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TALK OVERVIEW

e Gravitational-wave (GW) polarisations
e BayesWave signal moaels: Elliptical (E) and relaxed (R)
e Multi-detector network analyses:

e PART I: Model selection - E vs. R

e PART Il: Measuring tensor polarisation content with R



GW POLARISATIONS

* According to General Relativity, GWs have two polarisations

e Plus (+) e .‘. .: ':
e Cross (X) # ': " ‘.‘

Deformation of a ring of free-tfalling particles
by each polarisation modes



DISENTANGLING GW POLARISATIONS

e Antenna pattern functions : F (€2, ) and F_ (€2, y)

 Sensitivity of a detector to each polarisation state

e () = the sky location of the source

e / = the polarisation angle



DISENTANGLING GW POLARISATIONS

e Antenna pattern functions : F (€2, ) and F_ (€2, y)

 Sensitivity of a detector to each polarisation state

e () = the sky location of the source
e y = the polarisation angle
* Interferometric response of detector I (in the frequency domain)

o Ty = |FRQuy + FF Q| o272

~J

/1, and h, = amplitudes at a nominal reference location

e Af; = light travel time from the reterence location to detector /



DISENTANGLING GW POLARISATIONS

hy = [F,X(Q, W)X + FH(Q, y)ht| 2™ /A1



DISENTANGLING GW POLARISATIONS
hy [FIX(Q, W + FHQ, p)lit | 271

* Contains up to four unknowns:

~/ ~J

e Two polarisation amplitudes: &, and A,
e Sky location £2

e Source orientation

* Need responses from multiple detectors to extract the polarisation
components



EXPANDING GW DETECTOR NETWORK

e Existing 2nd-generation ground-based detectors:
(1) LIGO - Hantford (H) and Livingston (L), USA
(2) Virgo (V), ltaly
(3) KAGRA (K), Japan

- —

[Image credits: LIGO Lab Caltech]



EXPANDING GW DETECTOR NETWORK

e Existing 2nd-generation ground-based detectors:
(1) LIGO - Hantford (H) and Livingston (L), USA
(2) Virgo (V), ltaly
(3) KAGRA (K), Japan
 Compare multi-detector performances in characterising polarisations:
e HL (two-detector)
e HLV (three-detector)
e HLKV (four-detector)

Livingston - Hanford | S —— S

[Image credits: LIGO Lab Caltech]



BAYESWAVE: ALGORITHM OVERVIEW

 An unmodelled transient gravitational wave (burst) analysis algorithm

Bayes Wave publications:
Cornish + Littenberg, Class. Quant. Grav 32, 130512 (2015)
Cornish et al., Phys. Rev. D 103, 044006 (2021)
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BAYESWAVE: ALGORITHM OVERVIEW

 An unmodelled transient gravitational wave (burst) analysis algorithm

e Enables joint characterization of instrumental glitches and GW bursts

e Reconstructs transient, non-Gaussian features in the data by summing
a set of sine-Gaussian wavelets, with no a priori assumptions

Images courtesy of Meg Millhouse

BayesWave publications:
Cornish + Littenberg, Class. Quant. Grav 32, 130512 (2015)
Cornish et al., Phys. Rev. D 103, 044006 (2021)




BAYESWAVE MODELS

e Reconstructing transient tfeatures with three independent models:
e Signal plus Gaussian-noise model, &
e Glitch plus Gaussian-noise model, &

e Gaussian-noise only model, A

N
(o)
(o)]

—
N
(o 0]

~N ~
L T
o >
O E
= o)
D) -]
= g
o)

iy L
.

L

g

W
N

0.25 0.125 0.0 0.125 0.25 -0.5 -0.25 0.0 0.25 -0.25 00
Time (s) Time (s) Time (s)

-0.4 -0.3 -0.2 -0.1 0.0 0.1
Time (s)

Glitches Gaussian noise




BAYESWAVE MODELS

e Reconstructing transient tfeatures with three independent models:
e Signal plus Gaussian-noise model, &
e Glitch plus Gaussian-noise model, &

e Gaussian-noise only model, A

N
(o)
(o)]

—
N
(o 0]

~N ~
L T
o >
O E
= o)
D) -]
= g
o)

iy L
.

L

g

W
N

0.25 0.125 0.0 0.125 0.25 -0.5 -0.25 0.0 0.25 -0.25 00
Time (s) Time (s) Time (s)

-0.4 -0.3 -0.2 -0.1 0.0 0.1
Time (s)

Glitches Gaussian noise




BAYESWAVE SIGNAL MODELS

A : sine-Gaussian wavelet
e : ellipticity

N : number of wavelets

Cornish + Littenberg, Class. Quant. Grav 32, 130512 (2015)
Cornish et al., Phys. Rev. D 103, 044006 (2021)



BAYESWAVE SIGNAL MODELS

;' Elliptical polarisation, £

N
hy = ), Af2 13,05, Q" A" ¢")
n=1

~/

b = iehs

A : sine-Gaussian wavelet
e : ellipticity

N : number of wavelets

Cornish + Littenberg, Class. Quant. Grav 32, 130512 (2015)
Cornish et al., Phys. Rev. D 103, 044006 (2021)



BAYESWAVE SIGNAL MODELS

Elliptical polarisation, £

— _ — ——

Relaxed polarisation; R

N
]",'l_l_ Y Z A (f’ t(r)z’f(r)z’ Qn,An,+, ¢n,+)
n=1
N

N
hy = ), Af2 13,05, Q" A" ¢")
n=1

A : sine-Gaussian wavelet
e : ellipticity

N : number of wavelets

Cornish + Littenberg, Class. Quant. Grav 32, 130512 (2015)
Cornish et al., Phys. Rev. D 103, 044006 (2021)



BAYESWAVE SIGNAL MODELS

Elliptical polarisation, £

N
o= DA (F: 13 0% A% )
n=1

~/

b = iehs

A : sine-Gaussian wavelet
e : ellipticity

N : number of wavelets

| Relaxed polarisation; R

Cornish + Littenberg, Class. Quant. Grav 32, 130512 (2015)
Cornish et al., Phys. Rev. D 103, 044006 (2021)
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WHY RELAXED POLARISATION (R) MODEL?

Cornish et al., Phys. Rev. D 103, 044006 (2021)
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WHY RELAXED POLARISATION (R) MODEL?

e [¥ does not hold for CBCs with time-varying polarisations, e.g.
e Distinctive higher-order modes
* Spin-precessing

e Other transient signals like supernovae are also generally unpolarised

Cornish et al., Phys. Rev. D 103, 044006 (2021)
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WHY RELAXED POLARISATION (R) MODEL?

e [¥ does not hold for CBCs with time-varying polarisations, e.g.

o Dlstlnctlve h|gher—order modes

 Spin-processing>—» Amplitude modulation]

e Other transient S|gna\s ike supernovae are a\so generaHy unpolarisea

Cornish et al., Phys. Rev. D 103, 044006 (2021)
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WHY RELAXED POLARISATION (R) MODEL?

e [¥ does not hold for CBCs with time-varying polarisations, e.g.

o Dlst|nct|ve h|gher—order modes

Am pl [ tu d Nagle d u \ at| o n

Cornish et al., Phys. Rev. D 103, 044006 (2021)
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PART 1
ELLIPTICAL (E) VS, RELAXED (R)
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PART 1
ELLIPTICAL (E) VS, RELAXED (R)

How well do the E and R polarisation models represent
elliptical and nonelliptical GW signals?

s there a preferred model?

s the preference affected by the size of detector
network?
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TWO INJECTION SETS

e 200 injections

e High mass ratio 40M, — 8M

e High network signal-to-noise ratio: SNR ~ 50 (HLV)
e Uniform sky location and polarisation angle

* [njected into simulated detector noise

Nonprecessing (elliptical) . {eC,essin_g_,(nonel!ip_ticall;«,,

i

CTIR| ST o R R S g

/ero-spin Non-zero in-plane spin



ELLIPTICAL (E)-VSeERELAXED (R}
FIGURE OF MERITS

Bayes Factor

InBgp=Inp(s|R) —Inp(s|E)
27 PLES ol

W Network overlap (i.e. match)

1 @R,E L AN S A — L (T
> (hg | hy) X (hi; | k) *

(

*

i

' . ‘
where h'is the BayesWave-recovered wavetorm for the i-th detector )
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ELLIPTICAL (E) VS. RELAXED (R)
Non-precessing BBHIs

Nonprecessing BBHs ) Precessing BBHs

0.88 0.90 0.92




ELLIPTICAL (E£) VS. RELAXED (R)

Non-precessing BBHIs

Precessing BBHs

Nonprecessing BBHs
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ELLIPTICAL (E) VS. RELAXED (R)
Non-precessing BBHIs

Nonprecessing BBHs

Evidence of model 4 ~ Likelihood X
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ELLIPTICAL (E) VS. RELAXED (R)
Non-precessing BBHIs

Nonprecessing BBHs

AV,
Vo

Evidence of model 4 ~ Likelihood X

INYR A
N/

Bayes factor, B  ~ Likelihood ratio X
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ELLIPTICAL (E) VS. RELAXED (R)
Non-precessing BBHIs

Nonprecessing BBHs ) Precessing BBHs

- AV , : Posterior volume
V 4 W

Evidence of model 4 ~ Likelihood X

V , : Total parameter space

AV, V
S | volume of model
AV Vi 1T T LA

Bayes factor, B  ~ Likelihood ratio X
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ELLIPTICAL (E) VS. RELAXED (R)
Non-precessing BBHs (cont.)

Nonprecessing BBHs ) Precessing BBHs
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ELLIPTICAL (E) VS. RELAXED (R)
Non-precessing BBHs (cont.)

Nonprecessing BBHs ) Precessing BBHs

0.92 : 0.96

Or .~ 1 = Appx. equal likelihood and posterior volumes (i.e. AVy &

V T — Sl e ——— S
E | |
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ELLIPTICAL (E£) VS. RELAXED (R)

Precessing BBHSs

Precessing BBHs

Nonprecessing BBHs
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ELLIPTICAL (E£) VS. RELAXED (R)

Precessing BBHSs

Precessing BBHs

Nonprecessing BBHs
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ELLIPTICAL (E) VS. RELAXED (R)
Precessing BBHSs

Nonprecessing BBHs

Orr = 0.98 ~ 1 = Similar behaviour (i.e. In %5 < 0) for both
non-precessing and precessing BBHs
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ELLIPTICAL (E) VS. RELAXED (R)
Precessing BBHs (cont.)

Nonprecessing BBHs

(1) Op < 0.98 = In %y > 0 for some precessing BBHs
Mostly high y,, inic €vents

(2) In Sy, 1 is more positive with larger detector networks

Better reconstruction of non-elliptical features with R
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KEY TAKEAWAYS
ELLIPTICAL (E) VS. RELAXED (R)

e Non-precessing BBHs are equally well-represented by
both £ and R, so it we had to choose one...

Occams Razor says to pick the simpler one (£)

e Same for most precessing BBHs, BUT...
High in-plane spin = likely to have more precession,

so generally better represented by R
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ELLIPTICAL (£) VS. RELAXED (R)

with real data - O3 events

@R,E Z 090 GWWB
\% '

E and R reconstructions are
comparable

GW190814

GW190412

GWTC-2: Phys. Rev. X 11, 021053 (2021),
GWTC-3: Phys. Rev. X 13 041039 (2023).


https://arxiv.org/abs/2111.03606
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ELLIPTICAL (£) VS. RELAXED (R)

with real data - O3 events

@R,E Z 090 GWWB
\% '

E and R reconstructions are
comparable

In%Brp <0
\H/ . GW190814§

GW190412

O3 events are generally pretfers the

elliptical polarisation model E

GWTC-2: Phys. Rev. X 11, 021053 (2021),
GWTC-3: Phys. Rev. X 13 041039 (2023).


https://arxiv.org/abs/2111.03606
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PART 2

WHAT ELSE CAN THE
RELAXED POLARISATION (R) MODEL DO?

e [ assumes that the GW signal is elliptical by constraining
Do = Teh

e R models h, and h,, separately
.e. no prior assumption of the polarisation structure

e So R'can be used to measure generic polarisation content
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STOKES PARAMETERS (IN LINEAR BASIS)

A= |il_|_ |2 + |]2 |2 |—————»  Total Intensity

Linear polarisation

—» Circular polarisation

GWs are polychromatic

- 1,0, U,V are tunctions of frequency
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FRACTIONAL POLARISATION

Linear fraction
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MEASUREMENT ACCURACY:
ROOT MEAN SQUARED RESIDUALS, Ppus
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MEASUREMENT ACCURACY:
ROOT MEAN SQUARED RESIDUALS, Ppus

e BayesWave — discrete frequency f.



MEASUREMENT ACCURACY:
ROOT MEAN SQUARED RESIDUALS, Ppus

e BayesWave — discrete frequency f.

e RMS residuals between injected and recovered F

@RMS(F@) 7= \ %i [F@,rec(fi) 3 F@,inj(fi)] :
=1

23
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MEASUREMENT ACCURACY:
ROOT MEAN SQUARED RESIDUALS, Ppus

e BayesWave — discrete frequency f.

e RMS residuals between injected and recovered F

n

Fras ) = 0 [Forn - Foin(]

5

e n = Number of frequency intervals




ROOT MEAN SQUARED RESIDUALS, Zxuvs

Nonprecessing (sample event)

Injected
HL

HLV
HLKV

Precessing (sample event)

Injected
HL

HLV
HLKV

T -
et
AN NN,

‘r‘\
3:-.\"\‘\-0\

-~
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1\,\~

HL (0.937)
HLV (0.195)
HLKV (0.088)

200

250

300 350 400

HL (0.810)
HLV (0.321)
HLKV (0.095)

Lower Rpnms(F o) = Higher measurement accuracy

200

250




MEASURING FRACTIONAL POLARISATIONS WITH R

Nonprecessing BBHSs
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KEY TAKEAWAYS
MEASURING POLARISATION CONTENT WITH R

e R recovers fractional polarisations more accurately as
the detector'network expands

e \When detector network is sufticiently large:
Accuracy of polarisation measurements is not affected
by signal morphology

A H and L are approximately coaligned
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Y @AstroOrca

SUMMARY

* BayesWave can potentially distinguish between elliptical and nonelliptical GW
signals through model selection via In %y

e The R model can be used to measure tensor polarisation content of GW burst
signals

e Both of the above are enhanced by expanded detector networks

e FUTURE WORK:

e Extend analyses to generic burst signals e.g. CCSN or WNB

* Model selection between tensor (GR) and non-tensor (non-GR) polarisations



