THE 10TH CONFERENCE OF POLISH SOCIETY ON RELATIVITY

CHARACTERISATION OF GRAVITATIONAL-WAVE BURSTS TENSOR POLARISATIONS WITH THE BAYESWAVE PIPELINE

17TH OF SEPTEMBER 2024

YI SHUEN (CHRISTINE) LEE SIDDHANT DOSHI MEG MILLHOUSE ANDREW MELATOS

TALK OVERVIEW

Gravitational-wave (GW) polarisations • BayesWave signal models: Elliptical (E) and relaxed (R) Multi-detector network analyses: • PART I: Model selection - E vs. R • **PART II:** Measuring tensor polarisation content with *R*

GW POLARISATIONS

According to General Relativity, GWs have two polarisations

• Plus (+)

Cross (X)

Deformation of a ring of free-falling particles by each polarisation modes

- Antenna pattern functions : $F_{x}(\Omega, \psi)$ and $F_{+}(\Omega, \psi)$
 - Sensitivity of a detector to each polarisation state
 - Ω = the sky location of the source
 - ψ = the polarisation angle

DISENTANGLING GW POLARISATIONS

• Antenna pattern functions : $F_{x}(\Omega, \psi)$ and $F_{+}(\Omega, \psi)$ Sensitivity of a detector to each polarisation state • Ω = the sky location of the source • ψ = the polarisation angle • Interferometric response of detector *I* (in the frequency domain) • $\tilde{h}_I = \left[F_I^{\times}(\Omega, \psi) \tilde{h}^{\times} + F_I^+(\Omega, \psi) \tilde{h}^+ \right] e^{2\pi i f \Delta t_I(\Omega)}$ • \tilde{h}_+ and \tilde{h}_{\times} = amplitudes at a nominal reference location • Δt_I = light travel time from the reference location to detector I

DISENTANGLING GW POLARISATIONS

DISENTANGLING GW POLARISATIONS

 $\tilde{h}_{I} = \left[F_{I}^{\times}(\Omega, \psi) \tilde{h}^{\times} + F_{I}^{+}(\Omega, \psi) \tilde{h}^{+} \right] e^{2\pi i f \Delta t_{I}(\Omega)}$

- Contains up to four unknowns: • Two polarisation amplitudes: \tilde{h}_+ and $\tilde{h}_{ imes}$ • Sky location Ω • Source orientation ψ
- components

DISENTANGLING GW POLARISATIONS

 $\tilde{h}_{I} = \left[F_{I}^{\times}(\Omega, \psi) \tilde{h}^{\times} + F_{I}^{+}(\Omega, \psi) \tilde{h}^{+} \right] e^{2\pi i f \Delta t_{I}(\Omega)}$

Need responses from multiple detectors to extract the polarisation

EXPANDING GW DETECTOR NETWORK

Existing 2nd-generation ground-based detectors:
(1) LIGO - Hanford (H) and Livingston (L), USA
(2) Virgo (V), Italy
(3) KAGRA (K), Japan

Livingston

Hanford

[Image credits: LIGO Lab Caltech]

EXPANDING GW DETECTOR NETWORK

Existing 2nd-generation ground-based detectors: (1) LIGO - Hanford (H) and Livingston (L), USA (2) Virgo (V), Italy (3) KAGRA (K), Japan HL (two-detector) HLV (three-detector) HLKV (four-detector)

Compare multi-detector performances in characterising polarisations:

Livingston

Hanford

[Image credits: LIGO Lab Caltech]

BAYESWAVE: ALGORITHM OVERVIEW An unmodelled transient gravitational wave (burst) analysis algorithm

BayesWave publications:

BAYESWAVE: ALGORITHM OVERVIEW An unmodelled transient gravitational wave (burst) analysis algorithm Enables joint characterization of instrumental glitches and GW bursts

BayesWave publications:

BAYESWAVE: ALGORITHM OVERVIEW An unmodelled transient gravitational wave (burst) analysis algorithm Enables joint characterization of instrumental glitches and GW bursts Reconstructs transient, non-Gaussian features in the data by summing a set of sine-Gaussian wavelets, with no a priori assumptions

BayesWave publications:

BAYESWAVE: ALGORITHM OVERVIEW An unmodelled transient gravitational wave (burst) analysis algorithm Enables joint characterization of instrumental glitches and GW bursts Reconstructs transient, non-Gaussian features in the data by summing a set of sine-Gaussian wavelets, with no a priori assumptions

BayesWave publications:

Images courtesy of Meg Millhouse

BAYESWAVE MODELS

Reconstructing transient features with three independent models: Signal plus Gaussian-noise model, S Glitch plus Gaussian-noise model, g Gaussian-noise only model, M

Glitches

Gaussian noise

BAYESWAVE MODELS

Reconstructing transient features with three independent models:

Signal plus Gaussian-noise model, S

Glitch plus Gaussian-noise model, g

Gaussian-noise only model, M

Glitches

Gaussian noise

 Λ : sine-Gaussian wavelet ϵ : ellipticity N: number of wavelets

BAYESWAVE SIGNAL MODELS

BAYESWAVE SIGNAL MODELS

Elliptical polarisation, E $\tilde{h}_{+} = \sum_{n=1}^{N} \Lambda \left(f; t_{0}^{n}, f_{0}^{n}, Q^{n}, A^{n}, \phi^{n} \right)$

 $\tilde{h}_{\times} = i\epsilon \tilde{h}_{+}$

 Λ : sine-Gaussian wavelet ϵ : ellipticity N : number of wavelets

BAYESWAVE SIGNAL MODELS

Elliptical polarisation, E $\tilde{h}_{+} = \sum_{n=1}^{N} \Lambda \left(f; t_{0}^{n}, f_{0}^{n}, Q^{n}, A^{n}, \phi^{n} \right)$

 $\tilde{h}_{\times} = i\epsilon \tilde{h}_{+}$

 Λ : sine-Gaussian wavelet ϵ : ellipticity N : number of wavelets

$\begin{aligned} & \tilde{h}_{+} = \sum_{n=1}^{N} \Lambda \left(f; t_{0}^{n}, f_{0}^{n}, Q^{n}, A^{n,+}, \phi^{n,+} \right) \\ & \tilde{h}_{\times} = \sum_{n=1}^{N} \Lambda \left(f; t_{0}^{n}, f_{0}^{n}, Q^{n}, A^{n,\times}, \phi^{n,\times} \right) \end{aligned}$

BAYESWAVE SIGNAL MODELS

Elliptical polarisation, E $\tilde{h}_{+} = \sum \Lambda \left(f; t_0^n, f_0^n, Q^n, A^n, \phi^n \right)$ n=1

 $\tilde{h}_{\star} = i\epsilon \tilde{h}_{+}$

 Λ : sine-Gaussian wavelet ϵ : ellipticity N: number of wavelets

To avoid degeneracies with the glitch model

Relaxed polarisation, R

n=1

n=1

E does not hold for CBCs with time-varying polarisations, e.g.
Distinctive higher-order modes
Spin-precessing
Other transient signals like supernovae are also generally unpolarised

• E does not hold for CBCs with time-varying polarisations, e.g.

Distinctive higher-order modes

Spin-precessing)

• Other transient signals like supernovae are also generally unpolarised

Amplitude modulation

• E does not hold for CBCs with time-varying polarisations, e.g.

Distinctive higher-order modes \bigcirc

Spin-precessing

Amplitude modulation

Other transient signals like supernovae are also generally unpolarised

ELLIPTICAL (E) VS. RELAXED (R)

How well do the *E* and *R* polarisation models represent elliptical and nonelliptical GW signals?

ELLIPTICAL (E) VS. RELAXED (R)

Is there a preferred model?

ELLIPTICAL (E) VS. RELAXED (R)

How well do the E and R polarisation models represent elliptical and nonelliptical GW signals?

How well do the E and R polarisation models represent

Is there a preferred model?

Is the preference affected by the size of detector network?

ELLIPTICAL (E) VS. RELAXED (R)

elliptical and nonelliptical GW signals?

TWO INJECTION SETS

- 200 injections
- High mass ratio $40M_{\odot} 8M_{\odot}$
- High network signal-to-noise ratio: SNR ~ 50 (HLV)
- Uniform sky location and polarisation angle
- Injected into simulated detector noise

TWO INJECTION SETS

- 200 injections
- High mass ratio $40M_{\odot} 8M_{\odot}$
- High network signal-to-noise ratio: SNR ~ 50 (HLV)
- Uniform sky location and polarisation angle
- Injected into simulated detector noise

Nonprecessing (elliptical)

TWO INJECTION SETS

- 200 injections
- High mass ratio $40M_{\odot} 8M_{\odot}$
- High network signal-to-noise ratio: SNR ~ 50 (HLV)
- Uniform sky location and polarisation angle
- Injected into simulated detector noise

Nonprecessing (elliptical)

Precessing (nonelliptical)

Non-zero *in-plane* spin

ELLIPTICAL (E) VS. RELAXED (R): FIGURE OF MERITS

where h^{i} is the BayesWave-recovered waveform for the *i*-th detector

Bayes Factor $\ln \mathscr{B}_{R,E} = \ln p(\vec{s} \mid R) - \ln p(\vec{s} \mid E)$

Network overlap (i.e. match) $\mathcal{O}_{R,E} = \frac{\sum_{i} \left(h_{R}^{i} \mid h_{E}^{i}\right)}{\sqrt{\sum_{i} \left(h_{R}^{i} \mid h_{R}^{i}\right) \sum_{i} \left(h_{E}^{i} \mid h_{E}^{i}\right)}}$

Evidence of model $\mathcal{M} \simeq \text{Likelihood} \times \frac{\Delta V_{\mathcal{M}}}{V_{\mathcal{M}}}$

 $\Delta V_{\mathscr{M}}$

 $V_{\mathcal{M}}$

Evidence of model $\mathcal{M} \simeq \text{Likelihood} \times -$

Bayes factor, $\mathscr{B}_{R,E} \simeq$ Likelihood ratio $\times \frac{\Delta V_R}{\Delta V_E} \frac{V_E}{V_R}$

 $\Delta V_{\mathscr{M}}$

 $V_{\mathcal{M}}$

Evidence of model $\mathcal{M} \simeq$ Likelihood X –

Bayes factor, $\mathscr{B}_{R,E} \simeq$ Likelihood ratio $\times \frac{\Delta V_R}{\Delta V_E} \frac{V_E}{V_R}$

 $\begin{array}{l} \Delta V_{\mathscr{M}} : \text{Posterior volume} \\ V_{\mathscr{M}} & : \text{Total parameter space} \\ \text{volume of model} \, \mathscr{M} \end{array}$

 $\mathcal{O}_{R,E} \sim 1 \Rightarrow$ Appx. equal likelihood and posterior volumes (i.e. $\Delta V_E \approx \Delta V_R$)

 $\begin{array}{l} \Delta V_{\mathscr{M}} : \text{Posterior volume} \\ V_{\mathscr{M}} & : \text{Total parameter space} \\ & \text{volume of model } \mathscr{M} \end{array}$

 $\mathcal{O}_{R,E} \sim 1 \Rightarrow$ Appx. equal likelihood and posterior volumes (i.e. $\Delta V_F \approx \Delta V_R$)

Bayes factor, $\mathscr{B}_{\mathbf{R},\mathbf{E}} \simeq 1 \times 1 \times \frac{V_{\mathbf{E}}}{V_{\mathbf{R}}} \Rightarrow \ln \mathscr{B}_{R,E} \lesssim 0$ for $V_E < V_R$

 $\Delta V_{\mathcal{M}}$: Posterior volume V_{M} : Total parameter space volume of model \mathcal{M}

 $\mathcal{O}_{R,E} \ge 0.98 \sim 1 \Rightarrow$ Similar behaviour (i.e. $\ln \mathcal{B}_{R,E} \lesssim 0$) for both non-precessing and precessing BBHs

ELLIPTICAL (E) VS. RELAXED (R) Precessing BBHs (cont.)

(1) $\mathcal{O}_{R,E} < 0.98 \Rightarrow \ln \mathcal{B}_{R,E} > 0$ for some precessing BBHs Mostly high $\chi_{p,\text{init}}$ events (2) $\ln \mathscr{B}_{R,E}$ is more positive with larger detector networks Better reconstruction of non-elliptical features with R

KEY TAKEAWAYS ELLIPTICAL (E) VS. RELAXED (R)

 Non-precessing BBHs are equally well-represented by both E and R, so if we had to choose one... Occams Razor says to pick the simpler one (E)High in-plane spin \Rightarrow likely to have more precession, so generally better represented by R

Same for most precessing BBHs, BUT...

ELLIPTICAL (E) VS. RELAXED (R) with real data - O3 events

$\mathcal{O}_{R,E} \gtrsim 0.90$ $\downarrow \downarrow$ *E* and *R* reconstructions are comparable

GWTC-2: Phys. Rev. X 11, 021053 (2021), **GWTC-3:** Phys. Rev. X 13 041039 (2023).

ELLIPTICAL (E) VS. RELAXED (R) with real data - O3 events

E and R reconstructions are comparable

 $\mathcal{O}_{R,E} \gtrsim 0.90$

O3 events are generally prefers the elliptical polarisation model *E*

GWTC-2: Phys. Rev. X 11, 021053 (2021), **GWTC-3:** Phys. Rev. X 13 041039 (2023).

WHAT ELSE CAN THE RELAXED POLARISATION (R) MODEL DO?

• E assumes that the GW signal is elliptical by constraining $\tilde{h}_{\times} = i\epsilon \tilde{h}_{+}$

• R models \tilde{h}_+ and \tilde{h}_{x} separately i.e. no prior assumption of the polarisation structure

• So R can be used to measure generic polarisation content

PART 2

STOKES PARAMETERS (IN LINEAR BASIS)

$I = |\tilde{h}_{+}|^{2} + |\tilde{h}_{\times}|^{2}$ $Q = |\tilde{h}_{+}|^{2} - |\tilde{h}_{\times}|^{2}$ $U = \tilde{h}_{+}\tilde{h}_{\times}^{*} + \tilde{h}_{\times}\tilde{h}_{+}^{*}$ $V = i(\tilde{h}_+ \tilde{h}_{\times}^* - \tilde{h}_{\times} \tilde{h}_+^*)$

GWs are polychromatic . I, Q, U, V are functions of frequency

Total intensity

Linear polarisation

Circular polarisation

FRACTIONAL POLARISATION

(Total) degree of polarisation

 F_T

 $\sqrt{Q^2 + U^2 + V^2}$

 $0 \leq F_{\mathcal{P}} \leq 1 \text{ for } \mathcal{P} \in \{L, C, T\}$

MEASUREMENT ACCURACY: ROOT MEAN SQUARED RESIDUALS, \mathscr{R}_{RMS}

$\begin{array}{c} \mbox{MEASUREMENT ACCURACY:} \\ \mbox{ROOT MEAN SQUARED RESIDUALS, } \end{tabular} \\ \end{tabular} \end{array}$

BayesWave \rightarrow discrete frequency f_i

MEASUREMENT ACCURACY: ROOT MEAN SQUARED RESIDUALS, RRMS

BayesWave \rightarrow discrete frequency f_i

• RMS residuals between injected and recovered $F_{\mathcal{O}}$

MEASUREMENT ACCURACY: ROOT MEAN SQUARED RESIDUALS, RRMS

• BayesWave \rightarrow discrete frequency f_i

• RMS residuals between injected and recovered $F_{\mathcal{O}}$

• n =Number of frequency intervals

Lower $\mathscr{R}_{RMS}(F_{\mathscr{P}})$ = Higher measurement accuracy

MEASURING FRACTIONAL POLARISATIONS WITH R

25

Precessing BBHs

MEASURING FRACTIONAL POLARISATIONS WITH R

26

Nonprecessing BBHs

Precessing BBHs

KEY TAKEAWAYS MEASURING POLARISATION CONTENT WITH R

• R recovers fractional polarisations more accurately as the detector network expands

 When detector network is sufficiently large: Accuracy of polarisation measurements is not affected by signal morphology

H and L are approximately coaligned

- BayesWave can potentially distinguish between elliptical and nonelliptical GW signals through model selection via $\ln \mathscr{B}_{R,E}$
- The R model can be used to measure tensor polarisation content of GW burst signals
- Both of the above are enhanced by expanded detector networks
- FUTURE WORK:
 - Extend analyses to generic burst signals e.g. CCSN or WNB 0
 - Model selection between tensor (GR) and non-tensor (non-GR) polarisations

SUMMARY