015), arXiv:1508.01016.
- I.Damour, P.Jaranowski, and G.Schäfer, Conservative dynamics of two-body systems at the fourth post-Newtonian approximation of general relativity, Phys Rev D 93:084014 (2016), arXiv:1601.01283.