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Outline

@ General Relativity, in spite of its wide theoretical success and
experiment validations is not renormalizable.

@ Adding higher spatial-derivative terms to the Lagrangian makes the
theory renormalizable at high energies.

@ However, that demands giving up on the idea of space-time invariance
under four-dimensional diffeomorphisms.

@ Horava proposed gravity equipped with an anisotropic scaling at the
Planck scale given in term of a critical Lifshitz exponent.

@ The resulting theory was proven to be fully perturbatively renormalizable
in all spatial dimensions.

@ There have been several attempts to put observational bounds on
Hofava gravity parameters.

@ Our paper focuses on a parameter describing deviations from GR.

» E. Czuchry, N.A. Nilsson, On the energy flow of X in Hofava-Lifshitz
cosmology, Phys. Rev. D 110 (2024), 043502.
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Non-renormalizabilty of GR

@ In four-dimensional spacetimes Gy has the dimension of
(mass) 2 (inunits h =1 = ¢),

@ It should be larger than or equal to zero in order for the theory to
be renormalizable perturbatively

@ The expansion of a given physical quantity F in terms of Gy must
be in the form .
n
F=Y an(GnE?) ",
n=0

where E denotes the energy of the system, so (GyE?) is
dimensionless.

@ When E? > G, such expansions diverge.

@ Therefore, it is expected that perturbative effective QFT is broken
down at such energies. It is in this sense that GR is often said to
be not perturbatively renormalizable.
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Higher order GR and non-unitarity

@ Including high-order derivative corrections in the action improves
ultraviolet (UV) behavior:

SEHZ/d4X —gR,

like for example adding a quadratic term R,,, R* .
@ It causes the change of the gravitational propagator from 1/k? to

1 1 41 1 21 21 1
@ At UV the propagator is dominated by the term 1/k*, and the UV
divergence can be cured.

@ However, the modified theory is not unitary, there are two poles:
1 1 1

K2—Gyk* K2 k2 — Gy

The 1/k? describes a massless spin-2 graviton, while 1/(k? — Gﬁ) a

massive one but with a wrong sign — actually a ghost.

@ The existence of this ghost makes the theory not unitary.
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Ostrogradsky’s theorem and Lorentz Invariance

@ The existence of the ghost is closely related with including
time-derivatives higher than two.

@ Inthe R, R" case the field equations are fourth-orders.

@ Ostrogradsky’s theorem states that a system is not (kinematically)
stable if it is described by a non-degenerate higher time-derivative
Lagrangian.

@ Therefore any higher derivative theory of gravity is not stable.

@ A possible way to evade Ostrogradsky’s theorem is to include only
high-order spatial derivative terms in the Lagrangian, but keep the
time derivative terms to the second order.

@ This might be achieved by breaking Lorentz Invariance (LI) in the
UV, while still maintaining in the IR.

@ This is exactly what Hofava proposed.
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Perturbatively renormalizable realistic quantum gravity
model

@ The theory obtained via controlled breaking of Lorentz Invariance
turned out to be fully renormalizable in a strict sense in all space
dimensions

@ Exact calculation of its renormalization group (RG) flow was
conducted in 2 + 1 dimensions', revealing an asymptotically free
UV fixed point.

@ In the case of 3 + 1 dimensions, partial results regarding the RG
flow of projectable HG were obtained and potential candidates for
asymptotically free UV fixed points were found and analyzed?.

@ Therefore, the theory serves as a realistic quantum gravity model.

'A. O. Barvinsky, D. Blas, M. Herrero-Valea, S.M. Sibiryakov, and C. F. Steinwachs,
Horava gravity is asymptotically free in 2+1 dimensions, Phys. Rev. Lett. 119, 211301
(2017).

2A. O. Barvinsky, A. V. Kurov, and S. M. Sibiryakov, Beta functions of
(3+1)-dimensional projectable Horava gravity, Phys. Rev. D 105, 044009 (2022)
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Breaking LI and Lifshitz’s scaling

@ The basic assumption of the Hofava theory was to consider
anisotropic scaling between time and space:

t—b?t, X b X' (i=1,2,..,4d)

where z denotes the dynamical critical exponent.

@ Ll requires z = 1, while power-counting renomalizibality requires
z > d (d is the spatial dimension of the spacetime).

@ Usually spacetimes with d = 3 are considered and the minimal
value z = d.

@ Equation above is a reminiscent of Lifshitz’s scalar fields in
condensed matter physics hence Horava gravity is called the
Hofava-Lifshitz (HL) theory.
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Breaking LI and Lifshitz’s scaling

@ In the described scaling the time and space have, respectively, the
dimensions:

[f] = -2z, [x’] = 1.

@ Such a scaling breaks explicitly the LI and hence 4-dimensional
diffeomorphism invariance.

@ Horava assumed that it is broken only down to the level
t—&(t), x =€ (6x).

so the spatial diffeomorphism still remains.

@ The above symmetry is often referred as to the
foliation-preserving diffeomorphism: Diff(M, F).
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(3 + 1)-decomposition and ADM formalism

@ Due to foliation-preserving diffeomorphism invariance the metric of
Horava-Lifshitz theory is written in the well-known ADM formalism:

ds? = —N2dt? + gji(dx’ — N'dt)(ax! — N/dtt),

where N, N; and g; are dynamical variables.
@ The most general form of the action:

S= /dsxdtN\/g [K"fK,-j —AKZ —V(gy)| ,

where ) is the running coupling and V is a (gravitational) potential.
K represents the extrinsic curvature.

@ The square K’Kj and its trace-squared K2 are individually
invariant under Diff(M, ), but for A = 1 the full kinetic term
K'Kjj — K? is invariant under four-diffeomorphisms.
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(3 + 1)-decomposition and ADM formalism

@ Under the Lifshitz scaling of t, x' the variables N, N’ and gj scale

as:
N— N, N — BN, gj— gj

so that their dimensions are
N=0, [N]=2 [g]=0.
@ Under the Diff(M, F), on the other hand, they transform as,

SN = VN + N& + N&o,
ON; = NViek + VN, + g€ + Nigo + Nigo,
0gj = Vi§+ Vi&i+ &9,
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HL gravity: detailed balance and projectability

The detailed-balance condition reduces the number of terms in the
action by assuming that it should be possible to derive V from a
superpotential W:

; ) 1 sW " 1, . . - )
— Fig.. kl ji_ - 77" ikl _ iK ~jl il AjK\ if Kl
V= ElGuEN, E1= o5 0% =5 (" + g'g") — gl
which for A = 1 reduces to the standard Wheeler-DeWitt metric.
Together with projectability condition N = N(t) the most general action

can be written as:
2
3 K i K2 Ko e

K2 2 i K212 1—4)
AR p pi 2 _ap2
+g RiR +8(1—3/\)< 4 R+ AR 3/\) ;

(K,,K'f AK?) + 5 FIViRL

where C7 is the Cotton tensor, /¥ is the totally antisymmetric tensor,
and the parameters k, w, and p have mass dimension —1,0, and 1,
respectively.
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Horava-Lifshitz gravity and IR limit

@ The Cotton tensor, Cj, is defined by

. . 1 . ) ; 1 ..
Cl = M) (sz, —~ 4R5{> AL Ze"va,(/?.
@ It is expected that the HL action reduces to the Einstein-Hilbert

one in the IR limit of the theory.
@ This is possible if the speed of light ¢ and gravitational constant G

correspond to HL parameters as follows:
G K2 c— K42
- 32rnc’ ~ 8(3N—1)2
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Coupling constant A

@ The coupling constant X is dimensionless.

@ It runs logarithmically with energy, at A = 1 the theory is supposed
to reduce to the classical GR. One found UV fixed point is at
A = oo, some possible for A < 1/3.

@ In the region 1/3 < A < 1 there are tachyonic ghosts and the
corresponding quantum theory is not unitary. This region is
excluded from all realistic considerations.

@ The most physically interesting case is the regime A\ > 1 allowing
for a possible flow towards GR with A = 1.

@ Region A < 1/3is disconnected from A = 1.

@ The parameter )\ is supposed to control the breaking of Lorentz
invariance.
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Coupling constant A

@ The theoretical works proved that parameter A runs with energy,
from asymptotic point(s) at UV (A = oc0) to IR (A = 1).

@ Is is possible to detect small changes of its value calculated using
different available cosmological data?

@ Side note: Unfortunately data from binary and triple binary objects
is not useful, as it was shown that theories with asymptotically flat
spacetimes different from GR only when X\ # 1 have been shown
to be equivalent to GR.
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Horava-Lifshitz cosmology: detailed balance

To derive equations of HL cosmology one uses the spatial part of the metrics
being the standard FLRW line element: g; = &(t)v;, N; = 0, where v;
denotes a maximally symmetric metric with constant curvature:

dr?

yidx'dx! = + r?(d6? + sin® 0d?),
/ 1 — Kr?

values K = {—1,0, 1} correspond respectively to closed, flat, and open
Universe. This background metric implies that

2K H
?gijv Kj = Ngfja

where H = a/a denotes the Hubble parameter.
On this background the gravitational action take the following form :

Ci=0, Rj=

3(1 —3)\) H? 32PN (KA K22 K2
_ 3 3 o ) _
Serw = /dtd xNa { 22 N2 41-3n\& 3) 8i-3na
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Horava-Lifshitz cosmology: detailed balance

@ Varying the HL action w.r.t N and a and setting N = 1 at the end of
calculations;

© Populating our model with the canonical matter and radiation fields
represented by the energy densities (and pressures) pm (pm) and
pr (pr) and subject to the continuity equation o+ 3H(p + p) = 0;

leads to analogues of the Friedmann equations:

é ? _L [ + ] +
a) “B(Bx_1)mTlr
K2 [ 3K21PK? 3k21PN? } kK PAK

63 1) |83 D)@  8BA_1)| T 8@x 1222’
g§+§ éz—_ﬁiz[ + ]_|_
dia 2\a) ~ Ta@r_nPm Tl
- 42 K22 K2 - 3212 N2 - K 2AK
4B)—1) |8B —1)& 8B _1)]  16(Br_1)2a"
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Horava-Lifshitz cosmology

@ Requiring that our cosmological equations coincide with the standard
Friedmann equations results in Geosmo = x2/(3\ — 1) and
k4PN = 8(3\ — 1)2.

@ |Geosmo/ Ggrav| = 3 /2 and when Lorentz invariance is restored (A = 1):
Ggrav = Gcosmo-

@ Under DB and in the units 87 Ggray = 1: k2 = 4, 2N\ = 2.

@ Introducing the standard density parameters leads to the Friedmann
equation suitable for numerical analysis:

2

Q%
H? = H2 (Qmo(1 + 2)° + Qo(1 + 2*) + Qwo(1 + 2)° + w + 7(1 +2)*

_2

3\ -1
H denotes the Hubble parameter, the subscript 0 the value as
measured today, w = A/(2HZ).

@ A characteristic feature of HL theory is a dark radiation term Q2 /4w, that
could be expressed in terms of the effective number of neutrino species
AN, present during the BBN epoque: Q2 /4w = 0.13424 AN, Q0.

@ We can also obtain a constraint from the z = 0 limit, where H|,—o = Ho,
which reads: (1 — Qi — w — Q2,/(4w))(BA — 1)/2 = Qo + Q0.
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Beyond detailed balance formulation

@ The detailed balance formulation has many theoretical flaws
including violation of parity.

@ The attempts to fix these issues include breaking DB or adding
terms to superpotential, as well as breaking projectability
condition.

@ The simplest model is the Sotiriou-Visser-Weinfurtner (SVW)
generalization, where DB is relaxed and the potential V contains
also cubic terms, while suppressing parity violating terms.
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SVW cosmology

The cosmological equations are following:

5\ 2
a . 200
(5) “amoqem et

2 N o3K?  ouK P K

- -+ + =,

3x—-1[2  6a& 6a&° 3(BA—1) a2
da_ 8/a\®__ 300 pr

dfta 2 \a 32-13

3 AN o03K?  ouK P K

- |5+ + + =,

3x—1| 2" 182* " 62| 6B -1)22

where ¢; are arbitrary constants.
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SVW cosmology

@ As in DB we find Geosmo = 600/(87(3)\ — 1)), where o9 = x2/12.

@ Using the same procedure we rewrite cosmological equations to read:
_2
3\ -1
+wi +ws(1+ 2)* +wa(1 + z)G] + Quo(1 + z)2] ;

H? = H2 = [ (Qmo(1 +2)° + Qo(1 +2)*+

where we have introduced the following dimensionless parameters:
Wi = J1/(6H§), w3 = J3H§Qi0/6, Wyq = 7O'4Qk0/6.

@ Additionally, we impose w4 > 0 for the Hubble parameter to be real for all
z.

@ We can extract a constraint from the z = 0 limit:
(1 = Qk0)(BA = 1/2 = Qo + Qro + wi + w3 + ws.

@ Considering that the w4 term corresponds to a quintessence-like kinetic
field we get the following constraint at the time of BBN:
w3 = 0.13424 AN,5Q,0 — wa(1 + Zean)? (at Zeay ~ 4 - 10%).

@ We abbreviate the Beyond Detailed Balance case as BDB.
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Numerical calculations

@ We wanted to estimate the values of the several HL gravity
parameters using the Markov-Chain Monte Carlo (MCMC) method
and a large cosmological data set.

@ The data includes expansion rates of elliptical and lenticular
galaxies, Type la Supernovae, Baryon Acoustic Oscillations,
Cosmic Microwave Background and priors on the Hubble
parameter.

@ We used the parallelised Markov-Chain Monte Carlo (MCMC)
code developed in Mathematica.

@ The code although slower than the Fortran or C ones makes it
easier to add new data, and is also simple to modify.

@ Therefore, things such as the cosmological model, statistical
method and parameters used can easily be changed.

@ During every step in the computation, the MCMC method
calculates the x2, and in the end returns the parameter set which
minimised the x? function.
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The astronomical data

@ At high redshift (early times), our probes are the Cosmic
Microwave Background (CMB) and Baryon Acoustic Oscillations
(BAO).

@ The CMB originates at redshift z, ~ 1100, when the temperature
of the Universe was around T > 3000K ( 0.26eV).

@ This is complemented by BAO observations, that also affect the
distribution of local galaxies and are more sensitive to different
parameters compared to the CMB.

@ Supernovae Type 1a are used as standard rulers and outputs
more energy than the rest of its host galaxy (up to ~ 40 MeV).
Their energy is less important here as they are used as distance
rulers.

@ The Cosmic Chronometer (CC) data set is based on passively
evolving galaxies.

@ We also have gamma-ray bursts, which are the most violent
explosions in the known Universe (up to 96 GeV).
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Investigating the possible running of A

@ We systematically remove data in two steps:
@ The Hubble parameter measurements from Cosmic Chronometers
(CC),
@ Everything except the truly early-Universe probes, CMB and BAO.
@ In DB removing CC data pushes X to take values close to unity,
but further removing data moves it back up toward higher values
and with much larger error bars.

@ In the BDB the situation here is somewhat reversed: removing CC
data produces a higher value of A than with the full dataset, in
contrast to our other results.

@ In almost all scenarios removing Hubble data from CC strongly
pushes A close to IR limit.
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Detailed balance, prior A > 1

Detailed balance, no prior on A

CMB+BAO+H(z) CMB+BAO CMB+BAO+H(z) CMB+BAO
Parameter +SNela+Cepheids  +SNela+Cepheids ~ CMB+BAO +SNela+Cepheids +SNela+Cepheids ~ CMB+BAO
+GRB +GRB +GRB +GRB
[o T 0.0049768 + 0.0000016 0.0489873:5995%  0.05104 + 0.00080 | 0.049236 = 0.000070 0.04907 + 0.00058  0.05139*9-9951%
Qh2 L 0.020952 + 0.000074  0.02227 £ 0.00018 ~ 0.0219279-99019

—0.00021

0.3336 =+ 0.0018 0.31531+9:9057

00027 0.3398 +0.0083

0.14043+0-00024 0.14335 £ 0.00090  0.1458+9:951%

0.02158 4 0.00012  0.02217 + 0.00017 0.02187 + 0.00011

0.3204 + 0.0030 0.3170 £ 0.0056  0.3443770 00010

Zol00012
0.14047+9-09930  0.14323 4 0.00092 0.14657 + 0.00023

Qe10* L —4.1364 + 0.0040 —-6.1161555 —11.6072:5% —4.254 £0.019 —5.745+0.029  —13.503015 9058
Q,10° ...... 9.93710-03% 9.20 £ 0.12 9.7470 13 9.54370 070 9.25910:01% 9.8370 012
B 0.6488 + 0.0012 0.6743+9-004% 0.6553+9-0061 0.6621+9:00%3 0.6722 £ 0.0040  0.65239 % 0.00040
Mo —19.5051 % 0.0013 —19.43770 013 - —19.4783 +£0.0075  —19.442 £ 0.012 -
ANt - 0.0046750 & 0.0000076  0.1104F9:9%1% 0.03810 012 0.005099 = 0.000060 0.009670 = 0.000062 0.05195 + 0.00019
A 1.0406 + 0.0023 < 1.0032" 1014610052 1.02726 4 0.00012  1.0065 £ 0.0018  1.0159 % 0.0014
Gcgm 1‘ 0.0574 £ 0.0030 < 0.0035" 0.0214+9:007% 0.03928 £ 0.00017  0.00997%9 8028 0.0232 + 0.0020
X oo 1778.27 1635.41 27.30 1705.04 1638.49

27.76

TABLE I: Parameter constraints at 1o for the Detailed Balance case, with and without a hard prior on the
parameter A. { implies a one-sided upper bound resulting from a hard uniform prior, and bold indicates a
particularly noisy parameter.
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Beyond detailed balance, prior A > 1

Beyond detailed balance, no prior on A

CMB+BAO+H(z)  CMB+BAO CMB+BAO+H(z)  CMB+BAO
Parameter +SNela+Cepheids +SNela+Cepheids ~ CMB+BAO +SNela+Cepheids +SNela+Cepheids ~ CMB+BAO
+GRB +GRB +GRB +GRB

[o TR 0.049371700004%  0.05024 + 0.00049  0.051167F) 0005 0.04900 = 0.00040  0.0503470 0017 0.05034 + 0.00016
Qh? L 0.022922 + 0.00023 0.02262 % 0.00020 0.02226 + 0.00018 | 0.022864 & 0.00011 0.02250 % 0.00011 0.02250 + 0.00011
Qv 0.3198 + 0.0053 0.319470 093¢ 0.3349 + 0.0073 0.3109+9:9038 0.3232 + 0.0031 0.328470 0053
Qmh? ... 0.1484+0.0017  0.1438670 00055 0.1458 % 0.0011 0.14509F9:0007°  0.1444270-00090  0.145870 0950
Q,10° ... -9.7171 03 —4.98%977 —3.93+£0.15 —5.39970-02% —4.338 + 0.080 —6.32 + 2.56
Q.10° ... 9.01+0.13 9.29 +0.11 9.61+16% 8.97+10¢ 9.36 £ 0.61 9.43110-028
R, 0.6813 =+ 0.0048 06711700030 0.659910 0038 0.683170 0040 0.668570 0022 0.666070 000
Mo —-19.41470:018  —19.446 £ 0.0011 - —19.41210:01%  —19.4525 + 0.0040 -
ANegt ... 0.6140.14 0.25870 038 0.198 £ 0.015 0.257870 0043 0.2166 + 0.0070 0317012
A 1.00644 = 0.00020 < 1.0068" 1.0065 + 0.0025 0.9949F0:9045  1.00578 +0.00086  0.9972F9 5051

1‘ 0.00957 = 0.00029 < 0.010" 0.0096 + 0.0037 0.00780-007% 0.0086 =+ 0.0013 < 0.019

0.69957 4 0.00039  0.6909+:0003 0.678970 0079

0.6866 =+ 0.0036

0.689870 0043 0.6898 £+ 0.0043

W
6 +1.62 +0.10 +0.068 +0.047

ws10° ... 7.07%}82 1774519 1520149958 2.9109+9:047, 1.80 +0.15 1.794+0.15

Xim e 1634.37 1632.36 23.82 1635.54 1633.85 21.85

TABLE II: Parameter constraints at 1o for the Beyond Detailed Balance case, with and without a hard prior on the
parameter A. 1 implies a one-sided upper bound resulting from a hard uniform prior.
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Other results

@ Another interesting quantity is the difference between G, and
Geosmo €xpressed as | Geosmo/ Gorav — 1/
» We find that in DB it is smaller than ~ 5.8%, which is linked to the
values obtained on .
» For BDB it is smaller < 2%.

@ We also find that Qg is non-zero in the DB formulation of HL
cosmology.

@ Another interesting result is the value of AN, > 0.2 in almost all
cases, and a 1o upper limit of AN < 0.75 for BDB (prior, all
data) — this chain passed all convergence criteria.

» Therefore, with all other parameters taking on reasonable values
one may consider the possibility of a fourth neutrino species
present in HL cosmology;

» It was recently suggested (Carneiro, 2018) that a fourth neutrino
might solve the Hy, however the authors arrive there at Ng¢ ~ 4
(effective number of neutrino species), which is far higher than our
results.
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Other results

@ The fact that AN, # 0 fits with the non-flatness results indicated
by Qko-

@ A closed Universe Qg has been found in several different
analyses of Horava-Lifshitz cosmology and the model does
indeed prefer a closed Universe.

@ Other studies have reported a strong preference for a closed
Universe in the Planck data, a result which is sensitive to the
amount of lensing in the sample.

@ Other data sets, primarily BAO, strongly favour a closed Universe
(under the assumption of ACDM) to the extent that the tension in
Qo has been estimated at 2.5 — 3¢.
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Summary

@ The fitted value of \ varies with the kind of
astronomical/cosmological sources and possibly their energies.

@ Curvature parameter Qg is non-zero in the DB formulation of HL
cosmology.

@ The value of AN > 0.2 in almost all cases, and a 10 upper limit
of AN < 0.75 for BDB (prior, all data).
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Discussion

@ Our main result is that in minimal versions of the Hofava the parameter
controlling LI varies with energies of the astronomical messengers.

@ However, we have to distinguish gravitational energy and energies of the
probes, and take into account hidden assumptions on the model.

@ We used the cosmological models of the simplest Hofava gravity models
(DB and BDB) which are subject to several theoretical problems.

@ These models have problems with strong coupling in the IR and unstable
Minkowski limit, however they were proven to be strictly renormalizable
in all dimensions, contain built-in dark matter arriving as integration
constant and a mechanism of generating scale-invariant perturbations
solving the horizon problem and the the flatness one.

@ The whole theory is still not excluded by observational data, fitting more
and more narrow parameter space and it might serve as realistic
quantum gravity and cosmological models.
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