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Harada’s field equations

• Conformal Killing gravity is a relativistic theory of gravitation proposed by
J. Harada in 2023.

• The theory was constructed under the following assumptions
• The cosmological constant may appear in the solutions of the field equations only as an

integration constant.
• The divergencelessness of the energy-momentum tensor should be a consequence of the

field equations.
• Conformally flat metrics should not necessarily be solutions of the vacuum field equations.

• The name of the theory comes from the fact that it has an alternative formulation
in which the Einstein field equations are modified by the conformal Killing tensor.
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Harada’s field equations

• The field equations of the conformal Killing gravity are expressed as follows

H l mn = κT l mn,

where the coupling constant is κ = 8πG
c4 , where c is the speed of light, G is the

gravitational constant and we define

H l mn = ∇l hmn + ∇nhl m + ∇mhnl ,

T l mn = ∇l tmn + ∇nt l m + ∇mtnl ,

where
hmn = Gmn −

1
6

gmnGa
a, tmn = T mn −

1
6

gmnT a
a,

where Gmn is the Einstein tensor and T mn is the energy-momentum tensor.
• We note that when Gmn = κT mn the field equations are identically satisfied.
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Harada’s field equations

• The tensor H l mn has the following properties

H l mn = H l nm, H l mn = Hml n, Hn
a

a = 0,

which means, it is a trace-free totally symmetric rank-3 tensor.
• The tracelessness of the tensor H l mn taken together with the field equations yields

the divergencelessness of the energy-momentum tensor.
• In D dimensions, the number of independent components of a tensor field with the

symmetries of the tensor H l mn equals(D+2
3

)
− D,

which is the number of 3-element combinations with repetitions of the D-element
set minus the number of dimensions. In 4 dimensions this number equals 16.
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Decomposition of the tensor H l mn

• We are going to consider some cosmological space-time with a metric tensor gmn
and some matter flow with a 4-velocity vector un normalized as uaua = −1. We
use the projection tensor Pmn defined as

Pmn = umun + gmn.

• The tensor H l mn can be decomposed into irreducible parts with respect to the
4-velocity un as

H l mn = −ul umuna +
(

ul Pm
i un + P l

i umun + ul umPn
i
)

bi

−
(

P l
i Pm

j un + ul Pm
j Pn

i + P l
j umPn

i
)(

c j i +
1
3

P j i d
)

+ el mn +
1
5
(

P l
i Pmn + Pn

i P l m + Pm
i Pnl

)
f i .



6/19

Decomposition of the tensor H l mn

• The newly introduced quantities are defined as follows
• two scalars

a = uc ubuaHc b a, d = uc Pb aHc b a,

where because of the tracelessness of the tensor H l mn, we have d = a,
• two spatial vectors

bn = uc ubPn
aHc b a, f n = Pn

c Pb aHc b a, ui bi = ui f i = 0,

where similarly because of the tracelessness of the tensor H l mn, we have f n = bn,
• trace-free symmetric rank-2 spatial tensor

cmn = uc
(

Pm
bPn

a −
1
3

PmnPb a
)

Hc b a, ui cni = 0, cmn = cnm, c i
i = 0,

• trace-free totally symmetric rank-3 spatial tensor

el mn =
(

P l
c Pm

bPn
a −

1
5

(
P l

c Pmn + Pn
c P l m + Pm

c Pnl
)

Pb a
)

Hc b a

ui emni = 0, el mn = el nm, el mn = eml n, en
i
i = 0.

• The field bn has 3 independent components, the field cmm has 5 and the field el mn
has 7.



7/19

Basic identities

• In the temporal-spatial splitting method applied to cosmology, there are generally
used some basic identities, which we now list.

• The divergencelessness of the energy-momentum tensor

∇aT na = 0.

• The Ricci identities for the flow 4-velocity

∇l ∇mun − ∇m∇l un − R l mn
aua = 0,

where Rk l mn is the Riemann tensor.
• The divergencelessness of the Einstein tensor

∇aGna = 0.

Since we do not assume the Einstein field equations, the above identity is
independent of the divergencelessness of the energy-momentum tensor.

• The Bianchi identities
∇aC l mna − Cnml = 0,

where Ck l mn is the Weyl tensor and C l mn is the Cotton tensor.



8/19

Model settings

• We define the cosmological model under consideration as one filled with a purely
expanding perfect fluid. This means that for the 4-velocity it holds

∇mun =
1
3

Pmnθ,

where θ is the expansion rate and for the energy-momentum tensor

T mn = umunρ + Pmnp,

where ρ is the energy density and p is the pressure.
• Moreover, we decide to assume that the Einstein tensor is built entirely from the

free scalar fields appearing in the problem

Gmn = umun
(

(1 + 3α)R + 3βθ2 + 3γρ + 3δp + 3ϵ
)

+ Pmn
(

αR + βθ2 + γρ + δp + ϵ
)

,

where R is the curvature scalar and α, β, γ, δ, and ϵ are constants. The splitting is
chosen so that it occurs Gaa = −R. There is no room for this type of assumption
in the general theory of relativity because of the form of Einstein’s field equations.
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Model properties

• We continue by trying to fully exploit the mentioned identities and Harada’s field
equations. After temporal-spatial decomposition, nontrivial constraints give the
following projected equations

• from the divergencelessness of the energy-momentum tensor

ub∇aT b a = 0, Pn
b∇aT b a = 0,

• from the Ricci identities

uc Pd b
(

∇d ∇c ub − ∇c ∇d ub − Rd c b
aua

)
= 0,

Pn
c Pd b

(
∇d ∇c ub − ∇c ∇d ub − Rd c b

aua
)

= 0,

• from the divergencelessness of the Einstein tensor

ub∇aGb a = 0, Pn
b∇aGb a = 0,

• from the Bianchi identities

ud Pn
c ub

(
∇aCd c b a − Cb c d

)
= 0,

• from the Harada field equations

uc ubua
(

Hc b a − κT c b a
)

= 0.
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Model properties

• From these eight equations it follows that the spatial derivatives of the free scalar
fields vanish

Pn
a∇aR = 0, Pn

a∇aθ = 0, Pn
a∇aρ = 0, Pn

a∇ap = 0,

and the temporal derivatives are given by

ua∇aR = −
1

1 + 3α
θ
(

(1 + 4α)R + 4βθ2 + 4γρ + 4δp + 4ϵ
)

−
3β

1 + 3α
ua∇aθ2 −

3γ

1 + 3α
ua∇aρ −

3δ

1 + 3α
ua∇ap,

ua∇aθ = −
(1

2
+ 3α

)
R −

(1
3

+ 3β

)
θ2 − 3γρ − 3δp − 3ϵ,

ua∇aρ = −θ(ρ + p),

ua∇ap = −
5 + 18α

3κ(1 + 3α) − 3δ
θ
(

(1 + 4α)R + 4βθ2 + 4γρ + 4δp + 4ϵ
)

+
3β

3κ(1 + 3α) − 3δ
ua∇aθ2 −

5κ(1 + 3α) − 3γ

3κ(1 + 3α) − 3δ
ua∇aρ.
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Model properties

• In the absence of dependence on spatial coordinates, we can replace derivatives in
the direction of the 4-velocity ua∇a with derivatives with respect to the time
coordinate ∂t .

• The equations for temporal derivatives of the scalar fields R, θ, ρ, and p form
a dynamical system with 5 constant parameters (α, β, γ, δ, and ϵ).

• Two important identities can be found for this dynamical system.
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Model properties

• The first one follows from the general result that when the vorticity rate, the
acceleration and the temporal-spatial part of the Einstein tensor vanish

ωmn = 0, ηn = 0, ubPn
aGba = 0,

then the tensor field Υmn defined as

Υmn = Rmn −
1
2

gmnR,

where Rmn is the spatial Ricci tensor and R is its trace, is divergenceless

∇aΥna = 0.

Applying this identity to the considered model, we obtain

ua∇aR +
2
3

θR = 0,

where here
R = (2 + 6α)R −

(2
3

− 6β

)
θ2 + 6γρ + 6δp + 6ϵ.
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Model properties

• The second one is specific for the conformal Killing gravity and reads

ua∇aI −
2
3

θI = 0,

where
I = R −

1
2

R +
2
3

θ2 −
3
2
κρ −

3
2
κp.

In Einstein’s general theory of relativity, the scalar I vanishes in the case of
a purely expanding perfect fluid.
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Equation of state

• Let us further assume that the matter in the model under consideration obeys the
following linear barotropic equation of state

p = wρ,

where w is a constant. This assumption implies that

α = −
5
18

, β = 0, γ =
5 + 3w

18
κ − δw ,

and the dynamical system takes the form

∂tR = θ

(2
3

R −
(1 − 3w)(5 + 3w)

3
κρ − 24ϵ

)
,

∂tθ =
1
3

R −
1
3

θ2 −
5 + 3w

6
κρ − 3ϵ,

∂tρ = −(1 + w)θρ.

This is a 3-dimensional dynamical system for scalars R, θ, and ρ with two constant
parameters (ϵ and w).
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Equation of state
• Given the assumed equation of state, the scalars R and I take the following form

R =
1
3

R −
2
3

θ2 +
5 + 3w

3
κρ + 6ϵ, I = −

1
6

R +
1 − 3w

6
κρ + 6ϵ.

Using the differential equations for these scalars, we give two first integrals for the
above dynamical system

R(κρ)− 2
3(1+w) = c1, I(κρ)

2
3(1+w) = c2,

where c1 and c2 are constants of motion.
• The dynamical system under consideration is completely integrable. Its solution can

be given in the form of the inverse of the integral

θ2 =
1
2

R + 9ϵ +
5 + 3w

2
κρ −

3c1
2

(κρ)
2

3(1+w) ,

R = 36ϵ + (1 − 3w)κρ − 6c2(κρ)− 2
3(1+w) ,

t + c0 =

ρ∫
0

−
1

(1 + w)o

(
27ϵ + 3κo −

3c1
2

(κo)
2

3(1+w) − 3c2(κo)− 2
3(1+w)

)− 1
2

do,

where c0 is a constant.
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Phase space
• Phase space diagram (R, θ, ρ) of the considered dynamical system with parameter

values: κ = 1, ϵ = 1
9 , w = 0.
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Phase space
• Fixed points in the phase space (R, θ, ρ):

• point (R, θ, ρ) = (36ϵ, −3
√

3ϵ, 0), which is unstable,
• point (R, θ, ρ) = (36ϵ, 3

√
3ϵ, 0), which is unstable,

• line R = 9ϵ + 5+3w
2 κρ, θ = 0, of non-isolated points that locally change type.

• Fixed points in the phase plane (θ, ρ) at a fixed value of the constant c2:
• for c2 < 0 one point: saddle,
• for c2 = 0 three points: unstable node, stable node and saddle, (exactly as in the general

theory of relativity),
• for 0 < c2 < c∗

2 two points: saddle and center,
• for c2 = c∗

2 one point: degenerate saddle,
• for c∗

2 < c2 no fixed points.
• The value of the constant c∗

2 and the corresponding position of the degenerate
saddle fixed point:

w c∗
2 (θ,κρ)

1 27×3
2
3

16 ϵ
4
3 (0, 9ϵ

8 )
2
3

45×3
2
5

7×2
1
5 7

2
5

ϵ
7
5 (0, 12ϵ

7 )
1
3 3

√
3ϵ

3
2 (0, 3ϵ)

0 81×6
1
3

5×5
2
3

ϵ
5
3 (0, 36ϵ

5 )
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Phase space
• Phase plane diagrams (θ, ρ) of the considered dynamical system at a fixed value of

the constant c2 with parameter values: κ = 1, ϵ = 1
9 , w = 0.
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Summary

• We have considered a purely expanding perfect fluid in the context of the
conformal Killing gravity.

• By making an appropriate assumption about the Einstein tensor, we have
integrated the field equations in the case of a linear barotropic equation of state.

• Phase space diagrams show the variety of possible evolutionary scenarios for the
class of cosmological models under consideration.


