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Context: Medical Imaging

Example: x-rays (gammas) traversing a human body

“X-ray Computer Tomography”

B
e

Intensity mage

Reconstruct
volumetric map of the
attenuation coefficient



Context: Medical Imaging

e Example: gammas emitted from a body

e Positron Emission Tomography (PET)

» Single Photon Emission Computed
Tomography (SPECT)

Reconstruction:
Source distribution




Context: External Radiotherapy

lonizing radiation penetrating through/into a human body

Goal: expose tumor to high dose, but
spare healthy tissue as much as possible.




Context: Nuclear Medicine

 lonizing radiation created inside a human body

_—

Expose organs/cells
affected by cancer
to radiation dose.




Why Monte Carlo simulation?

In medical imaging: In external radiotherapy:

e Design and optimize new e Predict dose maps

imaging devices
» Recalculate treatments for quality

e Generate data to test assurance
reconstruction algorithms

e Simulate scatter contribution

| | | In nuclear medicine:
e Simulate attenuation maps in

nuclear imaging e Predict dose



Examples of Monte Carlo codes

Multi-purpose:

e Geant4, FLUKA, MCNP, ...

Applications built on top of Geant4:
e TOPAS

e GATE version 9.x

Application/physics specific:

e EGS (Electron, photon)

e Penelope (electron, photon)

e MCsquare (proton therapy)

e FRED (mainly fast dose calculation)

e GGEMS



Physics perspective

« Particles traveling across a heterogeneous
distribution of matter

« Undergo interactions with the matter

« Which interaction depends on material
and projectile properties

e Result of interaction is stochastic




“Interaction”: Physics perspective

Example of interaction: Photon scattering off
an electron - Compton scattering

 Photon changes
energy (wavelength)
and direction

e Transfers some
energy to target




“Interaction”: Statistics perspective

Example of interaction: Compton scattering

Likelihood of a photon being scattered:

180°

— )75 eV
— 60 keV
511 keV
1,46 MeV
=10 MeV




Particle transport simulation

Step-wise propagation of a particle across a medium

Steps Secondary particle
Example:

Dose calculation
Particle stops and
deposits remaining
Primary particle o | / energy locally
Volume of interest

At each step: Evaluate and apply interaction models



Particle transport simulation

Patient = complex heterogeneous geometry

Example:
Dose calculation

Patient geometry usually
parametrized via 3D
discretized image:

x-ray CT image

Primary particle




Ingredients of a Monte Carlo Simulation

Source (gammas, ions, ...) Geometry (objects, beamline, patient...

Physics (interactions of particles with the target, nuclear decay)

Output information about physics (dose, particle distribution, detector signal)



Schematic example of “Monte Carlo Simulation”....

Radioactive tracer:
distribution of gammas

emitted gammas

Patient (from CT image)
Detector (e.g. SPECT Detector (e.g. SPECT

imaging) imaging)

Record gammas and
model detector
response



Example of “Monte Carlo Simulation” ...

Record individual
particles’ kinematic
properties (E,
momentum, position)

d

Detector (e.g. for
proton radiography)

Record dose

_

Primary
particles

Degrader, Patient (from CT
collimator, etc. image)



Monte Carlo simulations

(in medical physics/imaging)

are used to

sample probability distributions.



MC samples a probability distribution

Record dose

e
A

Dose D in voxeli,jkis:

Di, ik & j p(e, )_C)l-, j,k)€d€ Sampled by transporting N primary particles
) Precision of D improves with 1/sqrt(N)

with € deposited energy
B) More particles = lower noise



MC samples a probability distribution

Primary
particles

Vx

I(x,y) [ p(E,x,y)w(E)dE  Sampled by transporting N primary particles

Projected image is obtained by binning:

with E the particle’s energy EEE) More particles = lower noise

and w(E) the detector response



Simulated images are spatially discretized
probability distributions

where
1 image represents 1 distribution



Pros and cons of (multi-purpose) Monte Carlo

Accurate and “complete” physics Computationally intensive

Versatile applications



How to get around the “slowness”?

e Strip down and simplify physics (models, cuts)

e Implement task-specific optimized code

e Use parallel hardware; GPU

o Replace parts of the tracking by fast simulation

e Replace Monte Carlo completely by effective model

e Enhance low-statistics Monte Carlo output
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How to get around the “slowness”?

e Strip down and simplify physics (models, cuts)

e Implement task-specific optimized code

EE) next talk

e Replace parts of the tracking by fast simulation )

e Use parallel hardware; GPU

presented
yesterday

e Replace Monte Carlo completely by effective model

e Enhance low-statistics Monte Carlo output

mmm) this talk




Scatter estimation/removal

« Scatter contribution in projections reduces image quality in
SPECT, PET, CBCT

« Scatter can be simulated via Monte Carlo, but it is slow
o |ldea: Train network to estimate scatter images from projections

e ... and replace the Monte Carlo simulation



Scatter estimation/removal

total
image

scattered
photons

“—+~

ncoder - Decoder

Monte Carlo ) :::::;22;

Tomographic
reconstruction

measured
image

\%mate

Corrected
image -




Scatter estimation/removal Scatter countal

o‘ut/siae right lobg

Examples: =

« Xiang et al, 2020, “A deep neural
network for fast and accurate scatter
estimation in quantitative SPECT/CT
under challenging scatter conditions”

« Heyden et al., 2020, “Monte Carlo Based
Scatter Removal Method for Non-
iIsocentric Cone-Beam CT Acquisitions
Using a Deep Convolutional 90Y SPECT w/ DCNN

Autoencoder” [Xiang2020]
Lalonde2020]

Lee2019]
[Maier2019]

'van der Heyden2020]
Xiang2020]




Enhance low-statistics Monte Carlo output

ﬂ Low noise
Monte Carlo
‘ High noise

Encoder - Decoder

Low noise ) High noise

Monte Carlo )




Enhance low-statistics Monte Carlo output

» Post-processing, CNN-based denoising

. . . . . o . Fornander2019]

» Training dataset: pairs of high-noise/low-noise distributions Neph2019)
. . Peng2019]
« Data: dose maps, SPECT/PET images Javaid2019)]
e 10-100 times fewer particles Reymann2013]
_ . 'Kontaxis2020]
» Dose gradients preserving? Javaid2021]
Bai2021]

Fig. 3. A dose distribution on a sample lung test case. Left is the noisy dose distribution (MC simulation with 1 x 10° protons) and right is the reference dose
distribution computed with 1 x 10° protons.

Javaid, U. et al., 2021, https://doi.org/10.1002/mp.13856



Deep learning based dose estimation

Example: Proton beam therapy

» Predict stack of 2D dose distribution along the beam
Training data: Monte Carlo

direction -~

slices

0000000000000000000000000000000000000000000000000000000000000000000

Pastor-Serrano, O., & Perko, Z. (2022). https://doi.org/10.1088/1361-6560/ac692¢e



Deep learning based dose estimation

Example: Nuclear medicine
» Predict 3D dose distribution given CT and PET images

Training data: Monte Carlo
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. Convolution . Max pooling . Deconvolution =™ Copy & concatenation
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Lee, M. S. et al., (2019). https://doi.org/10.1038/s41598-019-46620-y



Models to synthetically generate (pseudo) images

(not strictly Monte Carlo, but medical imaging)



Generative intermediate SPECT projections

Long 3D SPECT acquisition with rotation gantry, around 120 angles

Rydén et al, 2020: Synthetic intermediate projections

... to be used during the reconstruction

Projections

ASCC-OSEM 30

ASCC-OSEM 30-120SIP

ASCC-OSEM 120

¢,
¢,

~
<3
~

-
- .

14
5
“\
D
»
14
5
«
14
|
.
\.'



GAN for pseudoCT from cone beam CT

Pelvis

conventional
(fan beam)
x-ray CT

cone beam
x-ray CT

[Liang2019], [Kinda2020]: CycleGAN



GAN for pseudoCT from Magnetic Resonance Imaging (MRI)

» Use case: input for dose computation in radiotherapy

Q
(7))
™ @©
R
v <
gE
a =S
@)
—

Patient 2
High MAE case

=



Heads up when generating images...



Reconstructed image
from full CT scan

2 projections '

Generative model
(encoder - decoder)

>

Now we can get patient CTs from
only 2 projections! Awesome.



Reconstructed image
from full CT scan

2 projections '

Generative model
(encoder - decoder)

>

Now we can get patient CTs from .
only 2 projections! Awesome. Would you buy this?



Question: Up to which pointis it legitimate to
generate images?



Question: Up to which pointis it legitimate to
generate images?

Tentative answer: Depends if we transform/convert
information or invent it.



Learning the detector response function

in Monte Carlo simulation
of SPECT imaging



Angular Response Function (ARF)

« SPECT imager usually has a collimator with holes to filter out
photons according to their direction.

« Energy windows are applied at the electronic acquisition level.

Emitted Collimator Crystal Detection likelihood
photons :

| Detected p0, ¢, E)

_ photons

| Likelihood in window “i"

One count in L, high
‘ one energy p0, p, E)AE
window r

i,low



Angular Response Function (ARF)

Emitted Collimator Crystal Detection likelihood
photons :

| Detected p(@, ¢, E)

_ photons

| Likelihood in window “i”

One count in L, high
‘ one energy p(0,p, E)dE
window r

i,low



Angular Response Function (ARF)

» Instead of transporting the photons across the detector, we score them
according to the likelihood determined from their properties at a virtual plain.

Emitted
photons

Collimator Crystal

(

Detected
photons

One count In
one energy
window

Detection likelihood

p, 9, E)

Likelihood in window

inn
I

Ei,high
[ p0, ¢, E)dE
E.

i,low



Angular Response Function (ARF)

Parametrize as multi-

Detection likelihood . . .
dimensional histogram

p, ¢, E)

Train a neural network to

Likelihood in window “i" predict p_i from theta and phi

L pigh

pi0, ¢) = J p(0, ¢, E)dE

E; tow acts as variance reduction
technique because network is
a smooth non-linear function



Angular Response Function (ARF)

Image of spherical sources

Neural network based ARF

| | a
-l-! = ]
= . )
.
o ul
s L]
1

ARF acts as variance reduction technique ARF-nn 4x10

Explicit (analog) Monte Carlo
simulation

Analog 4x10 /

Sarrut, D., Krah, N., et al., 2018, https://doi.org/10.1088/1361-6560/aae331



Learning phase-space distributions
for Monte Carlo simulations in nuclear imaging



GAN to accelerate SPECT simulation

* Partl: from emission to patient exiting gamma
e Part2: track gamma inside the detector

SPECT head detector

Tracked'gammas Collimator, crystal, digitizer
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Reference analog Monte Carlo simulation



Training the GAN based on Monte Carlo data

Train a GAN to produce exiting gamma from a given source

* Stepl: run low stats MC, consider exiting gammas

SPECT head detector
Collimator, crystal, digitizer

* Step2: train a GAN Tracked gammas
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* Step3: use GAN a source —
—
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e
-

Reference analog Monte Carlo simulation
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Proposed neural network based simulation



Training the GAN based on Monte Carlo data

[Goodfellow et al 2014]

e Training dataset « € R?
* Dimensiond=7 (E,X,Y,Z,dX,dY,dZ)—
 Samples of unknown Preal

* Generator G(z;0q)

* Discriminator D(x;0p)




Generalize GAN to arbitrary source distribution: Conditional GAN

Train with one given phantom (CT, patient) ...
... but with homogeneous activity

Conditional input activity map.

Lc = E[C(G(aly))] — E[C(x]y)] + AE[(|| Vi, CXIY)||, — 1)
\—v—/

GP reqularization

Le = —-E|[C(G(zly)))



Results

2D projections
Lul77 (1 peak & scatter)
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GAN in PET simulation

Back-to-back GAN photon source for PET Monte Carlo simulation

P.E L d, P, Egty dy = 16 dimensions P.d. LE, d, E, d, = 15 dimensions

[Sarrut et al, PMB 2023]



Recall:

Simulated images are spatially discretized
probability distributions

where
1 image represents 1 distribution
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Recall:

Simulated images are spatially discretized
probability distributions

where
1 image represents 1 distribution

G(z) ™=) |mage

Generators produce 1 image from 1 vector z



Different when generating
particles in Monte Carlo:

G(z) m=) Particle

G(z) == Particle Distribution =) Image

G(z) - Particle

Inaccurate sampling of distribution of G(z) has
systematic impact on image (artifacts)



In other words ...

Each horse looks realistic
) “G works well”

although G might slightly
overrepresent brown horses....




... NOW with particles

G(z) ™=) Particle

G(z) ™= Particle

G(z) ™= Particle

G(z) ™= Particle

Each particle has realistic energy

) “G works well” (?)

But high energy particles are
oversampled

m=) Incorrectimage



Curious to try Monte Carlo simulations yourself?



GATE 10 (beta)

* Non-beta release this summer
e Static input files replaced by Python scripts
pip 1nstall opengate

& Geant4

SIMJLATION TOOLNOT

Open and Open-source QM https://glthub.com/OpenGate/opengate

open source

* Multi-thread, O PyTorch
* Faster, embeddable, powerful

* SPECT, PET, Linac, proton, dose ...
* More than 150 tests and examples




Thank you very much



Lyon, France

Thank you very much CR=
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