The Hubble tension: where we are; where we are going.

Vincenzo Salzano

Szczecińska Grupa Kosmologiczna Instytut Fizyki Uniwersytetu Szczecińskiego

POTOR 10, 16-20 Września 2024r.

SALZANO VINCENZO

The Hubble tension

What to say about the Hubble tension?

Everything has been told, and is told everyday. Some reviews:

- Di Valentino et al., 2203.06142 (163 pages)
- Kamionkowski & Riess, 2211.04492
- Verde et al., 2311.13305 ("A tale of many H₀")

Polarization of community in 2(+1) groups:

- Theoreticians: "We are on the verge of a paradigm shift in cosmology"
 - "We have a lot of models, but no new theory" (cit. Sakellariadou M.)
- Astronomers: "There is hidden systematics in data"
 - "Who among us is wrong?"

• "Conventionalist bias"

Contents lists available at ScienceDirect Studies in History and Philosophy of Modern Physics ELSIVIER journal homepage: www.sitawire.com/locate/shpub									
Cosmology and convention									
David Merritt	David Merritt								
chool of Physics and Astronomy, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623, USA									

Lessons from the past: Hubble's constant "prehistory"

https://lweb.cfa.harvard.edu/~dfabricant/huchra/hubble/

SALZANO VINCENZO

The Hubble tension

Lessons from the past: Hubble's constant "prehistory"

Why H_0 was such an "incredible shrinking constant"? (Trimble V., 1996, PASP 108, 1073)

Wrong calibration of the Cepheid P-L relation (30 years to solve)

- small-number statistics
- neglect contribution of peculiar motion
- poor data:
 - some Hubble bright stars where not star, but stars+gas
- missing interstellar absorption:
 - Cepheids zero point should be brighter lower H0 ($\downarrow M_B \equiv \downarrow H_0$)
- Malmquist bias: magnitude-limited samples
 - more distant objects look closer because brighter ones are selected
 - distance to *M*31 from Hubble, 275 *kpc* vs real distance to *M*31, 765 *kpc*
 - bias in the Cepheid relation to brighter zero point
- N.B. age problem: Hubble value implied an age of $\sim 2\cdot 10^9$ yrs.

SALZANO VINCENZO

The Hubble tension

Approaching the (second) Great Debate (1996)

https://lweb.cfa.harvard.edu/~dfabricant/huchra/hubble/

SALZANO VINCENZO

The Hubble tension

After the 1996 debate: ladder measurements of H_0 were at odds with the favored cosmological model of the time, CDM with $\Lambda = 0$

https://lweb.cfa.harvard.edu/~dfabricant/huchra/hubble/

SALZANO VINCENZO

The Hubble tension

The intruder: the Cosmic Microwave Background radiation (CMB).

Freedman W. L., arXiv:2106.15656

SALZANO VINCENZO

The Hubble tension

5/67

Now: ladder measurements of H_0 are at odds with the favored cosmological model of the time, CDM with $\Lambda \neq 0$

SALZANO VINCENZO

The Hubble tension

POTOR 10 6

The Hubble's constant "contemporary era"

H_0 between precision and accuracy: where we are now?

Approaching the third Great Debate?

The start: the SH0ES Team.

A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s⁻¹ Mpc⁻¹ Uncertainty from the *Hubble Space Telescope* and the SH0ES Team

ADAM G. RIESS,^{1,2} WENLONG YUAN,² LUCAS M. MACRI,³ DAN SCOLNIC,⁴ DILLON BROUT,⁵ STEFANO CASERTANO,¹ DAVID O. JONES,⁶ YUKEI MURAKAMI,² GAGANDEEP S. ANAND,¹ LOUBE BREUVAL,^{5,7} THOMAS G. BRINK,⁸ ALEXEI V. FILIPPENKO,^{8,9} SAMANTHA HOFFMANN,¹ SAURABH W. JHA,¹⁰ W. D'ARCY KENWORTHY,² JOHN MACKENTY,¹ BENJAMIN E. STAHL,⁶ AND WEIKANG ZHENG⁵

JWST Observations Reject Unrecognized Crowding of Cepheid Photometry as an Explanation for the Hubble Tension at 8σ Confidence

Adam G. Riess,^{1,2} Gagandeep S. Anand,¹ Wenlong Yuan,² Stefano Casertano,¹ Andrew Dolphin,³ Lucas M. Macri,⁴ Louise Breuval,² Dan Scolnic,⁵ Marshall Perrin,¹ and Richard I. Anderson⁶

arXiv:2112.04510, arXiv:2401.04773

The Cosmic Distance Ladder

SALZANO VINCENZO

The Hubble tension

POTOR 10

8 / 67

The Cosmic Distance Ladder: the first rung

Cepheids calibrated with anchors (non SNela hosts)

 $m_{H,i,j}^W = \mu_{0,i} + M_H^W + b_W (\log P_{i,j} - 1) + Z_W [O/H]_{i,j}$

- 980 Cepheids in 4 anchors (LMC, SMC, NGC4258, M31) + MW $m_{H,LMC,i}^{W} = \mu_{0,LMC} + M_{H}^{W} + b_{W} (\log P_{LMC,i} - 1) + Z_{W} [O/H]_{LMC,i}$
- MW: parallaxes; NGC4258: maser; LMC/SMC: eclipsing binaries;
- NGC4258: Δμ_{NGC4258}; LMC/SMC: Δμ_{LMC}; M31: μ_{0,M31};
- LMC data both from ground telescopes and Gaia: zp;

The Cosmic Distance Ladder: the second rung

SNela calibrated with Cepheids

• 37 Cepheid+SNela hosts: 2150 Cepheids, 42 SNela (77 data points)

 $m_{B,i,j}^0 = \mu_{0,i} + M_B$

$$m_{B,i,j}^0 = m_{B,i,j} - \alpha x_{1,i,j} - \beta \mathcal{C}_{\lambda,j}$$

α and β fitted a priori independently from Pantheon+ sample
37 μ_{0,i};

Hubble flow SNeIa from *Pantheon+*

- 238 Hubble flow SNeIa (277 data points), $0.023 \le z \le 0.15$ $\mu_{0,HF} = m_{B,HF}^0 - M_B = 5 \log (d_L/Mpc) + 25$ $d_L(z_{HF}) = (1 + z_{HF}) \frac{c}{H_0} \int_0^{z_{HF}} \frac{dz'}{H(z')/H_0} = \frac{D_L(z_{HF})}{H_0}$
- cosmography: "cosmological model independent" approach $\log D_L(z_{HF}) \approx \log \left[cz_{HF} \left(1 + \frac{1-q_0}{2} z_{HF} - \frac{1-q_0 - 3q_0^2 + j_0}{6} z_{HF}^2 + \dots \right) \right]$ $m_{B,HF}^0 - \log D_L(z_{HF}) - 25 = M_B - 5 \log H_0$
 - $q_0 = -0.55$ and $j_0 = 1$ values have minimal impact

SALZANO VINCENZO

The Hubble tension

POTOR 10 11 / 67

We get H_0 from a simultaneous fit:

Geometric Distances + Cepheids data from anchors \downarrow Cepheids calibration M_H^W and slopes b_W, Z_W in anchors \downarrow Distances $\mu_{0,i}$ of Cepheids+SNeIa hosts \downarrow SNeIa calibration M_B \downarrow H_0 from Hubble flow SNeIa

- 46 free parameters: only 1 is cosmological
- 3492 × 3492 covariance matrix
- $H_0 = 73.04 \pm 1.04 \ km \, s^{-1} \ Mpc^{-1} \ (1.4\% \ error)$

The Cosmic Distance Ladder: summary

SALZANO VINCENZO

The Hubble tension

POTOR 10

13 / 67

SH0ES error budget

Multiple variants analysis (67): H_0 from 71.93 to 74.78;

	Table 7. H_0 Error Budgets	s (%), t	erms a	pproxi	mated	from g	юраї п	t			
Term	Description	Riess+ (2016) Ri			Ries	Riess+ (2019)			This work		
		LMC	MW	4258	LMC	MW	4258	LMC	MW	4258	
$\sigma_{\mu,\mathrm{anchor}}$	Anchor distance	2.1	2.1	2.6	1.2	1.5	2.6	1.2	1.0^a	1.5^{b}	
$\sigma_{\mathrm{PL,anchor}}$	Mean of $P-L$ in anchor	0.1		1.5	0.4		1.5	0.4		1.0	
$R\sigma_{\lambda,1,2}$	zeropoints, anchor-to-hosts	1.4	1.4	0.0	0.1	0.7	0.0	0.1	0.1^a	0.0	
σ_Z	Cepheid metallicity, anchor-hosts	0.8	0.2	0.2	0.9	0.2	0.2	0.5	0.15	0.15	
	subtotal per anchor	2.6	2.5	3.0	1.5	1.7	3.0	1.4	1.0	1.8	
		_	~		_	~			~		
All Anchor	subtotal		1.6			1.0			0.7		
$\sigma_{ m PL}/\sqrt{n}$	Mean of $P-L$ in SN Ia hosts		0.4			0.4			0.4		
$\sigma_{\rm SN}/\sqrt{n}$	Mean of SN Ia calibrators (# SN)		1.3 (19)		1.3(19)		0.9(4	2-46)	
σ_{m-z}	SN Ia $m\!-\!z$ relation		0.4		0.4			0.4			
$\sigma_{ m PL}$	$P–\!L$ slope, $\Delta\!\log P,$ anchor-hosts		0.6			0.3			0.3		
statistical	error, $\sigma_{\rm H_0}$	2.2			1.8			1.3			
Analysis sy	vstematics ^c	0.8			0.6			0.3			
Total unc	certainty on $\sigma_{\rm H_0}$ [%]		2.4			1.9			1.35		

101

SALZANO VINCENZO

SH0ES error budget

Multiple variants analysis (67): H_0 from 71.93 to 74.78;

	Table 7. H_0 Error Budgets	s (%), t	erms a	pproxi	mated	from g	lobal fi	t			
Term	Description	Riess+ (2016)			Ries	ss + (2)	019)	This work			
		LMC	MW	4258	LMC	MW	4258	LMC	MW	4258	
$\sigma_{\mu,\mathrm{anchor}}$	Anchor distance	2.1	2.1	2.6	1.2	1.5	2.6	1.2	1.0^a	1.5^{b}	
$\sigma_{ m PL,anchor}$	Mean of $P-L$ in anchor	0.1		1.5	0.4		1.5	0.4		1.0	
$R\sigma_{\lambda,1,2}$	zeropoints, anchor-to-hosts	1.4	1.4	0.0	0.1	0.7	0.0	0.1	0.1^a	0.0	
σ_Z	Cepheid metallicity, anchor-hosts	0.8	0.2	0.2	0.9	0.2	0.2	0.5	0.15	0.15	
	subtotal per anchor	2.6	2.5	3.0	1.5	1.7	3.0	1.4	1.0	1.8	
			~			~			-~-		
All Anchor	subtotal		1.6			1.0			0.7		
$\sigma_{\rm PL}/\sqrt{n}$	Mean of $P-L$ in SN Ia hosts		0.4			0.4			0.4		
$\sigma_{\rm SN}/\sqrt{n}$	Mean of SN Ia calibrators (# SN)		1.3 (19)		1.3(19)		12-46)		
σ_{m-z}	SN Ia $m\!-\!z$ relation		0.4			0.4			0.4		
$\sigma_{ m PL}$	$P–\!L$ slope, $\Delta\!\log P,$ anchor-hosts		0.6		0.3				0.3		
statistical	error, $\sigma_{\rm H_0}$	2.2			1.8				1.3		
Analysis sy	vstematics ^c	0.8			0.6				0.3		
Total und	certainty on $\sigma_{\rm H_0}$ [%]		2.4			1.9			1.35		

SALZANO VINCENZO

Breuval et al. 2024 (2404.08038): 88 new Cepheids + 15 DEB in SMC, $H_0 = 73.17 \pm 0.86 \ km \, s^{-1} \ Mpc^{-1}$ (1.2% error)

	Table 7. H_0 Error Budgets	s (%), t	erms a	pproxi	mated	from g	lobal f	it		
Term	Description	Riess+ (2016)			Rie	ss+(20)	019)	This work		
		LMC	MW	4258	LMC	MW	4258	LMC	MW	4258
$\sigma_{\mu,\mathrm{anchor}}$	Anchor distance	2.1	2.1	2.6	1.2	1.5	2.6	1.2	1.0^a	1.5^{b}
$\sigma_{\rm PL,anchor}$	Mean of $P-L$ in anchor	0.1		1.5	0.4		1.5	0.4		1.0
$R\sigma_{\lambda,1,2}$	zeropoints, anchor-to-hosts	1.4	1.4	0.0	0.1	0.7	0.0	0.1	0.1^a	0.0
σ_Z	Cepheid metallicity, anchor-hosts	0.8	0.2	0.2	0.9	0.2	0.2	0.5	0.15	0.15
	subtotal per anchor	2.6	2.5	3.0	1.5	1.7	3.0	1.4	1.0	1.8
			~		_	~		_		
All Anchor	subtotal		1.6			1.0			0.7	
$\sigma_{ m PL}/\sqrt{n}$	Mean of $P-L$ in SN Ia hosts		0.4			0.4			0.4	
$\sigma_{\rm SN}/\sqrt{n}$	Mean of SN Ia calibrators (# SN)		1.3(19)		1.3 (19)		0.9 (4	2-46)
σ_{m-z}	SN Ia $m\!-\!z$ relation		0.4		0.4			0.4		
$\sigma_{ m PL}$	$P–\!L$ slope, $\Delta\!\log P,$ anchor-hosts		0.6			0.3			0.3	
statistical	error, $\sigma_{\rm H_0}$		2.2		1.8			1.3		
Analysis sy	vstematics ^c	0.8			0.6			0.3		
Total und	certainty on $\sigma_{\rm H_0}$ [%]		2.4			1.9			1.35	
-										

SALZANO VINCENZO

The Hubble tension

SH0ES uses log(D_L -series) !!! Proper use: μ -series; $\mu < \log D_L \Rightarrow \downarrow H_0$ Effect $\lesssim 0.01\%$, no change in H_0

	Table 7. H_0 Error Budgets	s (%), t	erms a	pproxi	mated	from g	lobal fi	it			
Term	Description	Riess+ (2016)			Rie	ss + (20)	019)	This work			
		LMC	MW	4258	LMC	MW	4258	LMC	MW	4258	
$\sigma_{\mu,\mathrm{anchor}}$	Anchor distance	2.1	2.1	2.6	1.2	1.5	2.6	1.2	1.0^a	1.5^{b}	
$\sigma_{ m PL,anchor}$	Mean of $P-L$ in anchor	0.1		1.5	0.4		1.5	0.4		1.0	
$R\sigma_{\lambda,1,2}$	zeropoints, anchor-to-hosts	1.4	1.4	0.0	0.1	0.7	0.0	0.1	0.1^a	0.0	
σ_Z	Cepheid metallicity, anchor-hosts	0.8	0.2	0.2	0.9	0.2	0.2	0.5	0.15	0.15	
	subtotal per anchor	2.6	2.5	3.0	1.5	1.7	3.0	1.4	1.0	1.8	
			~		_	~		_	~		
All Anchor	subtotal		1.6			1.0			0.7		
$\sigma_{\rm PL}/\sqrt{n}$	Mean of $P-L$ in SN Ia hosts		0.4			0.4			0.4		
$\sigma_{\rm SN}/\sqrt{n}$	Mean of SN Ia calibrators (# SN)		1.3 (19)		1.3 (19)		0.9 (4	2-46)	
σ_{m-z}	SN I a $m\!-\!z$ relation		0.4			0.4			0.4		
$\sigma_{ m PL}$	$P-L$ slope, $\Delta \log P$, anchor-hosts		0.6			0.3			0.3		
statistical	error, $\sigma_{\rm H_0}$		2.2		1.8			1.3			
Analysis sy	vstematics ^c	0.8			0.6			0.3			
Total unc	certainty on $\sigma_{\rm H_0}$ [%]		2.4			1.9			1.35		

SALZANO VINCENZO

The Hubble tension

"Old" Cepheids problems: metallicity?

	Table 7. H_0 Error Budgets	s (%), t	erms a	pproxi	mated	from g	lobal f	it		
Term	Description	Riess+ (2016)			Riess+ (2019)			This work		
		LMC	MW	4258	LMC	MW	4258	LMC	MW	4258
$\sigma_{\mu,\mathrm{anchor}}$	Anchor distance	2.1	2.1	2.6	1.2	1.5	2.6	1.2	1.0^a	1.5^{b}
$\sigma_{ m PL,anchor}$	Mean of $P-L$ in anchor	0.1		1.5	0.4		1.5	0.4		1.0
$R\sigma_{\lambda,1,2}$	zeropoints, anchor-to-hosts	1.4	1.4	0.0	0.1	0.7	0.0	0.1	0.1^a	0.0
σ_Z	Cepheid metallicity, anchor-hosts	0.8	0.2	0.2	0.9	0.2	0.2	0.5	0.15	0.15
	subtotal per anchor	2.6	2.5	3.0	1.5	1.7	3.0	1.4	1.0	1.8
			~			~				
All Anchor	subtotal		1.6			1.0			0.7	
$\sigma_{ m PL}/\sqrt{n}$	Mean of $P-L$ in SN Ia hosts		0.4			0.4			0.4	
$\sigma_{\rm SN}/\sqrt{n}$	Mean of SN Ia calibrators $(\# SN)$		1.3(19)		1.3(19)		0.9 (4	12-46)
σ_{m-z}	SN Ia $m-z$ relation		0.4			0.4			0.4	
$\sigma_{ m PL}$	$P-L$ slope, $\Delta \log P$, anchor-hosts		0.6			0.3			0.3	
statistical	error, $\sigma_{\rm H_0}$		2.2			1.8			1.3	
Analysis sy	vstematics ^c		0.8			0.6			0.3	
Total und	certainty on $\sigma_{\rm H_0}$ [%]		2.4			1.9			1.35	

SALZANO VINCENZO

The Hubble tension

"Old" Cepheids problems: metallicity? NO: $\sim 0.5 \ km \ s^{-1} \ Mpc^{-1}$ (\uparrow)

SALZANO VINCENZO

The Hubble tension

POTOR 10 19 / 67

"Old" Cepheids problems: Dust?

	Table 7. H_0 Error Budgets	s (%), t	erms a	pproxi	mated	from g	lobal f	it		
Term	Description	Riess+ (2016)			Rie	ss + (2)	019)	This work		
		LMC	MW	4258	LMC	MW	4258	LMC	MW	4258
$\sigma_{\mu,\mathrm{anchor}}$	Anchor distance	2.1	2.1	2.6	1.2	1.5	2.6	1.2	1.0^a	1.5^{b}
$\sigma_{\mathrm{PL,anchor}}$	Mean of $P-L$ in anchor	0.1		1.5	0.4		1.5	0.4		1.0
$R\sigma_{\lambda,1,2}$	zeropoints, anchor-to-hosts	1.4	1.4	0.0	0.1	0.7	0.0	0.1	0.1^{a}	0.0
σ_Z	Cepheid metallicity, anchor-hosts	0.8	0.2	0.2	0.9	0.2	0.2	0.5	0.15	0.15
	subtotal per anchor	2.6	2.5	3.0	1.5	1.7	3.0	1.4	1.0	1.8
		_	~		_	~				
All Anchor	r subtotal		1.6			1.0			0.7	
$\sigma_{\rm PL}/\sqrt{n}$	Mean of $P-L$ in SN Ia hosts		0.4			0.4			0.4	
$\sigma_{\rm SN}/\sqrt{n}$	Mean of SN Ia calibrators (# SN)		1.3(19)		1.3(19)		0.9 (4	12-46)
σ_{m-z}	SN Ia $m\!-\!z$ relation		0.4			0.4			0.4	
$\sigma_{ m PL}$	$P–\!L$ slope, $\Delta\!\log P,$ anchor-hosts		0.6			0.3			0.3	
statistical	error, $\sigma_{\rm H_0}$	2.2			1.8			1.3		
Analysis sy	ystematics ^c		0.8		0.6			0.3		
Total und	certainty on $\sigma_{\mathrm{H}_{0}}$ [%]		2.4			1.9			1.35	

SALZANO VINCENZO

The Hubble tension

"Old" Cepheids problems: Dust? NO: well constrained from multi-bands

SALZANO VINCENZO

The Hubble tension

• One instrument for all Cepheids, HST. Good:

- Multiple photometric systems/instruments for Cepheids, 1.4 1.8% systematic error in distance measurements
- \rightarrow SNeIa from Pantheon+, an homogenized sample from 18 surveys
- One instrument for all Cepheids, HST. Good?
 - → But what if hidden systematics?
 - → Cross-check from JWST
 - \rightarrow Useful to solve "crowding"

Crowding

SALZANO VINCENZO

The Hubble tension

Crowding

SALZANO VINCENZO

• One instrument for all Cepheids, HST. Good:

- Multiple photometric systems/instruments for Cepheids, 1.4 1.8% systematic error in distance measurements
- \rightarrow SNeIa from *Pantheon+*, an homogenized sample from 18 surveys

One instrument for all Cepheids, HST. Good?

- → But what if hidden systematics?
- ✓ Cross-check from JWST
- Useful to solve "crowding"
- ✓ JWST = 2.5 times reduction in the dispersion of the Cepheid P–L relations;
- no significant difference in the mean distance measurements from HST and JWST

- One instrument for all Cepheids, HST. Good:
 - Multiple photometric systems/instruments for Cepheids, 1.4 1.8% systematic error in distance measurements
 - \rightarrow SNeIa from Pantheon+, an homogenized sample from 18 surveys

One instrument for all Cepheids, HST. Good?

- → But what if hidden systematics?
- Cross-check from JWST
- Useful to solve "crowding"
- ✓ JWST = 2.5 times reduction in the dispersion of the Cepheid P–L relations
- no significant difference in the mean distance measurements from HST and JWST
- \rightarrow NGC7250 at 20 *Mpc*, area 8 times larger than NGC4258 at 7 *Mpc*; at 40 *Mpc*, area 33 times larger. Any distance effects?

Model: crowding linear with distance to solve Hubble tension, i.e. on average $5 \log(73/67.5) = 0.17 \text{ mag}$ or $\sim 0.07 \text{ mag}$ bias per mag of distance

- One instrument for all Cepheids, HST. Good:
 - Multiple photometric systems/instruments for Cepheids, 1.4 1.8% systematic error in distance measurements
 - \rightarrow SNela from *Pantheon+*, an homogenized sample from 18 surveys
- One instrument for all Cepheids, HST. Good?
 - → But what if hidden systematics?
 - ✓ Cross-check from JWST
 - ✓ Useful to solve "crowding"
 - ✓ JWST = 2.5 times reduction in the dispersion of the Cepheid P–L relations
 - no significant difference in the mean distance measurements from HST and JWST
 - ✓ NGC7250 at 20 Mpc, area 8 times larger than NGC4258 at 7 Mpc; at 40 Mpc, area 33 times larger. Any distance effect?
 - \checkmark No, rejected at 8.2 σ , more than Hubble tension itself

Approaching the third Great Debate?

The contestant: the Chicago-Carnegie Hubble Program (*CCHP*).

Status Report on the Chicago-Carnegie Hubble Program (CCHP): Three Independent Astrophysical Determinations of the Hubble Constant Using the James Webb Space Telescope

Wendy L. Freedman,¹ Barry F. Madore,² In Sung Jang,^{3,4} Taylor J. Hoyt,⁵ Abigail J. Lee,^{3,4,†} and Kayla A. Owens^{3,4}

arXiv:2408.06153

What if there is a Cepheid-bias?

SALZANO VINCENZO

The Hubble tension

POTOR 10

29 / 67

CCHP:

- 10 galaxies + NGC4258 (anchor), $D\lesssim$ 23 Mpc
- 3 independent methods
 - Cepheids
 - Tip of the Red Giant Branch (TRGB)
 - Carbon-rich Asymptotic Giant Branch stars in the J band (JAGB)
- same 2 instruments for everything (new JWST + archival HST)
- comparing with SH0ES data
- blinding procedure: "during the entire year and a half of the photometric analysis, no one in the group had any knowledge of what the true distances or the value of H₀ might be." (cit.)

SALZANO VINCENZO

The Hubble tension

POTOR 10 31 / 67

TRGB:

• Well-based physics: luminosity of $M_{core}^{He} \sim 0.47 \, M_{\odot}$ with $T \approx 10^8 \, K$

SALZANO VINCENZO
TRGB:

• Well-based physics: luminosity of $M_{core}^{He} \sim 0.47 \ M_{\odot}$ with $T \approx 10^8 \ K$

SALZANO VINCENZO

The Hubble tension

POTOR 10 33 / 67

TRGB:

• Well-based physics: luminosity of $M_{core}^{He} \sim 0.47 \, M_{\odot}$ with $T \approx 10^8 \, K$

TRGB:

• Well-based physics: luminosity of $M_{core}^{He} \sim 0.47~M_{\odot}$ with $T pprox 10^8~K$

TRGB:

• Well-based physics: luminosity of $M_{core}^{He} \sim 0.47 \, M_{\odot}$ with $T \approx 10^8 \, K$

SALZANO VINCENZO

JAGB ≡ constant luminosities: • LMC: JAGB+DEB

SALZANO VINCENZO

The Hubble tension

POTOR 10

 $JAGB \equiv constant luminosities:$

• LMC: JAGB+DEB

SALZANO VINCENZO

 $JAGB \equiv constant luminosities:$

• LMC: JAGB+DEB; SMC: JAGB+DEB

SALZANO VINCENZO

The Hubble tension

POTOR 10 39 / 67

 $JAGB \equiv constant luminosities:$

• LMC: JAGB+DEB; SMC: JAGB+DEB; and more...

Results of CCHP project: comparing distances

SALZANO VINCENZO

The Hubble tension

Results of CCHP project: comparing distances

SALZANO VINCENZO

The Hubble tension

Results of CCHP project: comparing distances

SALZANO VINCENZO

The Hubble tension

Results of CCHP project: comparing distances

SALZANO VINCENZO

POTOR 10

Results of CCHP project + CSP vs. *SH0ES*:

- 3 independent distances, 10 hosts vs. 1 distance, 37 hosts
 - not free parameters vs. free parameters (?)
- 11 calibrating SNeIa (JWST) vs. 42 (HST)

T-1-1- 0

- 287 SNela at z > 0.01 vs. 277 SNela at z > 0.023
- CSP homogenized in the run vs. *Pantheon+* a posteriori

• 9 parameters (1 cosmological) vs. 46 (1 cosmological)

Table 5. pymc MOMO Parameter Output											
Parameter	TRGB	JAGB	Cepheids								
P^0 (mag)	-19.20 ± 0.05	-19.26 ± 0.05	-19.13 ± 0.05								
P^1 (mag)	-0.90 ± 0.10	-0.90 ± 0.10	-0.90 ± 0.10								
$P^2 (mag)$	-0.28 ± 0.29	-0.29 ± 0.29	-0.29 ± 0.28								
β	2.91 ± 0.09	2.92 ± 0.09	2.92 ± 0.09								
$\alpha \ (mag/dex)$	0.00 ± 0.01	0.00 ± 0.01	0.00 ± 0.01								
$\sigma_{\rm cal} \ ({\rm mag})$	0.14 ± 0.05	0.11 ± 0.05	0.12 ± 0.06								
$\sigma_{\rm int} \ ({\rm mag})$	0.19 ± 0.01	0.19 ± 0.01	0.19 ± 0.01								
$V_{pec} (km s^{-1})$	174 ± 99	175 ± 99	175 ± 99								
H ₀	69.85 ± 1.75	67.96 ± 1.57^{a}	72.05 ± 1.86								

MCMC Deserves Ordered

SALZANO VINCENZO

Results of CCHP project + CSP vs. *SH0ES*:

• JAGB: 67.96 \pm 1.57, TRGB: 69.85 \pm 1.75, Cepheids: 72.05 \pm 1.86

SALZANO VINCENZO

Results of CCHP project + CSP vs. SH0ES: does SH0ES have problems?

• SNela calibration *M_B*. Small sample? Poorer resolution?

SALZANO VINCENZO

Results of CCHP project + CSP vs. SH0ES: does SH0ES have problems?

• Variations in M_B due to reanalysis: $M_B \downarrow -0.037 \Rightarrow H_0 \downarrow 1.7\%$

SALZANO VINCENZO

The Hubble tension

A different strategy: hosts with multiple independent calibrators
Results of CCHP project + CSP vs. SH0ES: does SH0ES have problems?
SNela calibration M_B: bimodality, nearby vs. distant?

SALZANO VINCENZO

A different strategy: hosts with multiple independent calibrators
Results of CCHP project + CSP vs. SH0ES: does SH0ES have problems?
SNela calibration M_B: bimodality, nearby vs. distant?

SALZANO VINCENZO

Approaching the third Great Debate?

The counterattack from SH0ES.

JWST Validates HST Distance Measurements: Selection of Supernova Subsample Explains Differences in JWST Estimates of Local H₀

Adam G. Riess,^{1,2} Dan Scolnic,³ Gagandeep S. Anand,¹ Louise Breuval,² Stefano Casertano,¹ Lucas M. Macri,⁴ Siyang Li,² Wenlong Yuan,² Caroline D. Huang,⁵ Saurabh Jra,⁶ Yukei S. Murakami,² Rachael Beaton,¹ Dillon Brout,⁷ Tianrui Wu,³ Graeme E. Addison,² Charles Bennett,² Richard I. Anderson,⁸ Alexei V. Filippenko,⁹ and Anthony Carr^{0,11}

arXiv:2408.11770

Reply of *SH*0*ES*:

 full HST Cepheid SH0ES sample, 42 SNe Ia in 37 hosts, 4 different anchors ≡ ideal reference for all other samples

• *SH*0*ES*:

- 1. JWST more precise but fewer statistics than HST
- 2. JWST: hosts (5) by numbers of Cepheids and SNela (8) per host
- **3**. +HST: *D* ≤ 80 *Mpc*
- 4. 1 anchor, NGC4258 (re-analysis)

• CCHP:

- 1. just a sub-sample of HST SH0ES
- JWST: hosts (10) with SNeIa (11) to measure Cepheids, TRGB and JAGB
- **3**. *D* ≤ 25 *Mpc*
- 4. 1 anchor, NGC4258

Perfect agreement (in the distances)

	HST Cepheids JWST Cepheids			JWST TRGB			HST TRGB			JWST	JAGB		Miras					
Host	R22	err	CCHP	err	SH0ES	err	CCHP	err	SH0ES	err	F21	err	CCHP	err	SH0ES	err	H24	err
N4258	29.4	0.025	29.4	0.087	29.4	0.03	29.4	0.035	29.4	0.05	29.4	0.04	29.4	0.05	29.4	0.05	29.4	0.04
M101	29.188	0.055	29.14	0.08	29.12	0.03	29.18	0.04	-	-	29.08	0.04	29.22	0.04	-	-	29.1	0.06
N1309	32.552	0.069	-	-	-	-	-	-	-	-	32.49	0.07^{b}	-	-	-	-	-	-
N1365	31.378	0.061	31.26	0.1	-	-	31.33	0.07	-	-	31.36	0.05	31.39	0.04	-	-	-	-
N1448	31.298*	0.051	-	-	31.289	0.03	-	-	31.38	0.07	31.32	0.06	-	-	31.29	0.04	-	-
N1559	31.500*	0.071	-	-	31.371	0.03	-	-	31.5	0.05	-	-	-	-	31.39	0.04	31.41	0.08
N2442	31.459	0.073	31.47	0.09	-	-	31.61	0.09	-	-	-	-	31.61	0.04	-	-	-	-
N2525	32.059	0.11	-	-	-	-	-	-	31.81	0.08	-	-	-	-	-	-	-	-
N3021	32.473	0.162	-	-	-	-	-	-	-	-	32.22^{b}	0.05	-	-	-	-	-	-
N3370	32.130	0.06	-	-	-	-	-	-	-	-	32.27^{b}	0.05	-	-	-	-	-	-
N3447	31.947	0.05	-	-	31.95	0.03	-	-	31.92	0.09	-	-	-	-	31.85	0.07	-	-
N3972	31.644	0.096	31.67	0.1	-	-	31.74	0.07	-	-	-	-	-	-	-	-	-	-
N4038	31.612	0.121	31.7	0.12	31.67	0.035	31.61	0.08	-	-	31.68	0.05	-	-	-	-	-	-
N4424	30.854	0.133	30.91	0.22	-	-	30.93	0.05	-	-	31.0	0.06	-	-	-	-	-	-
N4536	30.870	0.061	30.95	0.12	-	-	30.94	0.06	-	-	30.96	0.05	30.98	0.03	-	-	-	-
N4639	31.823	0.091	31.8	0.12	-	-	31.75	0.07	-	-	-	-	31.74	0.04	-	-	-	-
N5468	33.127^*	0.082	-	-	32.975	0.03	-	-	-	-	-	-	-	-	-	-	-	-
N5584	31.766*	0.062		-	31.838	0.03	-	-	31.81^{b}	0.09	31.82	0.1	-	-	31.85	0.04	-	-
N5643	30.553^{*}	0.063	30.51	0.08	30.52	0.03	30.61	0.07	30.56	0.06	30.475	0.08	30.59	0.04	30.49	0.04	-	-
N7250	31.642	0.13	31.41	0.12	-	-	31.62	0.04	-	-	-	- 1	31.6	0.08	-	-	-	-

*R24 Table 3 refit R22 HST Cepheids to a common P-L slope with JWST at the same wavelength to negate common error. These HST distance-modulus values (mag) improve the Cepheid comparison with JWST and are N5643, 30.518 \pm 0.033, N5554, 31.828 \pm 0.037, N1559, 31.473 \pm 0.045, N1448, 31.236 \pm 0.034, N5648, 33.058 \pm 0.032, N5554, 31.828 \pm 0.037, N1559, 31.473 \pm 0.045, N1448, 31.236 \pm 0.034, N5648, 33.058 \pm 0.032, N1559, 31.473 \pm 0.045, N1448, 31.236 \pm 0.034, N5648, 33.058 \pm 0.032, N1559, 31.473 \pm 0.045, N1448, 31.236 \pm 0.034, N5648, 33.058 \pm 0.032, N1559, 31.473 \pm 0.045, N1448, 31.236 \pm 0.034, N5648, 33.058 \pm 0.032, N1559, 31.473 \pm 0.045, N1448, 31.236 \pm 0.034, N5648, 33.058 \pm 0.032, N1559, 31.473 \pm 0.045, N1448, 31.236 \pm 0.034, N5648, 33.058 \pm 0.034, N5648, 33.0584, 31.236 \pm 0.034, N5648, 34.0584, 34.05

SALZANO VINCENZO

The Hubble tension

No systematic difference (in the distances)

SALZANO VINCENZO

The Hubble tension

POTOR 10 53 / 67

Non linearity (of Cepheid distances found from CCHP)?

SALZANO VINCENZO

The Hubble tension

Non linearity? Nope?! Because $M_B = m_B - \mu$ (??)

SALZANO VINCENZO

The Hubble tension

Non linearity? Independent axis: linearity \neq Hubble tension at 7σ

SALZANO VINCENZO

POTOR 10 56 / 67

Subsample bias (SH0ES still using Pantheon+ SNela)

SALZANO VINCENZO

The Hubble tension

POTOR 10

Subsample bias (SH0ES still using Pantheon+ SNela)

Subsample bias (SH0ES still using Pantheon+ SNela)

End? (for now)

SALZANO VINCENZO

End? For now: $H_0 = 72.6 \pm 2.0 \ km \ s^{-1} \ Mpc^{-1}$

SALZANO VINCENZO

Where we are? Where are we going?

Hubble Tension or Distance Ladder Crisis?

Leandros Perivolaropoulos^{1, *}

¹Department of Physics, University of Ioannina, GR-45110, Ioannina, Greece* (Dated: September 4, 2024)

On the implications of the 'cosmic calibration tension' beyond H_0 and the synergy between early- and late-time new physics

Vivian Poulin⁰,^{1,*} Tristan L. Smith⁰,^{2,†} Rodrigo Calderón⁰,^{3,‡} and Théo Simon⁰,[§]

¹Laboratoire univers et particules de Montpellier (LUPM), Centre national de la recherche scientifique (CNRS) et Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cédex 05, France ²Department of Physics and Astronomy, Swarthmore College, 500 College Ave., Swarthmore, PA 19081, USA ³Korea Astronomy and Space Science Institute, Daejeon 34055, Republic of Korea (Dated: July 29, 2024)

arXiv:2407.18292, arXiv:2408.04530, arXiv:2408.11031

- ... moving beyond early vs. late times H_0 ?...
 - Distance Ladder-based sample: $H_0 = 72.8 \pm 0.5 \ km \ s^{-1} \ Mpc^{-1}$
 - Independent (NO CMB) sample: $H_0=69.0\pm0.5$ km s $^{-1}$ Mpc $^{-1}$

suggesting that the two samples are fundamentally distinct, with a probability of less than 0.01% that they are drawn from the same underlying distribution. These findings suggest that the core of the Hubble tension lies not between early and late-time measurements, but between distance ladder measurements and all other H_0 determinations. This discrepancy points to either a systematic effect influencing all distance ladder measurements or a fundamental physics anomaly affecting at least one rung of the distance ladder.

But introducing:

- unknown unknowns
- new physics of calibrators (mostly astrophysics?)
- subtly but deeply questioning SH0ES?!

Are we shifting far from current "convention"...

... or just rebranding the problem as a "Cosmic calibration tension"...

... because of multi-dimensional cosmological degeneracies...

... which neither only-late nor only-early times models can accommodate?

SALZANO VINCENZO

Are we shifting far from current "convention"?

... which neither only-late nor only-early times models can accommodate?

... which neither only-late nor only-early times models can accommodate?

SALZANO VINCENZO

POTOR 10

Bahcall J. N., 1996, PASP 108, 1097

The biggest surprise for me in listening to the debate was to learn about the great amount of precision data regarding ordinary stars, supernovae, galaxies, and galaxy clusters that is being obtained in order to determine H_0 . These data are providing new discoveries and deep insights into many astrophysical problems. It is almost worth having a big controversy just to stimulate the enormous research activity that is motivated by a desire to measure the Hubble constant. On the long term, it could turn out that the incidental results obtained from the Hubble-constant controversy are even more important than the precise value of H_0 .

Bahcall J. N., 1996, PASP 108, 1097

There was, in the actual discussion, much less disagreement than I had anticipated. The two preferred values for H_0 almost overlap when systematic uncertainties are added to the statistical uncertainties. After much careful work and critical evaluation, we no longer have a disagreement by a factor of two. This is great progress!

Bahcall J. N., 1996, PASP 108, 1097

I was, however, struck by the lack of a clear path to a final consensus. I had hoped that the participants in the debate would agree on some measurement, or set of measurements, the results of which would be decisive. Instead, there were, as is perhaps appropriate for a debate, a number of arguments given to show that the evidence presented by the other side was biased or not sufficient for the conclusions being

Bahcall J. N., 1996, PASP 108, 1097

I did not succeed in getting agreement about what needs to be done to determine, with widespread consensus, a more accurate value of H_0 . In my eyes, I therefore failed in my primary goal as a moderator. Moreover, I did not hear discussed a particular measurement, or set of measurements, the results of which would be so persuasive that everyone would say: "That is so simple and clear, it must give the correct value of H_0 ." I therefore had to struggle to prevent myself from asking what I am sure everyone present would have regarded as a silly question, namely: Is the value of H_0 that is being debated operationally well defined?

Personal announcement

2 Postdoctoral positions in Cosmology and Computational Science

Szczecin U., Warsaw, Inst. Fund. Tech. Res. • Europe

() Deadline on Oct 31, 2024

Job description:

The Szczecin Cosmology Group at the Institute of Physics of the University of Szczecin (http://cosmo.usz.edu.pl) and the Division of Intelligent Systems at the Department of Intelligent Technologies (https://www.ippt.pan.pl/en/research-units/zti#division-of-intelligent-systems) of the Institute of Fundamental Technological Research of the Polish Academy of Sciences (IPPT-PAN) in Warsaw, invite applications for 2 Postdoctoral positions.

The positions are available through the OPUS 26 grant of the Polish National Science Center (NCN) led by prof. Vincenzo Salzano, at the University of Szczecin, as P.I., and entitled "Can a slime mold help us alleviate cosmological tensions?". Co-P.I. will be prof. Tomasz Denkiewicz, at the University of Szcecin, and dr. Jacek Szklarski at IPPT-PAN.

https://inspirehep.net/jobs/2804674

DZIĘKUJĘ BARDZO!

I STICK TO MY OPINION

PLEASE DO NOT CONFUSE ME WITH FACTS