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Positron Emission Tomography principles
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The radioisotope is injected into the patient
The radioisotope undergoes positron emission
decay (8+)

The positron travels for a short distance (about
1mm)

The positron interacts with an electron,
forming a pair of two back-to-back gamma
photons

A list of coincidence events is constructed
based on time window

Coincidences form LORs that hint at where the
initial annihilation happened
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J-PET

Modular Jagiellonian PET (J-PET) Total-body (TB) J-PET
Li
O}
ahcpe i 1
LB - -

» 7 rings composed of 2 layers of

» 24 arrays of 13 plastic scintillator scintillator strips

strips
» Length of 50cm
» Radius of 40cm

> Layers separated by wavelength
shifters

» Total length of more than 2m

!P Moskal et al. “Simulating NEMA characteristics of the modular total-body J-PET scanner—an
economic total-body PET from plastic scintillators™. In: Physics in Medicine & Biology 66.17 (Sept.
2021), p. 175015.
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PET image correction

> PET images are degraded due to several effects

» Those effects can be compensated using different techniques:
P> Attenuation correction
P Scatter correction
» Random correction
» Normalization correction
» Resolution modeling
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Overview of PET corrections for image reconstruction

Normalization

( CT acquisition ) ( PET acquisition J acquisition

Scanner
geometry
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Non-corrected ]
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Image re-
construction
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Maximum-Likelihood Expectation-Maximization

Update equation of Maximum-Likelihood Expectation-Maximization (MLEM):

(k) P
k+1 X, Z Y
p=1 Tlp (quzl qu’Xq/ ) +Sp+1p
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Scatter correction
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The problem with scatter coincidences

Annihilation



Importance of scatter correction
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2Dale L. Bailey, ed. Positron emission tomography: basic sciences. New York: Springer, 2005.
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Scatter correction

» Scattered coincidences correspond from 20 % to 50 % of all coincidences®

> Various corrections exist:
» Empirical approaches (tail fitting)
Two (or more) energy windows

>
» Convolution/deconvolution
» Modeling of the scatter distribution during forward projection

> Analytic methods (single scatter simulation (SSS))
»> Monte Carlo (MC) methods

» Machine-learning-based approaches

3Bailey, Positron emission tomography.
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Single scatter simulation

emission/attenuation

Sample points " Single-scatter coincidence rate along LOR (A, B) is
estimated as the volume integral of a scattering
kernel over the scattering medium*:

do
SAB:/dS _0as0Bs |\ fdoc a8
S\ amr2R2. ) o0 a0 1+ 1)
(2)

- time offset

Fig. 1. The single scatter simulation model.

4C C Watson. “New, Faster, Image-Based Scatter Correction for 3D PET". In: IEEE Transactions

on Nuclear Science (2000).
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Reconstructions (courtesy of Jakub Baran)

» Use of STIR®> SSS implementation
» Reconstructions of standard NEMA IEC phantom

» Reconstruction by MLEM (from Customizable and Advanced Software for
Tomographic Reconstruction®)

®Kris Thielemans et al. “STIR: software for tomographic image reconstruction release 2". In:
Physics in Medicine and Biology 57.4 (Feb. 2012), pp. 867-883.

®Thibaut Merlin et al. “CASToR: a generic data organization and processing code framework for
multi-modal and multi-dimensional tomographic reconstruction”. In: Physics in Medicine & Biology

63.18 (Sept. 2018), p. 185005.
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Reconstruction results (x profiles)
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Reconstruction results (y profiles)
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Reconstruction results (z profiles)

True True + scatter True + scatter + SSS

200 200 200

—200 —200 —200

—-200 O 200 —200 O 200 —-200 O 200

17/46



Scatter correction conclusions

» Scatter correction is an important step in PET image reconstruction
» For J-PET: extend SSS to take into account time-of-flight information’

"Charles C Watson. “Extension of Single Scatter Simulation to Scatter Correction of Time-of-Flight

PET". In: IEEE Nuclear Science Symposium (2005).
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The problem with random coincidences
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Random correction

» Unlike true coincidences, random coincidences tend to be somewhat uniformly
distributed across the field-of-view®
» Various corrections exist:
» Tail-fitting methods
» Single rate
» Singles-prompts
» Delayed time window

8Bailey, Positron emission tomography.
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Overview of selected random correction techniques

> Single rate: R,.SJR = 2TR;R;

» Singles-prompts: extension to the conventional single rate approach using
information from singles and prompts rate

» Delayed time window

» Timing signals from one detector are delayed by a time significantly greater than the
time window (7)

» Number of coincidences found estimate the number of random coincidences

» This estimate is then subtracted to the total number of coincidences
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Simulations set-up (courtesy of Szymon Parzych)

» MC simulations conducted with GATE 9.0°
» Phantoms:

» Point source at the center

> Small water-filled cylinder (radius of 15cm, length of 22cm)

» Large water-filled cylinder (radius of 10.555cm, length of 168 cm)
> NEMA IEC

» Coincidence time window: 7 = 3ns

°David Sarrut et al. “Advanced Monte Carlo simulations of emission tomography imaging systems

with GATE". In: Physics in Medicine & Biology 66.10 (May 2021), 10TRO03.
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Preliminary

results (courtesy of Szymon Parzych)
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Conclusions for random correction (courtesy of Szymon Parzych)

» Singles-prompts method provides the best estimation of total random coincidences

» However, the delayed time window method provides the best distribution of
random coincidences

» Delayed time window seems adapted to J-PET due to its triggerless acquisition

» More investigations to be done, especially for TB J-PET
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Normalization correction
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Why is normalization needed?

Several effects can affect LOR sensitivity
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The problem of normalization
> Assuming a “perfect” source of activity A, we have
CLor = A (3)
» In practice, a number of effects affect the count rate:

Clor = Fror X A (4)

» Goal of normalization: find n,or such that

CLor X MLor = A (5)

> Two approaches:
» Direct normalization
» Component-based normalization

Notations taken from Theodorakis et al.*°.

L ampros Theodorakis et al. “A review of PET normalization: striving for count rate uniformity”.
In: Nuclear Medicine Communications 34.11 (Nov. 2013), pp. 1033-1045.
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Direct normalization

» We want
CLor X NLor = A (5)
» Therefore, A
MoR = & (6)
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Direct normalization

» We want
CLor X NLor = A (5)
» Therefore, A
MOR = = (6)

P> Problem: statistics
» Modular J-PET has 24 x 13 x 25 = 7800 “detector pixels”
> ..hence 7<(780-1) _ 30416100 possible LORs
» 1% error — 10000 counts per LOR
» Thus we need about 304 161 000000 coincidences!
» TB J-PET requires 49 times more coincidences!
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Component-based normalization

General idea
Improve statistics and decrease variance by considering several LORs for normalization

computation!:

ax tr
Nuivi = Buv X 8ij X €ui X €yj (7)

g% Axial geometric factors

g'" Transverse geometric factors

€ Intrinsic detector efficiency

uy

\\\\\ AV AW EWY AL/

1 Audrey Pépin et al. “Normalization of Monte Carlo PET data using GATE”. In: 2011 IEEE
Nuclear Science Symposium Conference Record. Valencia, Spain: |IEEE, Oct. 2011, pp. 4196-4200.
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Simulations

Normalization scans Reconstruction phantom
2

» Uniform cylinder
> Length: 40 cm (Modular J-PET: 50cm)

» Radius: 10 cm (Modular J-PET: 40cm)

l.12

Courtesy of Pépin et a

12Pépin et al., “Normalization of Monte Carlo PET data using GATE".
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Computed normalization factors

Distance from center [cm]
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Computed normalization factors (cont.)

Intrinsic detector efficiency (e)
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Reconstructions (x profiles)
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Reconstructions (z profiles)
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Normalization conclusion

» Normalization favorably compensates for several effects, including some
geometrical effects or intrinsic detector efficiencies

» Normalization implemented for Modular J-PET
» Must be investigated for TB J-PET, especially due to its length
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Resolution modeling
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The problem

» Resolution degrading factors translate to (@) - (b) .
undesired cross-contamination between . 5 . . & .
adjacent functional regions - . . .

» Positron range r P w9 % " & & & .
. . - .
» Photon noncollinearity - e a . . .
] .

» Detector-related effects

. Kisung Lee et al. “Pragmatic fully 3D image reconstruction for the MiCES
> Intercrystal scatterlng mouse imaging PET scanner”. In: Physics in medicine & biology 49.19

> Intercrystal penetration (2004), p. 4563

38/46



Solutions to resolution degradation

» Post-processing techniques

» ROIl-based techniques (from segmented MRI images)
» Voxel-based techniques

» Incorporation of anatomical information within the reconstruction algorithm

» Typically superior to post-processing techniques
» Drawback: simplifying assumptions

P Resolution modeling

39/46



Resolution modeling techniques

P Idea: incorporate the resolution modeling directly within the system matrix

» The system matrix is modeled as A when aj; is the probability that an event
generated in voxel j is detected along a LOR

> Example of system matrix decomposition:

A= Adet.sensAdet.qurAattn Ageom Apositron
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Some results from

wl

Alain P Pecking, Dominique Bellet, and
Jean Louis Alberini. “Immuno-SPET/CT
and immuno-PET/CT: a step ahead to
translational imaging”. In: Clinical &
experimental metastasis 29 (2012),

pp. 847-852
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Dan J Kadrmas et al. “Impact of time-of-flight on PET tumor detection". In: Journal of Nuclear

Medicine 50.8 (2009), pp. 1315-1323
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Limitations of resolution modeling

» Resolution modeling can lead to notable edge
artifacts, reminiscent of the Gibbs phenomenon
» Some solutions exist

» Use a reconstruction filter that underestimates the
true resolution
» Amplify a frequency band in the Fourier domain

i
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pixel

Bing Bai and Peter D Esser. “The effect of edge
artifacts on quantification of positron emission
tomography™. In: |IEEE Nuclear Science Symposium
& Medical Imaging Conference. |EEE. 2010,

pp. 2263-2266
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Resolution modeling conclusions

» Resolution modeling results in significant improvements in image resolution and
contrast

» Effects on noise is less straightforward to assess
» Main drawback is the edge artifacts, that are not yet fully understood
» Still an open topic in the context of J-PET!
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Conclusion
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Corrections matter

- 8 s a B F - S

Figure 5.10.  Effects of normalisation on image uniformity. Images (summed over all axial planes) from a low-variance 20 cm cylinder acquisition, performed
in 3D mode on a Siemens/CTI ECAT 951. (From [15], with permission.)

(Upper row) linear grey scale covering entire dynamic range.
(Lower row) linear grey scale, zero-point set to 70% of image maximum.

(a) no scatter correction; (e) no transaxial block profile correction;
(b) no normalisation; (f) no crystal interference correction;
(c)no correction for the radial profile; (g) no time alignment correction;

(d) no crystal efficiency correction; (h) fully normalised and scatter corrected.
Dale L. Bailey, ed. Positron emission tomography: basic sciences. New York: Springer, 2005
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General conclusions

v

PET imaging requires several corrections to become quantitative

v

A final calibration is required to convert reconstructed values to physical units
Currently only partially implemented in the context of J-PET

» Current study focus on Modular J-PET
» _.but TB J-PET is kept as a goal

Moving from MC simulations to real data

v

v

» Work is ongoing!
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Thanks for your attention!
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