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Introduction

Near gravitational singularities general relativity (GR) breaks down
(curvature and matter field invariants diverge). It is believed that taking
into account quantum effects may lead to regular theory called
quantum gravity (QG).

Struggle for the construction of QG lasts more than 50 years; it turns
out to be enormously difficult issue. There are a few candidates
pretending to meet the problem: string theory, loop quantum gravity,
causal dynamical triangulations, integral quantization (to be used
in my talk), and others.

One of the main sources of difficulties:
lack of experimental data on extremal gravitational fields to be used
in reducing the freedom of mathematical structures underlying
constructed QG theories.
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Introduction (cont)

Hope to get some useful information for the construction of QG
from recent astrophysical observations

detection of gravitational waves from binary black hole (BH)
mergers: waves from inspiral, merger and ringdown phases
of remnant BH
detection of shadows of trapped photons performing motion
around massive stars with BHs inside1

We expect that the comparison of our quantum description of
shadows, done within the integral quantization (IQ) scheme, with
observed shadows of BHs may

impose some constraints on our method to reduce its ambiguity
indicate some modifications of the method to be made to fit better
the data

1Shadows of supermassive BHs: Messier 87⋆ and Saggittarius A⋆ discovered by
Event Horizon Telescope Collaboration in 2019 and 2022, respectively.
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Geodesics in Minkowski spacetime: preliminaries
Hamiltonian H describing the geodesic motion of test particle reads

H =
1
2

gµνpµpν . (1)

Causal geodesics satisfy the constraint: H = −1/2 m2, where
m > 0 corresponds to the timelike geodesics of a particle with rest mass m,
m = 0 concerns the null geodesics of a photon.
Hamilton’s equations lead to standard geodesic equations.
gµν = gµν is the Minkowski metric with the signature (−,+,+,+), so that we have
gµνpµpν = −p2

0 + p2
1 + p2

2 + p2
3 . The four momenta are defined as

−p0 = p0 = dx0/ds̃, pn = pn = dxn/ds̃, n = 1, 2, 3, where xµ are the metric
coordinates, and s̃ is an affine parameter related with the proper time s of the test
particle by s̃ = s/m.
The canonical variables pµ and xν define the phase space
F := {(pµ, xµ) : µ = 0, 1, 2, 3} ⊆ R4 × R4,
which is cotangent bundle T ∗M of Minkowski spacetime (M, g).
Solution to Hamilton’s equations reads:
pµ = const , xµ = pµs̃, µ = 0, 1, 2, 3; xµ = 1

m pµ s for timelike geodesics.
In numerical calculations we apply the Planck units by setting c = 1 = G = ℏ,
which renders the element {xµ, pµ,m} dimensionless.

Włodzimierz Piechocki (NCBJ) Semiclassical Causal Geodesics Kazimierz Dolny, 18/09/2024 6 / 19



Geodesics in Minkowski spacetime: preliminaries
Hamiltonian H describing the geodesic motion of test particle reads

H =
1
2

gµνpµpν . (1)

Causal geodesics satisfy the constraint: H = −1/2 m2, where
m > 0 corresponds to the timelike geodesics of a particle with rest mass m,
m = 0 concerns the null geodesics of a photon.
Hamilton’s equations lead to standard geodesic equations.
gµν = gµν is the Minkowski metric with the signature (−,+,+,+), so that we have
gµνpµpν = −p2

0 + p2
1 + p2

2 + p2
3 . The four momenta are defined as

−p0 = p0 = dx0/ds̃, pn = pn = dxn/ds̃, n = 1, 2, 3, where xµ are the metric
coordinates, and s̃ is an affine parameter related with the proper time s of the test
particle by s̃ = s/m.
The canonical variables pµ and xν define the phase space
F := {(pµ, xµ) : µ = 0, 1, 2, 3} ⊆ R4 × R4,
which is cotangent bundle T ∗M of Minkowski spacetime (M, g).
Solution to Hamilton’s equations reads:
pµ = const , xµ = pµs̃, µ = 0, 1, 2, 3; xµ = 1

m pµ s for timelike geodesics.
In numerical calculations we apply the Planck units by setting c = 1 = G = ℏ,
which renders the element {xµ, pµ,m} dimensionless.

Włodzimierz Piechocki (NCBJ) Semiclassical Causal Geodesics Kazimierz Dolny, 18/09/2024 6 / 19



Geodesics in Minkowski spacetime: preliminaries
Hamiltonian H describing the geodesic motion of test particle reads

H =
1
2

gµνpµpν . (1)

Causal geodesics satisfy the constraint: H = −1/2 m2, where
m > 0 corresponds to the timelike geodesics of a particle with rest mass m,
m = 0 concerns the null geodesics of a photon.
Hamilton’s equations lead to standard geodesic equations.
gµν = gµν is the Minkowski metric with the signature (−,+,+,+), so that we have
gµνpµpν = −p2

0 + p2
1 + p2

2 + p2
3 . The four momenta are defined as

−p0 = p0 = dx0/ds̃, pn = pn = dxn/ds̃, n = 1, 2, 3, where xµ are the metric
coordinates, and s̃ is an affine parameter related with the proper time s of the test
particle by s̃ = s/m.
The canonical variables pµ and xν define the phase space
F := {(pµ, xµ) : µ = 0, 1, 2, 3} ⊆ R4 × R4,
which is cotangent bundle T ∗M of Minkowski spacetime (M, g).
Solution to Hamilton’s equations reads:
pµ = const , xµ = pµs̃, µ = 0, 1, 2, 3; xµ = 1

m pµ s for timelike geodesics.
In numerical calculations we apply the Planck units by setting c = 1 = G = ℏ,
which renders the element {xµ, pµ,m} dimensionless.

Włodzimierz Piechocki (NCBJ) Semiclassical Causal Geodesics Kazimierz Dolny, 18/09/2024 6 / 19



Geodesics in Minkowski spacetime: preliminaries
Hamiltonian H describing the geodesic motion of test particle reads

H =
1
2

gµνpµpν . (1)

Causal geodesics satisfy the constraint: H = −1/2 m2, where
m > 0 corresponds to the timelike geodesics of a particle with rest mass m,
m = 0 concerns the null geodesics of a photon.
Hamilton’s equations lead to standard geodesic equations.
gµν = gµν is the Minkowski metric with the signature (−,+,+,+), so that we have
gµνpµpν = −p2

0 + p2
1 + p2

2 + p2
3 . The four momenta are defined as

−p0 = p0 = dx0/ds̃, pn = pn = dxn/ds̃, n = 1, 2, 3, where xµ are the metric
coordinates, and s̃ is an affine parameter related with the proper time s of the test
particle by s̃ = s/m.
The canonical variables pµ and xν define the phase space
F := {(pµ, xµ) : µ = 0, 1, 2, 3} ⊆ R4 × R4,
which is cotangent bundle T ∗M of Minkowski spacetime (M, g).
Solution to Hamilton’s equations reads:
pµ = const , xµ = pµs̃, µ = 0, 1, 2, 3; xµ = 1

m pµ s for timelike geodesics.
In numerical calculations we apply the Planck units by setting c = 1 = G = ℏ,
which renders the element {xµ, pµ,m} dimensionless.

Włodzimierz Piechocki (NCBJ) Semiclassical Causal Geodesics Kazimierz Dolny, 18/09/2024 6 / 19



Geodesics in Minkowski spacetime: preliminaries
Hamiltonian H describing the geodesic motion of test particle reads

H =
1
2

gµνpµpν . (1)

Causal geodesics satisfy the constraint: H = −1/2 m2, where
m > 0 corresponds to the timelike geodesics of a particle with rest mass m,
m = 0 concerns the null geodesics of a photon.
Hamilton’s equations lead to standard geodesic equations.
gµν = gµν is the Minkowski metric with the signature (−,+,+,+), so that we have
gµνpµpν = −p2

0 + p2
1 + p2

2 + p2
3 . The four momenta are defined as

−p0 = p0 = dx0/ds̃, pn = pn = dxn/ds̃, n = 1, 2, 3, where xµ are the metric
coordinates, and s̃ is an affine parameter related with the proper time s of the test
particle by s̃ = s/m.
The canonical variables pµ and xν define the phase space
F := {(pµ, xµ) : µ = 0, 1, 2, 3} ⊆ R4 × R4,
which is cotangent bundle T ∗M of Minkowski spacetime (M, g).
Solution to Hamilton’s equations reads:
pµ = const , xµ = pµs̃, µ = 0, 1, 2, 3; xµ = 1

m pµ s for timelike geodesics.
In numerical calculations we apply the Planck units by setting c = 1 = G = ℏ,
which renders the element {xµ, pµ,m} dimensionless.

Włodzimierz Piechocki (NCBJ) Semiclassical Causal Geodesics Kazimierz Dolny, 18/09/2024 6 / 19



Geodesics in Minkowski spacetime: preliminaries
Hamiltonian H describing the geodesic motion of test particle reads

H =
1
2

gµνpµpν . (1)

Causal geodesics satisfy the constraint: H = −1/2 m2, where
m > 0 corresponds to the timelike geodesics of a particle with rest mass m,
m = 0 concerns the null geodesics of a photon.
Hamilton’s equations lead to standard geodesic equations.
gµν = gµν is the Minkowski metric with the signature (−,+,+,+), so that we have
gµνpµpν = −p2

0 + p2
1 + p2

2 + p2
3 . The four momenta are defined as

−p0 = p0 = dx0/ds̃, pn = pn = dxn/ds̃, n = 1, 2, 3, where xµ are the metric
coordinates, and s̃ is an affine parameter related with the proper time s of the test
particle by s̃ = s/m.
The canonical variables pµ and xν define the phase space
F := {(pµ, xµ) : µ = 0, 1, 2, 3} ⊆ R4 × R4,
which is cotangent bundle T ∗M of Minkowski spacetime (M, g).
Solution to Hamilton’s equations reads:
pµ = const , xµ = pµs̃, µ = 0, 1, 2, 3; xµ = 1

m pµ s for timelike geodesics.
In numerical calculations we apply the Planck units by setting c = 1 = G = ℏ,
which renders the element {xµ, pµ,m} dimensionless.

Włodzimierz Piechocki (NCBJ) Semiclassical Causal Geodesics Kazimierz Dolny, 18/09/2024 6 / 19



Integral quantization

A general idea of this quantization requires the existence of one-to-one
transformation of the space of elementary variables (extended
configuration or phase space) of a physical system under
consideration onto some group G.

The group G should have an unitary irreducible representation in a
carrier Hilbert space K, which enables to construct the space of
coherent states in K.

In what follows we use the Heisenberg-Weyl group, HW (N), which is
known to have the unitary irreducible representation in the Hilbert
space L2(RN ,dNξ), where dNξ := dξ0 dξ1 . . . dξN−1.
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Unitary representation of the HW (N) group

The unitary irreducible representation of the group HW (N) on the
Hilbert space K := L2(RN ,dNξ) is defined as follows

Û(p, x)ψ(ξ) = exp

(
−ipµxµ

2ℏ

)
exp

(
ipµξ

µ

ℏ

)
ψ(ξ − x) , (2)

where ψ(ξ) := ⟨ξ|ψ⟩ ∈ K.
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Coherent states quantization

The coherent states, |p, x⟩ ∈ K, are defined as follows

|p, x⟩ = Û(p, x)|Φ0⟩, ⟨ξ|p, x⟩ = Û(p, x)⟨ξ|Φ0⟩ = Û(p, x)Φ0(ξ) . (3)

where Φ0(ξ) : RN → C is the so-called fiducial vector;
|Φ0⟩ ∈ K such that ⟨Φ0|Φ0⟩ = 1.
The fiducial vector is a sort of parameter of the coherent states
quantization (see next talk by Ola).

Since the representation is irreducible, the operators
|p, x⟩⟨p, x | : K → K satisfy

(2πℏ)−N
∫
R2N

dρ(p, x) |p, x⟩⟨p, x | = Î , (4)

where dρ(p, x) := dp0 dp1 . . . dpN−1 dx0 dx1 . . . dxN−1,
so that we have the resolution of the unity operator in K.
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Coherent states quantization (cont)

Eq. (4) can be used for mapping (quantization) of almost any classical
observable f : R2N → R onto an operator f̂ : K → K as follows

f −→ f̂ := (2πℏ)−N
∫
R2N

dρ(p, x)|p, x⟩f (p, x)⟨p, x | . (5)

The mapping (5) leads to symmetric operator, and if the classical
observable f (p, x) is either bounded or integrable function,
L1(R2N ,dρ(p, x)), the mapping (5) defines self-adjoint operator.

If f̂ is not self-adjoint, the problem can be solved, e.g., by making use
of the so-called theory of positive operator valued measure, POVM.
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Spectrum of quantum Hamiltonian

Classical Hamiltonian of a test particle reads

H =
1
2

gµνpµpν = −
1
2

m2 . (6)

Quantum Hamiltonian Ĥ, due to (5), has the form

Ĥ = (2πℏ)−4
∫
R8

dρ(p, x)|p, x⟩H(p, x)⟨p, x | . (7)

One can show that the functions defined as

ηp(ξ) = ⟨ξ|ηp⟩ :=
(

1
√

2πℏ

)4
exp(i

p ξ

ℏ
) , (8)

where p ξ := pµξµ, with µ = 0, 1, 2, 3, are generalized eigenstates of Ĥ,
defined by (7), if

|p, x⟩ are generated from a suitably chosen fiducial vector |Φ0⟩
pµ satisfy specific constraint
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Spectrum of quantum Hamiltonian (cont)

The key element is making use of the orthogonal decomposition of the unity in the carrier space
K in terms of the generalized states (8), which reads∫

R4
d4p |ηp⟩⟨ηp| = Î . (9)

The validity of (9) results from the theory of Fourier transforms in the context of distributions.

One can show that the eigenvalue problem for the Hamiltonian (7) reads

(∫
R4

d4p |Φ̃0(p)|2
)

gαβkαkβ +

(∫
R4

d4p pβ |Φ̃0(p)|2
)

2gαβkα

+

∫
R4

d4p gαβpαpβ |Φ̃0(p)|2 = −m2 , (10)

where Φ̃0(p) is the Fourier transform of some fiducial vector Φ0(p).

One can simplify (10) by suitable choice of that fiducial vector.
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Spectrum of quantum Hamiltonian (cont)

Choosing the fiducial vector in the form of the 4D harmonic oscillator ground state
wave function

Φ0(ξ) =
3∏

µ=0

(
λµ

πℏ

) 1
4
exp

(
−
λµ(ξµ)2

2ℏ

)
(11)

with λ0 = 3λ1 and λ1 = λ2 = λ3 > 0, enormously reduces (10).
It turns out that the functions (8) are the eigenstates of the Hamiltonian (7) if

gαβpαpβ = −m2 . (12)

which is quite similar to the relationship satisfied by the classical momenta.

The quantum Hamiltonian Ĥ has two infinitely many degenerate eigenvalues:
m > 0 corresponding to a particle, and m = 0 describing a photon.
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Spectrum of quantum Hamiltonian (cont)
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Transition amplitudes
We define the mass layer, Jm,ϵ, of thickness ϵ for a test particle m ≥ 0 as follows

Jm,ϵ :=

{
p : −

√
m2 + p⃗2 + ϵ ≤ p0 ≤ −

√
m2 + p⃗2, p⃗ ∈ R3

}
, (13)

to be used as a subsidiary set that will enable introducing well defined transition amplitudes.
Final results will be obtained by taking the limit ϵ → 0, which would lead to the commonly used
notion of mass shell. Our construction of the layer is based on one of the solutions to the
equation gαβpαpβ = −m2, which is compatible with the choice of the metric signature
(−,+,+,+) and the orthochronous part of the Lorentz group.
The operator projecting onto the mass layer (13) are constructed from the generalized
eigenstates of the test particle Hamiltonian as follows

PJm,ϵ :=

∫
R4

d4p |ηp⟩χ(p ∈ Jm,ϵ)⟨ηp| , (14)

where χ(p ∈ Q) = 1 iff the relationship Q is satisfied or equals 0 otherwise.
The transition amplitude of the particle of mass m ≥ 0 from the state |p′x ′⟩ to the state |p′′x ′′⟩
is given by the following matrix element of the projection operator

Am,ϵ := ⟨p′′, x ′′|PJm,ϵ |p
′, x ′⟩ . (15)
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Transition amplitude (cont)

One can find that the transition amplitude is given by

Am,ϵ = exp(i
p′ x ′ − p′′ x ′′

2ℏ
)B
∫
R3

dp1dp2dp3

∫
R

dp0 χ(p ∈ Jm,ϵ) (16)

· exp
(

i
ℏ

p0(x ′′0 − x ′0)− 1
ℏλ0

(p0 − p̄0)
2
)
exp

(
i
ℏ

p⃗(x⃗ ′′ − x⃗ ′)− 1
ℏλ3

(p⃗ − ⃗̄p)2
)

.

where

B :=
3∏

µ=0

(πℏλµ)
− 1

2 exp

(
−
(p′′

µ − p′
µ)

2

4ℏλµ

)
,

with λ1 = λ2 = λ3 and 2p̄µ := p′′
µ + p′

µ.
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Application: quantum evolution of test particle

Figure: The density plot of |Am,ϵ(x⃗ ′′)/ϵ|2 for t = 1 and t = 3, where t = x ′′0,
x ′ = (0,0,0,0), p′ = p ′′, m = 1, p⃗ ′ = (1,0,0); geodesic goes along x-axis.

The plots present the probability distribution of particle transition from the space point
(0, 0, 0) to x⃗ ′′ in time t . The distribution follows geodesic. Its maximum becomes smaller
and wider for increasing time. It looks the same in the xz-plane. For all t the distribution

is axially symmetric, where the symmetry axis is spatial momentum direction.
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Application: quantum random walk of test particle

Figure: The stochastic random walk of particle, where ∆t = 0.3 and 3 are
time periods between “measurements” of particle positions, and where
m = 1, p⃗ ′ = (1,0,0), x⃗ ′ = (0,0,0), p′

0 = −
√

m2 + p⃗ ′2, λ0 = 3λ3 = 3. Each
stochastic trajectory consists of 500 points.

The trajectories are constructed via computer’s generator of random numbers combined

by Mathematica with the probability distribution resulting from (16). One can see that

particle’s position is close to the geodesic (red line). For larger ∆t quantum particle has

tendency of having larger deviation from the geodesic.
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Next steps

Application of the formalism to Schwarzschild2 and Kerr3

spacetimes in order to
reproduce details of observed shadows
of supermassive BHs
find possibly general and unique
integral quantization scheme

Successful consolidation of these two issues may help
in the construction of quantum gravity.

2A. Cieślik and P. Mach, “Revisiting timelike and null geodesics in the
Schwarzschild spacetime: general expressions in terms of Weierstrass elliptic
functions”, Class. Quantum Grav. 39, 225003 (2022).

3A. Cieślik, E. Hackmann, and P. Mach, “Kerr geodesics in terms of Weierstrass
elliptic functions”, Phys. Rev. D 108, 024056 (2023).
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Thank you?
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