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1. Horizon entropies as Holographic Dark Energy (HDE).

The dark energy density in the standard ΛCDM model is related to the

cosmological constant Λ (with unit m−2) as follows (e.g. Amendola, Tsujikawa,

2010)

ρΛ =
Λc2

8πG
, (1)

where c is the speed of light, G is the gravitational constant, and ρΛ is the mass

density in units kg ·m−3.

Alternative models come from thermodynamics of black hole horizons (area

entropy S(A) ∝ A, A - horizon area), but applied to cosmological horizons,

which also in the context of string theory are called holographic screens or

holographic dark energy (HDE) (Wang et al. 2016). Initially, only HDE based

on Bekenstein entropy S(L) ∼ A ∼ L2, L - radius of the cosmological horizon,

was considered.

Unlike Boltzmann-Gibbs (BG), Bekenstein entropy is nonextensive (roughly

speaking it scales with area and not volume) and nonadditive (cf. later).
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Horizon entropies as HDE ctd.

The application of Bekenstein entropy to HDE inspired cosmologists to apply the

plethora of nonextensive entropies which were introduced mainly in the context of

statistical physics. Among them: Tsallis, Rényi, Tsallis-Cirto, Barrow, Landsberg,

Tsallis-Jensen, Kaniadakis, Sharma-Mittal etc.. All of them are the specific

functions of the cosmological horizon size i.e. S = S(L). Bearing this in mind,

we can write down a general expression for HDE as follows (Çimdiker, MPD,

Salzano - 2024, in progress)

ρHDE =
3c2k2L2

0

8πG
S(L)L−4 (2)

where k is a dimensionless constant related to the holographic screen properties

(Wang et al. 2016), and

L2
0 = 4G~/c3 = A0 (3)

is the Planck area with L0 being of the size of the Planck length lp = 2
√

~G/c3.

In (2) the appropriate quantities have been chosen in a way that ρHDE is given in

units of mass density kg ·m−3 as in (1). Nonextensive Entropies of Black Hole and Cosmological Horizons – p. 5/45



Horizon entropies as HDE ctd.

Note: There is a selection of horizons (and so the distances L) in (2).

Future event horizon:

L ≡ a

∫ ∞

t

dt′

a
= a

∫ ∞

a

da′

H(a′)a′2
, (4)

where a is the scale factor and H(a) the Hubble parameter (Hsu 2004, Li 2004).

Hubble horizon:

L ≡
c

H(a)
, (5)

though it is not the ”true horizon” since it can be crossed (or has been crossed, in

fact) (e.g. Pavon 2005).

Horizon with an infrared cut-off (Granda & Oliveros 2009):

L ≡ c
[

αH2(a) + βḢ(a)
]−1/2

, (6)

with α, β - free dimensionless parameters.
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2. Composability, (non)additivity, and (non)extensivity in ther-

modynamics.

Boltzmann-Gibbs (BG) thermodynamics is based on ignoring long-range

forces between thermodynamic subsystems i.e. on the assumption that the

size of the system exceeds the range of interaction between its components.

In particular, BG thermodynamics is based on the additivity and

extensivity of entropy defined as

SBG = −kB

n
∑

i

pi ln pi, (7)

where pi is the probability distribution on configuration space Ω with the

number of states n and kB - Boltzmann constant.

Taking equally probable states pi = 1/n, one has SBG(n) = kB ln(n) ∝ n.
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Composability, (non)additivity, and (non)extensivity ctd.

Composability: Let us consider two independent systems A and B

combined as a single Cartesian product A×B of the states of A and B with

the requirement that (Tsallis 2024)

S(A×B,Υ) = kBg

(

S(A)

kB
,
S(B)

kB

)

, (8)

where g is a smooth function of S(A) and S(B) and Υ is a parameter. If the

systems A and B fulfil the condition (8), then their combined system A+B

is called composable.

Additivity: The entropy is additive when it fulfils the composition rule

S(A+ B) ≡ S(PAPB) = S(PA) + S(PB) = S(A) + S(B), (9)

where A, B - independent, with configurations ΩA and ΩB , and

probabilities PA and PB . BG entropy is additive and composable, i.e. (8)

gives an additive composition rule (9 in the limit Υ → 0.
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Composability, (non)additivity, and (non)extensivity ctd.

Extensivity: Assume the set of thermodynamical variables

(X0, X1, X2, . . . , Xk) such that X0 = f(X1, X2, . . . , Xk). Extensivity

means that the function f is homogeneous degree one i.e. that

f(aX1, aX2, ..., aXk) = af(X1, X2, ..., Xk) (10)

for a positive real number a, for all X1, X2, ...Xk. For entropy S, energy U ,

volume V , mole number N (i.e. k=3), we have

S(aU, aV, aN) = aS(U, V,N).

Most common, but not so precise definition states that if a system’s total

number of microstates, Ω, is proportional to its number of particles or

degrees of freedom (size), the entropy is extensive.

Attention! Extensive quantity can be nonadditive (e.g. if

f(x1, x2) = x2
1/
√

x2
1 + x2

2) (Landsberg, 1999); additive quantity can be

nonextensive.
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Composability, (non)additivity, and (non)extensivity ctd.

Gravitational systems are long-range interacting and highly nonlinear and

so they cannot be adopted as thermodynamical systems of Gibbs additive

and extensive type. Dealing with them one needs to go beyond additivity

and extensivity.

Nonadditivity: it is violated when (9) does not hold.

Superadditivity: S(A+B) ≥ S(A) + S(B) and the systems have the

tendency to clump its pieces (subsystems).

Subadditivity: S(A+ B) < S(A) + S(B) and the system tends to

fragment its pieces rather than clump (a cosmological example of it is

phantom matter).

Nonextensivity: the entropy S is nonextensive if S(aX) 6= aS(X) , where

X is a thermodynamical quantity and a > 0, i.e. when the relation (10) is

violated.
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3. Comparable analysis of nonextensive entropies plethora.

Bekenstein entropy: it is not motivated by anything like statistical mechanics, but

it is well established notion in gravity theory. For a Schwarzschild black hole it

reads

SBek = 4πkB

(

M

mp

)2

=
4πkBGM2

~c
, (11)

and it is usually presented with its accompanying Hawking temperature

TH =
~c3

8πGkBM
, (12)

where M - mass of a black hole, ~ - reduced Planck constant, mp - Planck mass.

Bekenstein entropy is proportional to its mass/length scale S ∝ M2 ∝ L2 and

fulfils the square root composition rule

S(A+B) = S(A) + S(B) + 2
√

S(A)
√

S(B). (13)

This is since S(A) = M2

A
/4, S(B) = M2

B
/4 and after a merge one has S(A+ B) =

(MA +MB)2/4, which gives an extra term MAMB/2.
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Tsallis q-entropy.

The Tsallis q-entropy (Tsallis, J. Stat. Phys. 52, 479 (1988); book of 2009) is one

of the earliest proposals for generalization of BG entropy. It encompasses an issue

of the long-range interaction between thermodynamical subsystems by

introducing a nonextensivity parameter q (q ∈ R) into the BG entropy definition

(7) keeping the standard BG condition that the sum of all the probabilities is equal

to one (
∑

pi = 1), and reads in 3 alternative forms as follows

Sq = kB

n
∑

i=1

pi lnq
1

pi
= −kB

n
∑

i=1

(pi)
q lnq pi = −kB

n
∑

i=1

ln2−q pi, (14)

where a newly defined q-logarithmic function lnq p is introduced

lnq p ≡
p1−q − 1

1− q
(15)
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Tsallis q-entropy.

with the property that

lnq ab = lnq a+ lnq b+ (1− q) lnq a lnq b, q → 1 ln ab = ln a+ ln b, (16)

which is in fact the origin of the Abé composition rule

S(A+ B) = S(A) + S(B) +
Υ

kB
S(A)S(B), (17)

where Υ takes numerical values according to a statistical definition of a specific

entropy. For Tsallis q-entropy Υ = 1− q.

Using the definition of q-logarithm (15), all 3 forms (14) can be brought into the

same form

Sq = kB
1−

∑n
i=1 (pi)

q

q − 1
(18)

All the forms of Tsallis q-entropy in the limit q → 1 give BG entropy.
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Rényi entropy.

Rényi entropy (Rényi 1959) (a measure of entanglement in quantum information

theory) is defined as

SR = kB
ln
∑n

i=1 (pi)
q

1− q
. (19)

It is additive since it can be written in terms of Tsallis q-entropy

SR =
kB
1− q

ln[1 +
1− q

kB
ST ] (20)

and brought into an additive form by the application of a more general Abé

composition rule given by

H(SA+B) = H(SA) +H(SB) +
Υ

kB
H(SA)H(SB), (21)

together with redefinition using the logarithm in the form
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Rényi entropy

L(S) =
kB
Υ

ln

(

1 +
Υ

kB
H(S)

)

(22)

and applied to (20) giving an additive formula

L(SA+B) = L(SA) + L(SB), (23)

where L(S) corresponds to Rényi entropy and H(S) corresponds to Tsallis

q-entropy. In such a formulation, one can write that Rényi entropy fulfils the Abé

rule (17) with the parameter Υ = 0.

Often, one assumes that Tsallis q-entropy is the Bekenstein entropy, and so one

defines Rényi entropy on the horizon of a black hole.
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Tsallis-Cirto δ-entropy

The Tsallis-Cirto δ-entropy (Tsallis & Cirto 2012, Tsallis 2019) (sometimes also

improperly called in the literature as just the Tsallis entropy) is yet another

generalization of BG entropy (7) made by the introduction of another

nonextensivity parameter δ as follows

Sδ = kB

n
∑

i=1

pi (ln pi)
δ

(δ > 0, δ ∈ R), (24)

and this difference is easily recognized when one compares it with the Tsallis

q-entropy (14) and with BG entropy (7).

The composition rule for the Tsallis-Cirto entropy δ-entropy

(

Sδ,A+B

kB

)1/δ

=

(

Sδ,A

kB

)1/δ

+

(

Sδ,B

kB

)1/δ

, (25)

is another example of a composition rule, which is different from the Abé

composition rule (17). We call it δ-addition rule.
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Tsallis-Cirto δ-entropy.

In fact, Tsallis and Cirto suggest that

Sδ = kB

(

SBek

kB

)δ

, (26)

where SBek is the Bekenstein entropy (11).

Some remarks are as follows:

According (25), one realizes that the Bekenstein entropy as given by

SBek ∝ (Sδ)
1/δ can be additive, while the Tsallis-Cirto entropy Sδ itself is

nonadditive.

Bearing in mind the definition of Bekenstein entropy for a Schwarzschild

black hole (11), one can easily notice that for δ = 3/2 the Tsallis-Cirto

entropy (26) is proportional to the volume Sδ ∝ M3 and so it is an

extensive quantity.
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Tsallis q, δ-entropy

Tsallis q, δ-entropy generalizes both the Tsallis q-entropy (14) and the

Tsallis-Cirto δ-entropy (24) combining them as follows (Tsallis 2019)

Sq,δ = kB

n
∑

i=1

pi (lnq pi)
δ (δ > 0, q ∈ R, δ ∈ R). (27)

Now both q and δ play the role of two independent nonextensivity parameters.

By assuming that all the states are equally probable, one gets from (27) that

Sq,δ = kB (lnq n)
δ ≡ kB lnδq n. (28)

The Tsallis q, δ-entropy fulfils neither Abé addition rule nor δ-addition rule

though it does the former in the limit δ → 0 and the latter in the limit q → 0.
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Tsallis-Jensen q, γ entropy.

Recently, Tsallis and Jensen (arXiv: 2408.08820) proposed another generalization

of BG entropy which reads

Sq,γ = kB

[

ln
∑n

i=1 p
q
i

1− q

]

1

γ

= kB

(

SR

kB

)
1

γ

, (29)

where SR is the Rényi entropy and γ is a new parameter somewhat analogous to

the parameter δ in Tsallis-Cirto entropy (24).

Since the Rényi entropy has the BG limit for q → 1, then we can write

S1,γ = kB

(

SBG

kB

)
1

γ

, (30)

and analogously if we take Bekenstein entropy (11) instead of BG in (30) in the

same limit

SBek
1,γ = kB

(

SBek

kB

)
1

γ

. (31)
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Tsallis-Jensen entropy.

Bearing in mind the additive composition formula for the BG entropy (9) and

using (30), one can write the additivity for S1,γ in such a case as

[S1,γ(A+ B)]
γ
= [S1,γ(A)]

γ
+ [S1,γ(B)]

γ
. (32)

Similarly, taking into account the square root additivity rule (13) for (31) as

[

SBek
1,γ (A+B)

]γ
=
[

SBek
1,γ (A)

]γ
+
[

SBek
1,γ (B)

]γ
+2
[

SBek
1,γ (A)SBek

1,γ (B)
]

γ
2 . (33)

Finally, since the Rényi entropy SR in (29) is in general additive according to the

composition rule (23), then we can write quite generally the composition rule for

the Tsallis-Jensen entropy (29) as

[Sq,γ(A+B)]
γ
= [Sq,γ(A)]

γ
+ [Sq,γ(B)]

γ
, (34)

and this is exactly the δ composition rule (25) with γ = 1/δ.
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Tsallis invented entropies with characteristics

Entropy Type Extensivity Additivity Abé addition rule δ−addition rule

Boltzmann-Gibbs SBG yes yes yes, Υ = 0 yes, δ = 1

Tsallis Sq,1 = Sq no no yes, Υ = 1− q no

Tsallis-Cirto S1,δ = Sδ no no no yes

General Tsallis Sq,δ no no no no

Tsallis-Jensen Sq,γ no no no yes, δ = 1/γ
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Barrow fractal ∆-entropy

Barrow entropy (2020) has no statistical roots at all. It is closely tied to black hole

horizon geometry influenced by quantum fluctuations which make initially smooth

black hole horizon a fractal composed of spheres forming the so-called

”sphereflake”: https://www.youtube.com/watch?v=pPb5NKEYCD8;
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Barrow entropy vs Bekenstein entropy

Barrow entropy reads

SBar = kB

(

A

A0

)1+∆

2

= kB

(

SBek

kB

)1+∆

2

, (35)

where SBek is Bekenstein entropy, A - the horizon area, A0 - the Planck

area, A0 ∼ L2
0 ∼ l2p with lp - Planck length, and ∆ is the parameter related

to the fractal dimension df by the relation ∆ = df − 2.

This structure is characterised by the fractal dimension df which in the

extreme cases is the surface or the volume i.e. 2 ≤ df ≤ 3, and results in an

effective horizon area of rdf , where r is the black hole horizon radius.

In fact, 0 ≤ ∆ ≤ 1 with ∆ → 1 limit yielding maximally fractal structure,

where the horizon area behaves effectively like a 3−dimensional volume,

and with ∆ → 0 limit yielding the Bekenstein area law, where no

fractalization occurs.
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Barrow entropy vs Tsallis-Cirto δ-entropy

Although Barrow entropy has geometrical roots, and is not motivated by

thermodynamics, it has the same form as Tsallis-Cirto δ entropy (26) being

also related to Bekenstein entropy SBek as in (11), provided that

δ = 1 +
∆

2
. (36)

However, the ranges of parameters δ and ∆ are different - δ has only the

bound δ > 0 while 0 ≤ ∆ ≤ 1 is equivalent to 1 ≤ δ ≤ 3/2. Thus,

qualitatively, both entropic forms yield the same temperatures as a function

of a black hole mass.

Both Tsallis-Cirto entropy limit δ → 3/2 and Barrow limit ∆ → 1 yield an

extensive, but still nonadditive entropy for black holes.
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Landsberg U -entropy.

The Landsberg U -entropy is defined in relation to Tsallis q−entropy (18) as

(Landsberg 1999)

SU =
kB
1− q

(

1−
1

∑n
i=1 (pi)

q

)

= kB
1−

∑n
i=1 (pi)

q

q − 1

1

(pi)
q =

Sq
∑n

i=1 (pi)
q ,

(37)

and it fulfils the Abé rule (17) for Υ = q − 1. By assuming that all the states are

equally probable, it simplifies (37) to the form

SU = nq−1Sq, (38)

so it simply relates to Tsallis q-entropy.
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Sharma-Mittal entropy

The Sharma-Mittal (SM) entropy (Sharma & Mittal, J. Comb. Inf. Syst. Sci. 2,

122 (1977)) combines the Rényi entropy with the Tsallis q−entropy, and is

defined as

SSM =
kB
R





(

n
∑

i=1

(pi)
q

)
R

1−q

− 1



 , (39)

where R is another dimensionless parameter apart from q. For equally probable

states, one gets from (39) that

SSM =
kB
R

{

[

1 +
1− q

kB
Sq

]
R

1−q

− 1

}

, (40)

where R → 1− q limit yields the Tsallis entropy, and R → 0 limit yields Rényi

entropy. It is interesting to note that the SM entropy obeys the composition rule of

Abé (17) for Υ = 1.
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Kaniadakis entropy.

Kaniadakis entropy (Kaniadakis PRE 2002, PRE 2005) results from taking

into account Lorentz transformations of special relativity. It is a single

K-parameter (−1 < K < 1) deformation of BG entropy (7) with K

parameter related to the dimensionless rest energy of the various parts of a

multibody relativistic system.

The basic definition of Kaniadakis entropy which directly generalizes BG

entropy reads

SK = −kB

n
∑

i=1

pi lnK pi (41)

The formula (41) introduces the K-logarithm

lnK x ≡
xK − x−K

2K
=

1

K
sinh (K lnx) (42)

with some basic properties like lnK x−1 = − lnK x and ln−K x = lnK x

and it gives the standard logarithm lnx in the limit K → 0.
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Kaniadakis entropy.

An equivalent definition of Kaniadakis entropy which can be obtained after

the application of K−logarithm (42) reads

SK = −kB

n
∑

i=1

(pi)
1+K − (pi)

1−K

2K
. (43)

The K−logarithm fulfils a generalized composition rule which reads

lnK(xy) = lnK x
√

1 +K2(lnK y)2 + lnK y
√

1 +K2(lnK x)2, (44)

and it admits the standard logarithm rule ln(xy) = lnx+ ln y in the limit

K → 0.

The rule (44) comes from the definition of K−sum

(x⊕ y)K = x
√

1 +K2y2 + y
√

1 +K2x2, (45)

where one replaced x → lnx and y → ln y and gives standard additivity

rule (x⊕ y)K = x+ y in the limit K → 0.
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Kaniadakis entropy.

Using the definition of Kaniadakis entropy (41) and K−logarithm

composition rule, we can write down the Kaniadakis entropy additivity rule

as follows

SK(A+B) = SK(A)

√

1 +
K2

k2B
SK(B) +SK(B)

√

1 +
K2

k2B
SK(A) (46)

which we call K−addition rule.

It is interesting to note that by the application of the K−sum (Kaniadakis

2002) defined as

(x⊗ y)K =
1

K
sinh

[

1

K
arcsinh(Kx)arcsinh(Ky)

]

, (47)
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Kaniadakis entropy.

one has for the K−logarithm

lnK [(x⊗ y)K ] = lnK x+ lnK y, (48)

so that applying it to (41), the Kaniadakis entropy can take a completely additive

form as below

SK(A+B)K = SK(pApB) = SK(pA) + SK(pB) = SK(A) + SK(B). (49)

Finally, in analogy to the previous considerations, and under the assumption that

all the states are equally probable, one gets from (41) that

lnK pi = −
1

K

eK lnn − e−K lnn

2
, (50)

which can further be transformed into (S = kB lnn is BG entropy):

SK =
kB
K

sinh

(

K

kB
S

)

. (51)Nonextensive Entropies of Black Hole and Cosmological Horizons – p. 30/45



The plethora of entropies

Entropy Type Extensivity Additivity Abé rule δ−rule K−rule

Boltzmann-Gibbs SBG yes yes yes, Υ = 0 yes, δ = 1 yes, K = 0

Bekenstein SBek no no* no no no

Tsallis q-entropy Sq no no yes, Υ = 1− q no no

Tsallis-Cirto Sδ (δ 6= 3
2 ) no no no yes no

Tsallis-Cirto Sδ (δ = 3
2 ) yes no no yes, δ = 3

2 no

Barrow SBar = SBek (∆ = 0) no no* no no no

Barrow SBar (0 < ∆ < 1) no no no yes no

Barrow SBar (∆ = 1) yes no no yes, δ = 3
2 no

Rényi SR no yes yes, Υ = 0 no no

Landsberg U -entropy SU no no yes, Υ = q − 1 no no

Kaniadakis SK no no no no yes

Sharma-Mittal SSM (q, R) no no yes, Υ = R no no

Tsallis q, δ-entropy Sq,δ no no no no no

Tsallis-Jensen Sq,γ no no no yes, δ = 1/γ no

Tsallis-Jensen S1,γ no no no yes, δ = 1/γ no

Tsallis-Jensen Sq,1 = SR no yes yes, Υ = 0 no no

* obeys square root composition rule (13)
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Some remarks:

There is the whole group of Tsallis invented thermodynamical entropies

which generalize BG entropy in some different ways (cf. Table). Obey

either the Abé composition rule or δ-addition rule.

Tsallis q-entropy relates to both the Rényi and the Landsberg U entropies,

while it is generalized by the Sharma-Mittal entropy.

Tsallis-Cirto δ-entropy is related to Barrow entropy and Tsallis-Jensen q, γ

entropy.

Kaniadakis entropy form a separate branch of nonextensive entropies

because of its hyperbolic formulation as a consequence of relativity theory

being taken into account, but it still has a BG limit.

All the entropies in our study have BG limit except Bekenstein entropy,

but it is composable though its composition rule is unique among any other

rules (square root rule).
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General 4-parameter and 5-parameter entropies

There exists a four-parameter entropic formula (Nojiri, Odinstov 2022) which

reads (here kB = 1)

Sg(α±, β, σ) =
1

σ

[

(

1 +
α+

β
S

)β

−

(

1 +
α−

β
S

)−β
]

, (52)

as well as the five-parameter formula (Odintsov, Paul 2023) of the form

Sg(α±, β, σ, ǫ) =
1

σ

{

[

1 +
1

ǫ
tanh

(

ǫα+

β
S

)]β

−

[

1 +
1

ǫ
tanh

(

ǫα−

β
S

)]−β
}

,

(53)
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General 4-parameter and 5-parameter entropies

Both these formulas generalize some of the entropies which are contained in the

Table 31 and have the following limits:

1. if ǫ → 0, then one recovers Tsallis-Cirto (24) and Barrow (35) entropies;

2. if ǫ → 0, α− → 0, β → 0, and α+/β finite, then one recovers Rényi

entropy (20);

3. if ǫ → 0, α− → 0, σ = α+ = R, and β = R/δ, then one recovers

Sharma-Mittal entropy formula (40), though only when one replaces Tsallis

q-entropy Sq with Tsallis-Cirto Sδ entropy;

4. if ǫ → 0, β → ∞, α+ = α− = σ/2 = K, then one recovers Kaniadakis

entropy (51).
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4. Observational constraints on nonextensivity.

Interestingly, we applied Barrow entropy as HDE in (2) gives (e.g. Saridakis

2020, MPD & Salzano 2020, Denkiewicz et al. 2023, Çimdiker at al. 2024):

ρBH =
3C2

8πG
L(∆−2) , (54)

where C is the holographic parameter with dimensions of s−1m(1−∆/2)

and

C = ckL
−∆/2
0 = 3 · 102(4+9∆)2−2∆. (55)

Note: ΛCDM (∆ = 2, ρBH = const.) is excluded in Barrow holography,

but possible for Tsallis-Cirto ∆ = δ = 2.

Note: all the cosmological calculations are also valid for Tsallis entropy at

least in the range of its parameter 1 ≤ δ ≤ 3/2.
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Observational constraints on nonextensivity.

The Friedmann equation for Barrow (Tsallis) HDE is

H2(a) =
8πG

3
(ρm(a) + ρr(a) + ρBH(a)) , (56)

where the suffices m and r refer respectively to matter and radiation.

Standard continuity equation for matter and radiation is still valid, i.e.

ρ̇m,r(a) + 3H

(

ρm,r(a) +
pm,r(a)

c2

)

= 0 , (57)

where the pressure pi = wiρi. We can rewrite (6) as

1 = Ωm(a) + Ωr(a) + ΩH(a) , (58)

introducing the dimensionless density parameters Ωi(a), defined as

Ωm,r(a) =
H2

0

H2(a)
Ωm,ra

−3(1+wm,r) , ΩBH(a) =
C2

H2(a)
L(∆−2) . (59)
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Observational constraints on nonextensivity.

Data applied (Denkiewicz et al. 2023):

Type Ia Supernovae (SNeIa) from the Pantheon sample;

Cosmic Chronometers (CC);

the “Mayflower” sample of Gamma Ray Bursts (GRBs);

latest Planck 2018 release for Cosmic Microwave Background radiation

(CMB) (shift parameter);

Baryon Acoustic Oscillations (BAO) from several surveys.

Considered 2 cases:

“full data”, where we join both early- (CMB + BAO data from SDSS) and

late-time observations (SNeIa, CC, GRBs + BAO data from WiggleZ);

“late-time” data set - includes only late-time data (after recombination).
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Results of statistical analysis ("geo" - geometrical, "late" - late time data,

"dyn" - dynamical, BH1 - event horizon (not Hubble))

Ωm Ωb h M σ8,0 ∆ C S8,0 logBi
j

“Revision” of MPD & Salzano 2020

LCDM (geo-late) 0.293+0.016
−0.016 − 0.713+0.013

−0.013 − − − − − 0

LCDM (geo-full) 0.319+0.005
−0.005 0.0494+0.0004

−0.0004 0.673+0.003
−0.003 − − − − − 0

BH1 (geo-late) 0.290+0.020
−0.019 − 0.715+0.014

−0.013 − − > 0.63 3.93+1.77
−1.88 − −0.71+0.03

−0.02

BH1 (geo-full) 0.314+0.006
−0.006 0.049+0.001

−0.001 0.676+0.007
−0.007 − − > 0.84 4.66+0.87

−1.07 − −0.05+0.03
−0.03

Updated and newest constraints from Denkiewicz et al. 2023

LCDM (geo-late) 0.321+0.015
−0.015 − 0.730+0.010

−0.009 −19.263+0.028
−0.028 − − − − 0

LCDM (geo-full) 0.318+0.007
−0.006 0.0493+0.0006

−0.0006 0.674+0.004
−0.004 −19.437+0.012

−0.012 − − − − 0

LCDM (geo-late+dyn) 0.315+0.014
−0.014 − 0.731+0.010

−0.010 −19.263+0.028
−0.028 0.770+0.018

−0.017 − − 0.790+0.023
−0.022 0

LCDM (geo-full+dyn) 0.314+0.006
−0.005 0.0490+0.0006

−0.0006 0.677+0.004
−0.004 −19.429+0.011

−0.011 0.779+0.017
−0.017 − − 0.796+0.019

−0.019 0

BH1 (geo-late) 0.300+0.020
−0.019 − 0.729+0.010

−0.010 −19.263+0.028
−0.029 − > 0.63 4.50+2.20

−2.13 − −0.39+0.02
−0.04

BH1 (geo-full) 0.311+0.006
−0.006 0.0486+0.0008

−0.0008 0.679+0.006
−0.006 −19.438+0.013

−0.013 − > 0.82 4.58+0.90
−1.16 − −2.99+0.04

−0.04

BH1 (geo-late+dyn) 0.290+0.018
−0.017 − 0.729+0.010

−0.010 −19.261+0.028
−0.028 0.791+0.022

−0.022 > 0.69 5.31+1.97
−2.27 0.778+0.021

−0.022 −0.35+0.03
−0.03

BH1 (geo-full+dyn) 0.307+0.006
−0.006 0.0484+0.0009

−0.0008 0.681+0.006
−0.005 −19.431+0.013

−0.013 0.777+0.017
−0.017 > 0.86 4.89+0.76

−1.03 0.786+0.020
−0.020 −4.36+0.04

−0.04
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Calculated quantities - explanation of the table:

In the following table for each parameter we provide the median and the 1σ

constraints. The columns show:

1. considered theoretical scenario;

2. dimensionless matter parameter, Ωm;

3. dimensionless baryonic parameter, Ωb;

4. dimensionless Hubble constant, h;

5. fiducial absolute magnitude, M;

6. amplitude of the linear power spectrum at present time, σ8,0;

7. Barrow entropic parameter, ∆;

8. holographic parameter, C;

9. amplitude of the weak lensing measurement (secondary derived parameter),

S8,0 = σ8,0

√

Ωm/0.3;

10. logarithm of the Bayes Factor, logBi
j .
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Data pointing towards the extensive HDE!

Our bound on Barrow parameter ∆ > 0.86 (Tsallis-Cirto δ > 1.43)

strongly points towards its maximum value ∆ = 1 (δ = 3/2) in which case

Barrow/Tsallis-Cirto entropy recovers extensivity (though still remains

nonadditive fulfilling the rule (25)) - this is why we call it ”nearly

extensive Gibbs-like entropy”.

This has been recently pointed out also by Tsallis and Jensen (arXiv:

2408.08820) who claim that their

S1,γ = Sδ ∝ (SBek)
δ with δ =

1

γ
= 1 +

∆

2
. (60)
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Other data pointing towards extensive HDE.

The following bounds confirm that claim:

High-energy neutrino data (IceCube Neutrino Observatory on South Pole)

give δ = 1.565 (Jizba & Lambiase EPJC 82, 1123 (2022));

2 different models of neutrino data from Planck Observatory (ESA) give

δ = 1.87 and δ = 1.26 (Salehi et al. GRG 55, 57 (2023));

Big-Bang nucelosynthesis bound based on analysis of abundance of CDM

particles gives δ = 1.499 (Jizba & Lambiase, Entropy 25, 1495 (2023)).

HDE approach + different horizon + interaction between DM and DE,

tested against combined Pantheon, SNIa, BAO, CMB, and GRB, got

δ = 1.360 (Mamon arXiv: 2007.01591)
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Tension with other bounds on Barrow (Tsallis-Cirto) parameter ∆ (δ).

However, this result is in tension with all the other bounds in the

literature. Possible explanations lie in the fact that we use directly

holographic principle (HP) or HDE approach while most of the other

papers use gravity-thermodynamics conjecture (GT) of Jacobson (1995).

Jacobson method of obtaining gravity from thermodynamics relies on the

fact that the Barrow entropy gives a general relativity-like gravity with a

rescaled cosmological constant Λ̃ = Λ[(1 + ∆/2)A∆/2]−1, and having the

limit ∆ → 0 as standard Λ.

In view of that, it is already Λ-term dominated model which solves dark

energy problem and is statistically preferable with some ”small correction”

coming from the nonextensive entropy.

This is what happens in most of these types of bounds which obtain ∆ ∼ 0.
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Tension with other bounds on Barrow/Tsallis-Cirto parameter ∆/δ.

From obs. bounds on baryon asymmetry: Barrow entropy

∆ ∼ 0.005− 0.008 (Luciano & Giné arXiv: 2210.09755); Tsallis entropy

0.002 .| δ − 1 |=| ∆/2 |. 0.004 (arXiv: 2204.02723);

From Big-Bang nucleosynthesis: Tsallis entropy 1− δ < 10−5 (Ghoshal,

Lambiase arXiv:2104.11296); Barrow entropy ∆ . 1.4 · 10−4 (Barrow,

Basilakos, Saridakis PLB 815, 136134 (2021);

GT approach applied to Pantheon + BAO (”late-time”) data: ∆ ∼ 10−4

(Leon et al. JCAP 12, 032 (2021) - radiation is neglected;

GT approach applied also to cosmol. perturbations with an extra scalar field

acting as dark energy which is effectively Λ (Aghari, Sheykhi

arXiv:2106.15551) - Tsallis δ ≈ 0.9997 (∆ = −0.0006 < 0);

GT application of Planck data to Barrow restricts to ∆ . 10−4 (though

assuming only 30 e-folds) (Luciano arXiv: 2301.12509)
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Tension with other bounds on Barrow/Tsallis-Cirto parameter ∆/δ.

HP approach; using SNeIa, CC, GRBs they obtain ∆ ≈ −1.68 which is

behind the domain of Barrow parameter though consistent with Tsallis

δ ≈ 0.16 (Mangoudehi arXiv: 2211.17212);

HP approach, usage of early-times data (BAO, CMB), no radiation, Tsallis

δ ≈ 1.07 corresponding Barrow ∆ ≈ 0.14 (Sadri arXiv: 1905.11210);

HP approach, late-time data only, Barrow ∆ ∼ 0.09 (Saridakis et al. JCAP

12, 012 (2018), Anagnostopoulos et al. EPJS 80, 826 (2020);

HP approach, SNeIa + CC only, Barrow ∆ ∼ 0.06÷ 0.2 (Adhikary et al.

PRD 104, 123519 (2021));
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6. Conclusions

There is a plethora of nonextensive entropies which can be applied to

black hole horizon models and to Holographic Dark Energy models.

Interestingly, these entropies have BG limit except Bekenstein.

They are mostly composable though the composition rules take many

forms. Bekenstein entropy fulfils a specific square root composition rule.

There are 2 different approaches to holographic models which are

observationally in strong tension. One kind of them (Jacobson approach

modifying Λ-term) point out towards nonextensive entropies and another

(pure HDE, no Λ) point out towards extensivity.
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