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Harada's field equations

® Conformal Killing gravity is a relativistic theory of gravitation proposed by
J. Harada in 2023.

® The theory was constructed under the following assumptions

® The cosmological constant may appear in the solutions of the field equations only as an

integration constant.
The divergencelessness of the energy-momentum tensor should be a consequence of the
field equations.

® Conformally flat metrics should not necessarily be solutions of the vacuum field equations.

® The name of the theory comes from the fact that it has an alternative formulation
in which the Einstein field equations are modified by the conformal Killing tensor.



Harada's field equations

® The field equations of the conformal Killing gravity are expressed as follows
Himn = T mn,

where the coupling constant is » = 8:—46, where c is the speed of light, G is the
gravitational constant and we define

H/mn = VIhmn + Vnhlm + vmhnh

Tlmn = vItmn + vntlm + thn/’

where
1 a 1 a
hmn = Gmn — ggmnG ED tmn = Tmn— ggmnT as
where G, is the Einstein tensor and T ;5 is the energy-momentum tensor.

® We note that when Gnn = % T mp the field equations are identically satisfied.



Harada's field equations

The tensor H;mn has the following properties
Hlmn = Hlnmy Hlmn = HITIII‘H Hnaa = 07

which means, it is a trace-free totally symmetric rank-3 tensor.

The tracelessness of the tensor H;m,, taken together with the field equations yields
the divergencelessness of the energy-momentum tensor.

In D dimensions, the number of independent components of a tensor field with the
symmetries of the tensor H;m, equals

(D;—Q) _ D,

which is the number of 3-element combinations with repetitions of the D-element
set minus the number of dimensions. In 4 dimensions this number equals 16.



Decomposition of the tensor H;mn

® We are going to consider some cosmological space-time with a metric tensor gmn
and some matter flow with a 4-velocity vector u, normalized as u?u, = —1. We
use the projection tensor Pp,, defined as

Pmn = umun + &mn.

® The tensor H;mn can be decomposed into irreducible parts with respect to the
4-velocity up, as

Himn = —ujumuna + (UleiUn + PIiUmun + UIUmPnf)bi
- (PIIPmJUn + UIPmJPnI + PIJumPnl) (Cfi + gpjld)

+ e/mn+ g(PIlenJFPnIP/m“FPm'Pnl)fi'



Decomposition of the tensor H;mn

® The newly introduced quantities are defined as follows
® two scalars b .
a=uuv’u’Hcpa, d=uP?Hcp,,
where because of the tracelessness of the tensor H,,,, we have d = a,
two spatial vectors

b, = UCUanchbag fn= PnCPbchbm Uibi = Uifi =0,

where similarly because of the tracelessness of the tensor Hn,,, we have f, = b,
® trace-free symmetric rank-2 spatial tensor

1 .
cmn = U (Pn"Pa® = SPmoP"")Hebs:  Weni =0, cpn=com =0,
® trace-free totally symmetric rank-3 spatial tensor
1
eimn = (PiPn"Ps® = & (PiPrn + PuPim + P Puy) P**) Heb,

i _ _ _ i
uempi =0, €mn = €Inm, €/mn = €min, eni=0.

® The field b, has 3 independent components, the field c¢;»m has 5 and the field e;mn
has 7.



Basic identities

In the temporal-spatial splitting method applied to cosmology, there are generally
used some basic identities, which we now list.

The divergencelessness of the energy-momentum tensor
VaTha =0.
The Ricci identities for the flow 4-velocity
Vi Vmun —ViViup — Rymnus =0,

where Ry mn is the Riemann tensor.

The divergencelessness of the Einstein tensor
V2Gpa = 0.

Since we do not assume the Einstein field equations, the above identity is
independent of the divergencelessness of the energy-momentum tensor.
The Bianchi identities

Vaclmna - Cnml =0,

where Cyymn is the Weyl tensor and C;mp is the Cotton tensor.



Model settings

® We define the cosmological model under consideration as one filled with a purely
expanding perfect fluid. This means that for the 4-velocity it holds

1
Vmun = *Pmnga
3
where 6 is the expansion rate and for the energy-momentum tensor

Tmn = Umunp + Pmnp,

where p is the energy density and p is the pressure.

® Moreover, we decide to assume that the Einstein tensor is built entirely from the
free scalar fields appearing in the problem

Gmn = umun((l +3a)R + 3,302 + 3vp +36p + 36)
+ Pmn (@R + B0% + vp +dp + ¢),

where R is the curvature scalar and «, 3, 7, J, and € are constants. The splitting is
chosen so that it occurs G?; = —R. There is no room for this type of assumption
in the general theory of relativity because of the form of Einstein's field equations.



Model properties

® We continue by trying to fully exploit the mentioned identities and Harada's field
equations. After temporal-spatial decomposition, nontrivial constraints give the
following projected equations

® from the divergencelessness of the energy-momentum tensor
WPVIT =0, PVTy, =0,
® from the Ricci identities
u P (Vg Veuy — VeVaup — Racs’ti3) =0,
PnCde(vdchb — VeVaup — Rdcbaua) =0,
® from the divergencelessness of the Einstein tensor
WVGh =0,  P,’VGp, =0,
® from the Bianchi identities
uwP,Cu’ (vacdcba - Cbcd) =0,
® from the Harada field equations

ucubua(cha — %cha) =0.



Model properties

® From these eight equations it follows that the spatial derivatives of the free scalar
fields vanish

Py’V.R=0, P,V.0=0, P,Vip=0, P,2V,p=0,

and the temporal derivatives are given by

a _ 2
u VaR——1+3a9((1+4a)R+469 +4yp + 45p + 4e)
3/8 a 2 37
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Model properties

® |n the absence of dependence on spatial coordinates, we can replace derivatives in
the direction of the 4-velocity u?V, with derivatives with respect to the time
coordinate 0.

® The equations for temporal derivatives of the scalar fields R, 6, p, and p form
a dynamical system with 5 constant parameters (c, 3, 7, d, and €).

® Two important identities can be found for this dynamical system.



Model properties

The first one follows from the general result that when the vorticity rate, the
acceleration and the temporal-spatial part of the Einstein tensor vanish

Wmn = O, MNn = 07 UanaGba = 07
then the tensor field T, defined as

1
Tmn=Rmn — igmnRa

where Rmp is the spatial Ricci tensor and R is its trace, is divergenceless
Ve n, =0.
Applying this identity to the considered model, we obtain
u'V,R + %972 =0,

where here )
R=(2+46a)R — <§ - 66)92 + 6vp + 66p + 6e.



Model properties

® The second one is specific for the conformal Killing gravity and reads
B 2
u’V,T — 391 =0,

where 1 ) 3 3
IT=R— =R+ 6%~ Zsp— Zxp.
2RV TP
In Einstein's general theory of relativity, the scalar Z vanishes in the case of
a purely expanding perfect fluid.



Equation of state

Let us further assume that the matter in the model under consideration obeys the
following linear barotropic equation of state

p = Wp7
where w is a constant. This assumption implies that

5 5+ 3w
== =0, =
a B v 15

» — 0w,

and the dynamical system takes the form

2 1-3w)(5+3
6tR:9(7R7 M%pf24e),
3 3
1.1 543
0.0 = R— L2 23 3
373 6

Otp = —(1+ w)bp.

This is a 3-dimensional dynamical system for scalars R, 6, and p with two constant
parameters (e and w).



Equation of state

® Given the assumed equation of state, the scalars R and Z take the following form

1 2 5+ 3w 1 1—3w
R=-R— Z¢? 6 I=-ZR 6e.
3773 3 PToe 6 T T PTO

Using the differential equations for these scalars, we give two first integrals for the
above dynamical system

2
R(/rp) 3( 1+w) =a, I(%p) 30+w) = o,

where ¢; and ¢, are constants of motion.

® The dynamical system under consideration is completely integrable. Its solution can
be given in the form of the inverse of the integral

1
92:7R+96+5+3W 3C1

3(1+w)
5 5~ — ()

2
R =36e+ (1 — 3w)xp — 6cp(3p) 30+w) |
P

tho= [ —— 1 (276 + 3500 — 2D (o) T — 3¢ (%o)_73(1iw)) do
0 (1+w)o 2 2 ’

0

NI

where ¢p is a constant.



Phase space

® Phase space diagram (R, 0, p) of the considered dynamical system with parameter

values: »x =1, e = é, w = 0.




Phase space
® Fixed points in the phase space (R, 6, p):

® point (R, 0, p) = (36€¢, —3v/3¢, 0), which is unstable,
® point (R, 0, p) = (36¢, 3V/3¢, 0), which is unstable,
® line R =9+ @J«rp, 6 = 0, of non-isolated points that locally change type.

® Fixed points in the phase plane (8, p) at a fixed value of the constant c,:
® for c; < 0 one point: saddle,
® for ¢, = 0 three points: unstable node, stable node and saddle, (exactly as in the general
theory of relativity),
® for 0 < ¢ < ¢, two points: saddle and center,
® for c; = ¢} one point: degenerate saddle,
® for ¢ < ¢ no fixed points.

® The value of the constant c; and the corresponding position of the degenerate
saddle fixed point:
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Summary

® We have considered a purely expanding perfect fluid in the context of the
conformal Killing gravity.

® By making an appropriate assumption about the Einstein tensor, we have
integrated the field equations in the case of a linear barotropic equation of state.

® Phase space diagrams show the variety of possible evolutionary scenarios for the
class of cosmological models under consideration.



