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Outline
General Relativity, in spite of its wide theoretical success and
experiment validations is not renormalizable.

Adding higher spatial-derivative terms to the Lagrangian makes the
theory renormalizable at high energies.

However, that demands giving up on the idea of space-time invariance
under four-dimensional diffeomorphisms.

Hořava proposed gravity equipped with an anisotropic scaling at the
Planck scale given in term of a critical Lifshitz exponent.

The resulting theory was proven to be fully perturbatively renormalizable
in all spatial dimensions.

There have been several attempts to put observational bounds on
Hořava gravity parameters.

Our paper focuses on a parameter describing deviations from GR.

I E. Czuchry, N.A. Nilsson, On the energy flow of λ in Hořava-Lifshitz
cosmology, Phys. Rev. D 110 (2024), 043502.
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Non-renormalizabilty of GR

In four-dimensional spacetimes GN has the dimension of
(mass)−2 (in units ~ = 1 = c),
It should be larger than or equal to zero in order for the theory to
be renormalizable perturbatively
The expansion of a given physical quantity F in terms of GN must
be in the form

F =
∞∑

n=0

an

(
GNE2

)n
,

where E denotes the energy of the system, so
(
GNE2) is

dimensionless.
When E2 & G−1

N , such expansions diverge.
Therefore, it is expected that perturbative effective QFT is broken
down at such energies. It is in this sense that GR is often said to
be not perturbatively renormalizable.
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Higher order GR and non-unitarity
Including high-order derivative corrections in the action improves
ultraviolet (UV) behavior:

SEH =

∫
d4x
√
−gR,

like for example adding a quadratic term RµνRµν .

It causes the change of the gravitational propagator from 1/k2 to

1
k2 +

1
k2 GNk4 1

k2 +
1
k2 GNk4 1

k2 GNk4 1
k2 + .... =

1
k2 −GNk4 .

At UV the propagator is dominated by the term 1/k4, and the UV
divergence can be cured.

However, the modified theory is not unitary, there are two poles:
1

k2 −GNk4 =
1
k2 −

1
k2 −G−1

N

,

The 1/k2 describes a massless spin-2 graviton, while 1/(k2 −G−1
N ) a

massive one but with a wrong sign – actually a ghost.

The existence of this ghost makes the theory not unitary.
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Ostrogradsky’s theorem and Lorentz Invariance

The existence of the ghost is closely related with including
time-derivatives higher than two.
In the RµνRµν case the field equations are fourth-orders.
Ostrogradsky’s theorem states that a system is not (kinematically)
stable if it is described by a non-degenerate higher time-derivative
Lagrangian.
Therefore any higher derivative theory of gravity is not stable.
A possible way to evade Ostrogradsky’s theorem is to include only
high-order spatial derivative terms in the Lagrangian, but keep the
time derivative terms to the second order.
This might be achieved by breaking Lorentz Invariance (LI) in the
UV, while still maintaining in the IR.
This is exactly what Hořava proposed.
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Perturbatively renormalizable realistic quantum gravity
model

The theory obtained via controlled breaking of Lorentz Invariance
turned out to be fully renormalizable in a strict sense in all space
dimensions
Exact calculation of its renormalization group (RG) flow was
conducted in 2 + 1 dimensions1, revealing an asymptotically free
UV fixed point.
In the case of 3 + 1 dimensions, partial results regarding the RG
flow of projectable HG were obtained and potential candidates for
asymptotically free UV fixed points were found and analyzed2.
Therefore, the theory serves as a realistic quantum gravity model.

1A. O. Barvinsky, D. Blas, M. Herrero-Valea, S.M. Sibiryakov, and C. F. Steinwachs,
Horava gravity is asymptotically free in 2+1 dimensions, Phys. Rev. Lett. 119, 211301
(2017).

2A. O. Barvinsky, A. V. Kurov, and S. M. Sibiryakov, Beta functions of
(3+1)-dimensional projectable Horava gravity, Phys. Rev. D 105, 044009 (2022)
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Breaking LI and Lifshitz’s scaling

The basic assumption of the Hořava theory was to consider
anisotropic scaling between time and space:

t → b−z t , x i → b−1x ′i , (i = 1,2, ...,d)

where z denotes the dynamical critical exponent.
LI requires z = 1, while power-counting renomalizibality requires
z ≥ d (d is the spatial dimension of the spacetime).
Usually spacetimes with d = 3 are considered and the minimal
value z = d .
Equation above is a reminiscent of Lifshitz’s scalar fields in
condensed matter physics hence Hořava gravity is called the
Hořava-Lifshitz (HL) theory.
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Breaking LI and Lifshitz’s scaling

In the described scaling the time and space have, respectively, the
dimensions:

[t ] = −z,
[
x i
]

= −1.

Such a scaling breaks explicitly the LI and hence 4-dimensional
diffeomorphism invariance.
Hořava assumed that it is broken only down to the level

t → ξ0(t), x i → ξi
(

t , xk
)
,

so the spatial diffeomorphism still remains.
The above symmetry is often referred as to the
foliation-preserving diffeomorphism: Diff(M, F).
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(3 + 1)-decomposition and ADM formalism

Due to foliation-preserving diffeomorphism invariance the metric of
Hořava-Lifshitz theory is written in the well-known ADM formalism:

ds2 = −N2dt2 + gij(dx i − N idt)(dx j − N jdt),

where N, Ni and gij are dynamical variables.
The most general form of the action:

S =

∫
d3xdtN

√
g
[
K ijKij − λK 2 − V(gij)

]
,

where λ is the running coupling and V is a (gravitational) potential.
Kij represents the extrinsic curvature.
The square K ijKij and its trace-squared K 2 are individually
invariant under Diff(M, F), but for λ = 1 the full kinetic term
K ijKij − K 2 is invariant under four-diffeomorphisms.
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(3 + 1)-decomposition and ADM formalism

Under the Lifshitz scaling of t , x i the variables N, N i and gij scale
as:

N → N, N i → b2N i , gij → gij ,

so that their dimensions are

N = 0,
[
N i
]

= 2,
[
gij
]

= 0.

Under the Diff(M, F), on the other hand, they transform as,

δN = ξk∇kN + Ṅξ0 + N ξ̇0,

δNi = Nk∇iξ
k + ξk∇kNi + gik ξ̇

k + Ṅiξ0 + Ni ξ̇0,

δgij = ∇iξj +∇jξi + ξ0ġij ,
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HL gravity: detailed balance and projectability
The detailed-balance condition reduces the number of terms in the
action by assuming that it should be possible to derive V from a
superpotential W:

V = E ijGijklEkl , E ij =
1
√

g
δW
δgij

, G ijkl =
1
2

(
g ikg jl + g ilg jk

)
− λg ijgkl .

which for λ = 1 reduces to the standard Wheeler-DeWitt metric.
Together with projectability condition N = N(t) the most general action
can be written as:

Sdb =

∫
d3x dt

√
gN

[
2
κ2

(
KijK ij − λK 2

)
+

κ2

2ω4 CijC ij − κ2µ

2ω2
εijk
√

g
Ril∇jR l

k

+
κ2µ2

8
RijR ij +

κ2µ2

8(1− 3λ)

(
1− 4λ

4
R2 + ΛR − 3Λ2

)]
,

where C ij is the Cotton tensor, εijk is the totally antisymmetric tensor,
and the parameters κ, ω, and µ have mass dimension −1,0, and 1,
respectively.
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Hořava-Lifshitz gravity and IR limit

The Cotton tensor, Cij , is defined by

C ij = εikl∇k

(
R j

l −
1
4

Rδj
l

)
= εikl∇kR j

l −
1
4
εikj∂kR.

It is expected that the HL action reduces to the Einstein-Hilbert
one in the IR limit of the theory.
This is possible if the speed of light c and gravitational constant G
correspond to HL parameters as follows:

G =
κ2

32πc
, c =

κ4µ2Λ

8(3λ− 1)2 .
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Coupling constant λ

The coupling constant λ is dimensionless.
It runs logarithmically with energy, at λ = 1 the theory is supposed
to reduce to the classical GR. One found UV fixed point is at
λ =∞, some possible for λ < 1/3.
In the region 1/3 < λ < 1 there are tachyonic ghosts and the
corresponding quantum theory is not unitary. This region is
excluded from all realistic considerations.
The most physically interesting case is the regime λ ≥ 1 allowing
for a possible flow towards GR with λ = 1.
Region λ ≤ 1/3 is disconnected from λ = 1.
The parameter λ is supposed to control the breaking of Lorentz
invariance.
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Coupling constant λ

The theoretical works proved that parameter λ runs with energy,
from asymptotic point(s) at UV (λ =∞) to IR (λ = 1).
Is is possible to detect small changes of its value calculated using
different available cosmological data?
Side note: Unfortunately data from binary and triple binary objects
is not useful, as it was shown that theories with asymptotically flat
spacetimes different from GR only when λ 6= 1 have been shown
to be equivalent to GR.
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Hořava-Lifshitz cosmology: detailed balance
To derive equations of HL cosmology one uses the spatial part of the metrics
being the standard FLRW line element: gij = a2(t)γij , Ni = 0, where γij
denotes a maximally symmetric metric with constant curvature:

γijdx idx j =
dr2

1− Kr2 + r2(dθ2 + sin2 θdϕ2),

values K = {−1,0,1} correspond respectively to closed, flat, and open
Universe. This background metric implies that

Cij = 0 , Rij =
2K
a2 gij , Kij =

H
N

gij ,

where H ≡ ȧ/a denotes the Hubble parameter.
On this background the gravitational action take the following form :

SFRW =

∫
dt d3x Na3

{
3(1− 3λ)

2κ2
H2

N2 +
3κ2µ2Λ

4(1− 3λ)

(
K
a2 −

Λ

3

)
− κ2µ2

8(1− 3λ)

K 2

a4

}
.
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Hořava-Lifshitz cosmology: detailed balance
1 Varying the HL action w.r.t N and a and setting N = 1 at the end of

calculations;
2 Populating our model with the canonical matter and radiation fields

represented by the energy densities (and pressures) ρm (pm) and
ρr (pr ) and subject to the continuity equation ρ̇+ 3H(ρ+ p) = 0;

leads to analogues of the Friedmann equations:(
ȧ
a

)2

=
κ2

6(3λ− 1)
[ρm + ρr ] +

− κ2

6(3λ− 1)

[
3κ2µ2K 2

8(3λ− 1)a4 +
3κ2µ2Λ2

8(3λ− 1)

]
+

κ4µ2ΛK
8(3λ− 1)2a2 ,

d
dt

ȧ
a

+
3
2

(
ȧ
a

)2

= − κ2

4(3λ− 1)
[pm + pr ]+

− κ2

4(3λ− 1)

[
κ2µ2K 2

8(3λ− 1)a4 −
3κ2µ2Λ2

8(3λ− 1)

]
− κ4µ2ΛK

16(3λ− 1)2a2 .
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Hořava-Lifshitz cosmology
Requiring that our cosmological equations coincide with the standard
Friedmann equations results in Gcosmo = κ2/(3λ− 1) and
κ4µ2Λ = 8(3λ− 1)2.

|Gcosmo/Ggrav| ≈ 3λ/2 and when Lorentz invariance is restored (λ = 1):
Ggrav = Gcosmo.

Under DB and in the units 8πGgrav = 1: κ2 = 4, µ2Λ = 2.
Introducing the standard density parameters leads to the Friedmann
equation suitable for numerical analysis:

H2 = H2
0

[
2

3λ− 1
(Ωm0(1 + z)3 + Ωr0(1 + z4)) + ΩK 0(1 + z)2 + ω +

Ω2
K 0

4ω
(1 + z)4

]
H denotes the Hubble parameter, the subscript 0 the value as

measured today, ω = Λ/(2H2
0 ).

A characteristic feature of HL theory is a dark radiation term Ω2
k0/4ω, that

could be expressed in terms of the effective number of neutrino species
∆Neff present during the BBN epoque: Ω2

k0/4ω = 0.13424∆NeffΩr0.

We can also obtain a constraint from the z = 0 limit, where H|z=0 = H0,
which reads: (1− Ωk0 − ω − Ω2

k0/(4ω))(3λ− 1)/2 = Ωm0 + Ωr0.
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Beyond detailed balance formulation

The detailed balance formulation has many theoretical flaws
including violation of parity.
The attempts to fix these issues include breaking DB or adding
terms to superpotential, as well as breaking projectability
condition.
The simplest model is the Sotiriou-Visser-Weinfurtner (SVW)
generalization, where DB is relaxed and the potential V contains
also cubic terms, while suppressing parity violating terms.
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SVW cosmology

The cosmological equations are following:(
ȧ
a

)2

=
2σ0

3λ− 1
(ρm + ρr )+

+
2

3λ− 1

[
Λ

2
+
σ3K 2

6a4 +
σ4K
6a6

]
+

σ2

3(3λ− 1)

K
a2 ,

d
dt

ȧ
a

+
3
2

(
ȧ
a

)2

= − 3σ0

3λ− 1
ρr

3
+

− 3
3λ− 1

[
−Λ

2
+
σ3K 2

18a4 +
σ4K
6a6

]
+

σ2

6(3λ− 1)

K
a2 ,

where σi are arbitrary constants.
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SVW cosmology
As in DB we find Gcosmo = 6σ0/(8π(3λ− 1)), where σ0 = κ2/12.

Using the same procedure we rewrite cosmological equations to read:

H2 = H2
0 =

[
2

3λ− 1

(
Ωm0(1 + z)3 + Ωr0(1 + z)4+

+ω1 + ω3(1 + z)4 + ω4(1 + z)6
]

+ Ωk0(1 + z)2
]
,

where we have introduced the following dimensionless parameters:
ω1 = σ1/(6H2

0 ), ω3 = σ3H2
0 Ω2

k0/6, ω4 = −σ4Ωk0/6.

Additionally, we impose ω4 > 0 for the Hubble parameter to be real for all
z.

We can extract a constraint from the z = 0 limit:
(1− Ωk0)(3λ− 1/2 = Ωm0 + Ωr0 + ω1 + ω3 + ω4.

Considering that the ω4 term corresponds to a quintessence-like kinetic
field we get the following constraint at the time of BBN:
ω3 = 0.13424∆NeffΩr0 − ω4(1 + zBBN)2 (at zBBN ≈ 4 · 104).

We abbreviate the Beyond Detailed Balance case as BDB.
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Numerical calculations
We wanted to estimate the values of the several HL gravity
parameters using the Markov-Chain Monte Carlo (MCMC) method
and a large cosmological data set.
The data includes expansion rates of elliptical and lenticular
galaxies, Type Ia Supernovae, Baryon Acoustic Oscillations,
Cosmic Microwave Background and priors on the Hubble
parameter.
We used the parallelised Markov-Chain Monte Carlo (MCMC)
code developed in Mathematica.
The code although slower than the Fortran or C ones makes it
easier to add new data, and is also simple to modify.
Therefore, things such as the cosmological model, statistical
method and parameters used can easily be changed.
During every step in the computation, the MCMC method
calculates the χ2, and in the end returns the parameter set which
minimised the χ2 function.
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The astronomical data
At high redshift (early times), our probes are the Cosmic
Microwave Background (CMB) and Baryon Acoustic Oscillations
(BAO).
The CMB originates at redshift z? ∼ 1100, when the temperature
of the Universe was around T ≥ 3000K ( 0.26eV).
This is complemented by BAO observations, that also affect the
distribution of local galaxies and are more sensitive to different
parameters compared to the CMB.
Supernovae Type 1a are used as standard rulers and outputs
more energy than the rest of its host galaxy (up to ∼ 40 MeV).
Their energy is less important here as they are used as distance
rulers.
The Cosmic Chronometer (CC) data set is based on passively
evolving galaxies.
We also have gamma-ray bursts, which are the most violent
explosions in the known Universe (up to 96 GeV).
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Investigating the possible running of λ

We systematically remove data in two steps:
1 The Hubble parameter measurements from Cosmic Chronometers

(CC),
2 Everything except the truly early-Universe probes, CMB and BAO.

In DB removing CC data pushes λ to take values close to unity,
but further removing data moves it back up toward higher values
and with much larger error bars.
In the BDB the situation here is somewhat reversed: removing CC
data produces a higher value of λ than with the full dataset, in
contrast to our other results.
In almost all scenarios removing Hubble data from CC strongly
pushes λ close to IR limit.
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(a) DB, prior (b) DB, no prior

(c) BDB, prior (d) BDB, no prior

Figure: Normalized posterior distribution functions for λ. Here, SNe1a
includes Cepheid-calibrated supernovae.
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Other results
Another interesting quantity is the difference between Ggrav and
Gcosmo expressed as |Gcosmo/Ggrav − 1|.

I We find that in DB it is smaller than ∼ 5.8%, which is linked to the
values obtained on λ.

I For BDB it is smaller < 2%.

We also find that Ωk0 is non-zero in the DB formulation of HL
cosmology.
Another interesting result is the value of ∆Neff > 0.2 in almost all
cases, and a 1σ upper limit of ∆Neff ≤ 0.75 for BDB (prior, all
data) – this chain passed all convergence criteria.

I Therefore, with all other parameters taking on reasonable values
one may consider the possibility of a fourth neutrino species
present in HL cosmology;

I It was recently suggested (Carneiro, 2018) that a fourth neutrino
might solve the H0, however the authors arrive there at Neff ≈ 4
(effective number of neutrino species), which is far higher than our
results.
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Other results

The fact that ∆Neff 6= 0 fits with the non-flatness results indicated
by Ωk0.
A closed Universe Ωk0 has been found in several different
analyses of Hořava-Lifshitz cosmology and the model does
indeed prefer a closed Universe.
Other studies have reported a strong preference for a closed
Universe in the Planck data, a result which is sensitive to the
amount of lensing in the sample.
Other data sets, primarily BAO, strongly favour a closed Universe
(under the assumption of ΛCDM) to the extent that the tension in
Ωk0 has been estimated at 2.5− 3σ.
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Summary

The fitted value of λ varies with the kind of
astronomical/cosmological sources and possibly their energies.
Curvature parameter Ωk0 is non-zero in the DB formulation of HL
cosmology.
The value of ∆Neff > 0.2 in almost all cases, and a 1σ upper limit
of ∆Neff ≤ 0.75 for BDB (prior, all data).
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Discussion

Our main result is that in minimal versions of the Hořava the parameter
controlling LI varies with energies of the astronomical messengers.

However, we have to distinguish gravitational energy and energies of the
probes, and take into account hidden assumptions on the model.

We used the cosmological models of the simplest Hořava gravity models
(DB and BDB) which are subject to several theoretical problems.

These models have problems with strong coupling in the IR and unstable
Minkowski limit, however they were proven to be strictly renormalizable
in all dimensions, contain built-in dark matter arriving as integration
constant and a mechanism of generating scale-invariant perturbations
solving the horizon problem and the the flatness one.

The whole theory is still not excluded by observational data, fitting more
and more narrow parameter space and it might serve as realistic
quantum gravity and cosmological models.
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