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@ BACKGROUND AND OUTLINE OF THE PROJECT,
ITS MOTIVATION AND GOALS



BACKGROUND AND OUTLINE (1/2)

We consider a system of two point masses (i.e. monopolar, pointlike bodies),
which interact gravitationally according to general relativity theory.

Spin- and tidal-related effects will not be discussed here (but these effects can be
and have been added to the formalism).

We model point masses by means of Dirac ¢ distributions.
We employ the ADM canonical formalism in D = d + 1 spacetime dimensions.

We work in asymptotically flat D-dimensional spacetime
and use asymptotically Minkowskian reference frame.

All calculations are done within the post-Newtonian (PN) approximation:
Oth order—Newtonian gravity;
nPN order—corrections to the Newtonian gravity of order
(v>2n Gm\"
c rc2 )

d-sources lead to ultraviolet (UV) divergences, i.e., divergences at the locations
of the particles. We control them by means of dimensional regularization (DR).

PN expansion of the retardations in the field functions (which is essentially
a near-zone expansion) lead to infrared (IR) divergences.




BACKGROUND AND OUTLINE (2/2)

We treat differently conservative and dissipative sections of dynamics:

to solve (perturbatively) equations for the field degrees of freedom,

we use time-symmetric (half-retarded half-advanced) Green's function for
conservative dynamics, and retarded Green's function for dissipative dynamics.

The following conservative Hamiltonians were uniquely calculated:
at Newtonian, 1PN, 2PN, 3PN, and 4PN orders (at 3PN and 4PN
by Damour/Jaranowski/Schafer in 2001 and 2014, respectively);
dissipative Hamiltonians were computed at 2.5PN and 3.5PN orders
(by Jaranowski/Schafer in 1997).

For conservative dynamics, near-zone IR divergences show up at the 4PN order,
they are linked to nonlocal-in-time tail effects and were analytically regulated
using a new (i.e., different from DR-related one ¢y, Gp = GNng3) length scale.
The result of regularization was ambiguous and the ambiguity was resolved by
using a beyond-near-zone information (delivered by gravitational self-force
approach).

For dissipative dynamics, IR divergences are not an issue at 2.5PN, 3.5PN,
and 4.5PN orders (but they will be an issue for the higher orders).

From 2.5PN and 3.5PN dissipative Hamiltonians one can deduce (and it was
done) the leading-order (Newtonian) and 1PN formulae for GW luminosities.

In this report, we propose a new formula for calculating GW luminosities that
does not require finding an explicit form of dissipative Hamiltonians.

Using the new formula we calculated Newtonian and 1PN GW luminosities,
calculation of GW luminosity at the 2PN order is in progress (2PN-order
GW luminosity can also be derived from 4.5PN dissipative Hamiltonian).




'S FROM INSPIRALLING BINARY ON CIRCULAR ORBITS

The dimensionless GW strain measured by the laser-interferometric detector,
induced by gravitational waves from coalescing compact binary made of
nonspinning bodies in circular orbits during the inspiral phase:

h(t) = g[é(t)}w sin [26(t) + ],

where ¢(t) is the orbital phase of the binary [¢(t) := dﬁ(tt) is the angular frequency],

D is the luminosity distance of the binary to the Earth (C and a are some constants).

The time evolution of the orbital phase ¢(t) is computed from the balance equation
(E—binding energy, L—GW luminosity):

1E
S = $=9()
dt

where both sides are calculated within the PN approximation (the dates: for

energies—the first complete and correct derivations of equations of motion at a given PN order;

for luminosities—often the dates of the first derivation of formula valid only for circular orbits):
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4.5PN-ACCURATE BINDING ENERGY IN THE CENTER-OF-MASS FRAME

FOR CIRCULAR ORBITS

Notation:
mim
masses of the bodies: my, my, M = my + my, = ;\/I 2’
mym 1
=L T g<p<—;
M (m1+ mp)? 4
GMd)2/3
%= % (dimensionless PN parameter for circular orbits).
G

Binding energy of two-point-mass system in circular orbits:

ne2x 2 3 448 A 5
E(x,v) = — <1 +e1pn (1) x + eapn () X + egp (1) X + (eapn(v) + Eu\nx) x* +o(x )),
o) 31 o 27 19 1 g
@ v)=——- — —V, e v)=——+ —v — —v
1PN 4 12 2PN 8 8 24
675 34445 205 , 155 , 35 4
E3PN(1/):—f+(7——7r)u——u—71/,
64 576 96 96 5184
© 3069 123671 9037 896( | )
E4PNV:—7+(7 — +*2n2+’yE)u
128 5760 1536 15
498449 3157 301 77
+(7 +—7r2> [ty v
3456 576 1728 31104

(g is the Euler's constant).
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SHORT-TERM GOALS

Higher-PN-order perturbative solutions of two-body problem are complicated,
both from computational and from conceptual point of view. Therefore it is
highly desired to have more than one independent derivation of any analytical
result: making independent derivation within the ADM Hamiltonian approach of
GW luminosities of two-point-mass system

at the N, 1PN, 1.5PN, 2PN, 2.5PN, 3PN, 3.5PN, 4PN, and 4.5PN order.

Recompute and regularize IR divergences in the 4PN two-point-mass ADM
Hamiltonian, without usage of gravitational self-force results.

LoNG-TERM GOALS

Completion of computations of 5PN, 5.5PN, 6PN, ... EOM of two-point-mass
systems together with computation of GW luminosities at 5PN, 5.5PN, 6PN,
...orders, and construction of >5PN-accurate templates for inspiralling compact
binaries.

Computation, within the PN framework, higher-order spin-dependent effects and,
in the case of binaries containing neutron stars, higher-order tidal corrections,
both in conservative dynamics and in GW luminosities.
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Spacetime coordinates: x% =ct, x=(x!,...,x9).

Particle labels:  a,b € {1,2},

masses of the particles: ma,

position vectors of the particles: x5 = (xL,...,x9),
linear momentum vectors of the particles:  p, = (pa1, ..., Pad)-

r 2
For any d-vectors v = (v!,...,v9) and w = (w?,..., w9):

v-w::SUviM/j, [v] :=+/v-v.
Ia=X—Xa, Fra:=]|ra|, Na:=Tas/la;

for a# b: Tap :=Xa —Xp, Fab = [Tap|, Map := Tap/rap.

Units: quite often ¢ = 1 and Gp = 1/(167).




A (d + 1)-SPLITTING OF SPACETIME METRIC g,

ds® = guudxtdx” = —(Ndt)? + y;(dx’ + N dt)(dxd + M dt),
where N and N’ are respectively lapse and shift functions,
vi =g Ni=(=g®)7V%, N =+IN; with N =g,
here v is the metric inverse to v (vivy) = 5;()
7y := det(v;);

lowering and raising of spatial indices is with ;;.

CANONICAL MATTER+FIELD VARIABLES

Canonical matter variables:

Xa = (X;,...,Xg),
P, = (p317 ey Pad)y
Canonical field variables:
Yij = 8ij»

= (KT — Iy Ky),

Kijj is the extrinsic curvature of the hypersurface t = const.




@ The full Einstein field equations in D dimensions in an asymptotically flat
space-time and in an asymptotically Minkowskian coordinate system
are derivable from the Hamiltonian

H[xa, P, vijs 0, N, N'] = /ddx (NH — N'H;) + 7{0 d7S; (i — vk,
- I

i% denotes spacelike infinity and d9=1S; is the (d — 1)-dimensional
out-pointing surface element there.

@ The super-Hamiltonian H and super-momentum 7; are defined as follows:
H(xa,p,, 755, 77) 1= VAN (T® —26%)
Hi(xa, 5, 7> 70) 1= VAN (TP = 2G7) .

where TH” and GH¥ denote the energy-momentum and the Einstein tensor,
respectively,

-

The lapse and shift functions are Lagrangian multipliers and deliver the Hamiltonian
and momentum constraint equations of the Einstein theory,

H=0, H;=0.




2-POINT-MASS ENERGY-MOMENTUM TENSOR

Source terms for the constraint equations are derived from the 2-point-mass
energy-momentum tensor

T8 (x) —Z / %ud;—agw‘sd“(xkﬁﬂn))dn,

T, is the proper time along the world line x* = £4'(75) of the ath particle,
and ug ;= d&g/dTa.

CONSTRAINT EQUATIONS FOR 2-POINT-MASS SYSTEMS

@ The constraint equations:

1 ;i ) /
\/’?R_ﬁ (%kWNT g ( J > Z Wapa:Paj‘sz(sd(X_X

2
. . .
72Dj7ru = Z '\I'.Iajpaj d (X - Xa)7
a=1
R is the spatial scalar curvature of the hypersurface t = const,
D; is the spatial d-dimensional covariant derivative
(acting on a tensor density of weight one),
~d = ’yﬁjeg(xa) is perturbatively unambigously defined and finite
(at least up to the 4.5PN order).




FIXING THE GAUGE: ADMTT GAUGE (1/2)

@ The ADM Transverse-Traceless (TT) gauge:
d—2 4/(d—2) .
Vij = (1+m¢) 5,-j+h5T, 7" =0,
where h1T =0 and Djh;T =0.
@ Splitting of the field momentum:
nl = 7F(VF) + 7,
. . 2
(V) =0V + 9,V — 5 85U o VK,

- P/
where i = 0 and 9;71 = 0.

The super/subscript TT denotes the application of the d-dimensional
(spatially nonlocal) TT-projection operator:

T TTH
fi =05 fu,

TTkl 1 1
where 6’! = 5(6,';(6]‘/ + 6,‘/6jk) — 7d — 15,'1'61(/
1 _
= 5(5,—;(8,-8/ + 8j;0i0k + 6i10;0k + 0 0;0;)A !

1 _ d—2 _
+ = (50401 + 3ui0)) A Ty —— 00000 23




FIXING THE GAUGE: ADMTT GAUGE (2/2)

Asymptotic behavior for r — oo:

b~ R Vi~ 1 TT 1 Al 1
rd—2’ d—2> M =2 T o1

A PERTURBATIVE SOLVING OF THE CONSTRAINTS

@ ¢ and V' are expressed in terms of (xa,Pp,, h}T, naj_.r) by a perturbative solving of
the constraint equations—this is done by the PN expansion of the constraints

together with the PN expansion of the functions ¢ and V'’
(the numbers within parentheses denote the order in the inverse velocity of light,

eg 9 ~ O(c™?)):
¢ =@ +da)t o6+ V":V("3)+v("5)+.._




REDUCED MATTER+FIELD ADM HAMILTONIAN

@ If the constraint equations and the gauge conditions are both satisfied,
the total matter+field Hamiltonian can be written in its reduced form:

Hieq [Xenpgvh,‘T' TTT = Z /ddX AO Xa P, hTT W"JFTJ

@ The equations of motion for the particles:

. oH, . OH,
Po= = = (3=1,2),
0X, op,
Evolution equations for the field degrees of freedom:
ghTT_ TTkléHred a U _ 5TTU OHyed
or0 T O Gk e 1T M pTT

@ There is no involvement of lapse and shift functions in the equations of motion
and in the field equations for the independent degrees of freedom.
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@ For computing 2PN-order GW luminosity one needs to use field equations which
follow from the 4.5PN-accurate reduced Hamiltonian:

Hrgeif)PN[xavpmhuTvﬂ-U ]7 /d X h<45PN[X_xaapavh " 71'-‘I|J'T
where
h<45PN[x _Xa,pa, ,j 17r ] = Zma5d(x _Xa) +h (X_ Xapa)
+ by (x — Xa,P,) + bg) (X — Xa, P, h] ) + baoy (X — Xa, 0, b, i)

+ B12)[x — Xa, Pa, h,'JT 7#1-]
@ For this Hamiltonian the field equations take the form

hTT 5TTk/ Oh<4.5PN + O(C—g)7

ot
i [ 6h<aspN Oh<4.5PN 9h<4.5PN _
il = —5TT'J{ = - + (== +0(c71).
TT Kl ST anr ) O




FIELD EQUATIONS (2/3)

@ More explicitly (we display only leading-order and next-to-leading-order terms),

2(d —2) . _
TT TTkI kl skl 7
ij TR [ 1 1T
1T = =0 55(4)14 = EAhk’ + Bey
ot (AR + A (semT) ) b+ o).
2(d—1)
@ By combining these two equations one gets the equation for h;T,
OhiT =57, O:=-07+A4,
where the source term is

2(d —2)

SI;I"T — 5;Tk1{5(4)k, + 2B(6)k, + —3

n T <¢( JARTT + A<¢(2)hLT)) } +0(c78).

@ After solving field equation for h,.T.T one can obtain 7r.'{_.|_:

ij Lipr  d—=2 17y ~ kl
wlly = SHIT + S 8T (st ) + O(c 7).




FIELD EQUATIONS (3/3)

@ After making the PN expansion of the formal retarded solution of the field
equation, one gets (conservative dynamics does not depend on the functions
marked in red)

TT _ pTT o pTT o pTT 1T -8
hi" = by + his)y; + ey + hy; + O0(e™),
rir = 2l + 75 + 0.

@ The PN expansion of the retardations in the field functions
leads to new functions which diverge for r — oo:

hij(t — r,n) 1
TT _ hjj )
() = PR o 1

rd—2 rd—1
hj(t,m) s g 1y L 1
= I:’d_2 7h/‘j(t,ll)l’ +§hij(t7n)r4 +"'+O(rd_1>~

This is the source of infrared near-zone divergences.
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URATE DISSIPATIVE MATTER HAMILTONIAN (1/2)

@ More detailed and refined treatment can be found in Section 3 of 2024
Schafer/Jaranowski Living Reviews in Relativity article.

@ The split of the total reduced Hamiltonian:
red TT _ij 1 _ pymatter int TT __ij
H§3.5PN[X37Pa7hr'j Tl = H§3.5PN(X37pa) + H§3.5PN[X37pavhij » TTT
field TT _ij
+ Hspn by 711l

@ We define a new Hamiltonian ﬁ§3.5pN, which is the Hamiltonian H<3spn
after dropping its field part,

] .__ pymatter int
H<zspn i= HZ55pNn + HS35pn-




3.5PN-ACCURATE DISSIPATIVE MATTER HAMILTONIAN (2/2)

@ The Hamiltonian ﬁ§3'5pN can be decomposed into
conservative and dissipative parts:

FISSASPN(Xavpav t) = HSpn (%2, P, 1) + Hg%ésPN(xazpa’ t),
where
HZ3pN (X2, Doy 1) 1= HRP (%2, ,) + HIER (%2, P,)
+ H3E (xa, p,) + Hn [xa, 0, 1T ()]
+ HEEY (x5, p,) + Hyiy [xa, B0 1T (1), 7 (1)),

Hg?’;SSPN(Xa’pa’ ) *HQ 5PN[X3’pa’ ij (t) 7r (t)]

+ HYton[Xa, Do ,'J'T(t) 7rTT(f)]




1PN-AcCURATE GW LUMINOSITY

The instantaneous energy loss of the matter system due to the GW emission is
defined as

i
QS;SPN(t) = <|535.5PN (xa;Pa» t) -

2PN and 3PN interaction Hamiltonians do not contribute to dissipation,
because one can show that

HiRt\ (X2, P,y t) = total time derivative,

at
0 it . -
¢ 3PN (xa,p,, t) = total time derivative.

GW luminosity of the matter system is the time average of the instantaneous
energy loss:

ins 0 iss
L<35pPN ::< §3t.5PN(t)> < )tHd<3 5pN(Xa; Pa» )>’

where (---) denotes time averaging over one period of the motion.

This formula was applied to derive, at the leading (Newtonian) and 1PN orders,
to derive GW luminosity of the two-point-mass system in quasi-elliptical motion.
This was a direct derivation of the leading-order/next-to-leading-order GW
luminosities (not assuming that the balance equation holds).




© A New FormurA FOR GW LUMINOSITY



LIARY FORMULA FOR G

9 in if 1 ' I
<0tH t[Xa,pa,h}T(t),’/‘T-{-T(t)J> = </ d9x hgTS,-jT-T>

Proof (we mostly omit indices, arguments and integration measures).

TT 2 2 TT ¢ TT tt
Q@ Hua= / [;(”ij,k) +(n7) ] A )+ H ™ (xa, pay by ) + T (x, pg):

- SHyeg \TT 51 \TT sHint\ TT
h = — =2m7 + + N
SmrT SmrT SmrT
) SHeg\TT 1 51 \TT sHint\ TT
T = — = —-Ah  — — H
ShTT 2 ShTT ShTT
P s \1TT sHint) 17T
h'" =27 + +
ST ST
o 51 \TT sHint\ TT S0 \-1TT sHint\ 17T
= Ah 2 -2 +
ShTT ShTT Smrr Smrr

i TT i . TT
) s \TT SHint s1 \-1TT SHint
DhTT:—hTYJrAhTY:Z( ) +2 7[< )] -
ShTT ShTT St St




o using the property fAITjTB--

(%) ]:(thijﬁi K«sm) ] ( Hint)TT
()] =)

o [(SHMENTT sHint\ TT
=h - + T +(total time derivative)y;
ShTT ST

1 SHInt\ T SHint T
+ (total time derivative);
2 St St

i = [ ABLT = [ ATTBIT, one shows that
int

}</"’TTSTT> _ / T SH

2 ShTT

(-

SHint
SHTT

1 (suint\TT
SR —— - (total time derivative)
2 St
TT e\ TT
SHint
+irrr + 7T (| ——
ShTT ) ( ST ) < )

(=)

ST

ST

TT SHINt\TT
+ o | ——
STt
SHint )
" ) > - < " >
STt at




D-DIMENSIONAL RETARDED GREEN’S FUNCTION

@ For the wave equation in D-dimensional Minkowski spacetime:
Oo(t,x) = S(t,x),
the retarded Green's function Gyt fulfills equation
OGre(t,x) = 8(1)5% (x).

@ Using the momentum representation and spherical coordinates
in the d-dimensional k space, Gret can be written as

o(t) L too (D-3)2 ,
Gret(tvx) = - (27T)(D71)/2 AD—3)/2 /0 k¢ )/ J(D,3)/2(kr) Sln(kf)dk7
r:=|x, J(D_3)/2 is a Bessel function, © is the Heaviside step function.

@ The structure of Gret depends on the parity of D. For even D,

E: )fi<,iﬁ>”’“/2<5(f*f)>
i = 47 27r Or r '




A NEwW FORMULA FOR GW LUMINOSITY

@ The formal retarded solution of the wave equation
TT TT
Oh;' =S; ",

one expresses in terms of the retarded Green's function,
TT
b (t,%) = (/dt'/ddx’G,et(t —tlx— x’)SU(t’,x’)) .

@ This, after expanding §(t — r) into the PN series (here 3 denotes the nth derivative of the &),

oo

6(t—r)*Z—5(t)

n=0

is substituted into the expression f% <fddx h;TSI}—T>.

After some manipulations one gets the final formula for “instantaneous” GW

(k+1)
luminosity (here S; denotes the (k + 1)th time derivative of the source S;):

1 <7l>(d N2 (=1)kr(k+1)
(2K +2)M(k + 259)

}1) (k+1)
/dd /dd "(lx —x =le= 3))TT<5 (¢, )S,j(t,x’)>.

™




© THE RESULTS



@ Leading-order (Newtonian) and 1PN-order GW luminosities recomputed.

@ 2PN-order GW luminosity is being calculated.

@ Work on including tail-related effects into GW luminosity is in progress.
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