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Gauge fields

Provide description of the known ,,fundamental” interactions.

fEIectrodynamics - QED - U(I) -Yang-Mills theory \

Electroweak interactions - SU(2)xU(1) - Yang-Mills theory

Chromodynamics - QCD - SU(3) - Yang-Mills theory

\@*avitation - SU(2) - GR in the Ashtekar-Sen formalisnj

= 5

Difficult to study for non-Abelian cases due to the self-interaction
of bosons mediating the interaction...




U(l) gauge field
One can notice that the U(l) Yang-Mills Lagrangian:

S: /d4$£:—i/d4$F“VFMV /«L,VIO,].,Z,S

F,,=0,A, —0,A, and A, is the four-potential (gauge field)

is invariant with respect to the gauge transformation:

where ) ; 7t
A, — AL, =U'AU —iU,U

U = M) ¢ U(1) and A € R, which leads to

A, — A=A, + 0,

where
_ 9oL _
A,

a

—FE* a,b=1,2,3

The canonical momenta are: 7



.. and
0 _ 84 —0 (primary constraint)
0Ag

Ap is a non-dynamical variable (Lagrange multiplier).

T

Employing the above, the ED Hamiltonian writes as:

H = / d3(ntA, — L) = % / Bz(E? + B’z){/ d3a:A°8a@

From here, we find

0=m9={mg,H} = O, E® := E) (secondary constraint)

which is the Gauss law: < — > (or Gauss constraint)

no charges here!

In electrodynamics (U(1)) the Gauss law is a secondary constraint
of the theory, which generates gauge transformations.



One can consider the smeared Gauss constraint;
C [N := / Bx\(z)C(E)

which forms the first class algebra:

({emlcha =0 )

and, therefore, the Gauss constraint is a generator of the underlying symmetry.

Indeed, because:
<5Aa — {A,,C\]} = 8“D

we find that the Gauss constraint generates the residual U(1) gauge symmetry:

Ay > AL = Ay + A, = Ay + O\



SU(2) gauge field

Let us consider the SU(2) connection (I-form):

@ = AzTid.’E§

The T; are generators of the 5u(2) algebra [7'7:, Tj] = €ijkTk

The SU(2) connection field is canonically conjugated to the SU(2)

welectric” field B, = E_T; ,where the arrow corresponds

to the internal (SU(2)) space.

The canonical pair satisfies the following bracket:

{B(@), 4)(y) } = 6616P) (2 — y)

where 7,7 =1,2,3anda,b=1,2,3



For theories invariant with respect to the local SU(2) transformations
(e.g.Yang-Mills theory, GR in the Ashtekar formalism):

(Aa —~ Al =UTA, U +U'9,U )

where [J € SU(Q) , the Gauss constraint takes the following form:

(Cz = DaE,? — BQE,? -+ Gz'jkA‘ZLEg — )

The smeared SU(2) Gauss constraint is

C[N = / >z (z)C;(E, A)

which satisfies the first class algebra:

[ {el] e} -cfmn] )




Holonomies - field theoretical viewpoint

of the SU(2) connection along a path e
are non-local objects defined as follows: 6(1) — { - target

panrmfa)

path e : [0,1] — & — 9o source

Under the gauge transformation the holonomy transforms as:
(halA] = A = U e(0) B [A] Ue(1)) = UL )

where U := U (e(0)) and U; := U (e(1))

Gauge invariant objects

- Wilson loops: We [A] = tr(he [A])



Holonomy-flux algebra

One can introduce flux of the SU(2) ,,electric” field thought a 2-surface S:

FS [E] = / eabCE,?'r":da:b A dx©
S

which satisfies the holonomy-flux algebra:

GFS[E [A]} = —i(e, S)he, [A]T e, [AD

where t(e,S) = £1,0 is the intersection number and e =e; Uez .

g




Holonomies - quantum mechanical viewpoint

In the fundamental (j=1/2) representation of SU(2), the holonomies
are 2x2 SU(2) matrices, which belong to the automorphism group of

2 . :
C (i.e. the space of non-relativistic spinors).

C? equipped with the natural scalar product becomes the Hilbert space
of a qubit system. Pure quantum states correspond to rays in C? .

The SU(2) holonomy becomes then an isomorphism (unitary map)
between the two 2-dimensional Hilbert spaces:

Hs —span{\())S, /Ht
M, = span {[0)1, | 1):) ‘\/

For general j-representation of SU(2), the holonomies are (2j+1)x(2j+1)
SU(2) matrices, such that dim H, = 29 + 1 = dim H;




Holonomy as a unitary map

Employing the basis elements of the source and target Hilbert
spaces, it is convenient to express an arbitrary holonomy map as:

<h = hrj|1)st(J| € Hs ®”H;‘> where [, J =0,1

The action of this unitary map can be either left-handed or right-handed:
hL/H:%/H;k hr: He = Hs
The Hermitian conjugation of h: AT = hy ol )es(I] € He @ H

T .oy * T .
Example: A basis state ;(K| € 1 at the point s is mapped into:

(K| h=hrjs(K|[)si(J| = hiji(J| € H; atthe pointt.



Mapping of the basis states:
[I)s = hrglJd):

Matrix elements of holonomies
are the coefficients of decomposition
of one basis into the other

Physical interpretation: holonomies describe
displacement of a quantum system from point
s to point t in the gauge field:

\
$) — PeleAy) j

)




Change of basis
;

b
' v O>fS
A
s o),

Physics does not depend on the choince of basis.

One can perform unitary transformation: |I>/ — U‘[>

or using components of the unitary matrix ‘I>/ = UJ[‘J>

How the holonomies transform under the change of bases?



=
N >
B

/

s < M,
h

The action of holonomy is preserved under the transformation of bases if

D (I = Us by ;U 50 | K) se(L| = hyg|T)se(J]

which leads to the transformation rule: <h — h = UihUD

It is clear that the change of h under unitary
transformations in the source and target spaces is
equivalent to the action of a SU(2) gauge
transformation.



Holonomies as wave functions

Functions of holonomies, equipped with Haar measure on SU(2) Lie group
form a Hilbert space:

H = L*(SU(2))
so that:  p(he) € LQ(SU(Z)). Following the Peter-VWeyl therem:

(12(5U() = 0(H; 7))

where H; is a spin-j Hilbert space.

The orthonormal basis states in the Hilbert space, for a given path e, are:

1
V25 +1

Qp(he)j (hIJ)j|I>St<J| S Hj,s ® H;’:t ]7 J = 07 RN 2.]

1
For spin-1/2: p(he)l/? = Eh1J|I>St<J‘ €Hipp®Hi)y 1,J=0,1



States in H. ® H;

What are the states in H. Q H,?

Because of the isomorphism between H; and "H;‘ one can map
states from Hs @ H; to states in Hs @ H; .

In particular, for spin-1/2:

1
@he) € Haja ® Hijy = [8) = —hislDald)e € Hj @ HD

where Ni1J are matrix components of the SU(2) matrix.

The isomorphism is the manifestation of the Choi-Jamiotkowski
Isomorphism known in the theory of quantum channels.

The state can be used to introduce anti-linear map & relation
to quantum teleportation (Czech, Lamprou & Susskind, 2018;
Czech, De Boer, Ge & Lamprou, 2019)

Improved analysis, gravity, networks, etc. (JM & Trzesniewski, 2020)



1
ﬁ

is a maximally entangled state. The density matrix:

The state |U) := hy | Ds|d):e € Hs @ Hy

p= || = h?‘];KL (1) ss (K] (| )ee (L)

Unitarity of h:
The reduced density matrix:

hixhle , =61,
P h‘T/ The same for
st ([1)ss(K]) = 51

pr = trs(p)

The mutual information is maximal:

(I(s:1) = S(p,) + S(pr) — S(p) = 2In2 )
/ T

S(pst) = —tr(pstlnps) =In2  S(p) = 0 (pure state)




Antilinear map

Equivalently to the case of holonomy, one can the following map:

@i > (I — [\/5\\IJ>oC] ((I]) = ht,|J), e@

where C is the complex conjugation operation.

Change of bases leads to
(I [V21W) 0 C| (') = V2 (U 1) (T ]®)
= U, IJh>3L|L>t — UTIJh Ut*,LM‘MXﬁ

which leads to the following transformation rule:

@JM — by = U;L’]JhJLUt,L]\D

The map is equivalent to the SU(2) gauge transformation.




Constructing discrete (lattice) SU(2) gauge
theory

... employing the holonomies and fluxes.

Let us consider the L links e, which meet at N nodes.
The full quantum holonomy-flux algebra (between holonomies and
conjugated fluxes) is:

[F9 het]l = i6eer her T’
(he, he'] =0
[F? F)] = 0,069, FF

— —

Therefore, the conjugated fluxes are just angular momenta: F' = J

And the kinematical Hilbert space is:

L*(SU(2)")



Imposing the Gauss constraint

For simplicity, let us consider 4-valent nodes and fundamental (spin-1/2)

representations at the links.

Ps - Projection onto
spin-0 subspace by
the virtue of the
Gauss constraint.

The Gauss constraint tells us that the four fluxes (angular momenta)
conjugated to the holonomies Equation of a tetrahedron

4
sum-up to zero: E F’Z — () with the areas of the faces:
i=1 A; = ||Fi|




Quantum tetrahedron

A state of the quantum tetrahedron is:

@\m M ©H;, ®H, @H,; suchthar (S Jo)|0) = ]

where Hja — Span{|ja, —ja>, JOR |jaaja>}

and Ja ¥ Ja|ja,ma) — ja(ja + 1)‘ja, ma>

So, the |¥) state belongs to the SU(2)-invariant subspace of product of spins.

Please note that the states allows for quantum communication without a

shared reference frame: R N 4
- p= Jsu@ 49U (9)" pUT (9)
We call the subspace an intertwiner space:

OI) € Inv(H;, ®H;, H,;, ®H,;,) ]

dim Inv = number of linearly independent singlet states
21



The special case J1 = J2 =713 =J4 =)
dim Inv(H; @ H;  H; @ H;) = 25 + 1

In what follows we will focus on the fundamental representation of SU(2):j=1/2

dim Inv(H;/2 @ Hi/2 @ Hi/2 @ Hiyz) = 2

This comes from the fact that:

Hi2 @Hi/2 @ Hije ® Hyyo

:@3’&1 D Ho

The invariant subspace is two-dimensional - intertwiner qubit

Consequently, the physical Hilbert space reduces to:

CLQ(SU@)L/SU(Z)N) = ®§V:1H§?z>




Building gauge invariant states from holonomies

———=

\

0% o' ¢ ¥ B .
O:"/ j4 g5 = & J H]S

Hir ®

2

73

One can begin with the product spaces in which holonomies live, i.e.:
Hj, @ Hjs Hj, ® Hjg Hj, ® Hj, Hj, @ Hjg
take their product ®?=1Hji

and impose the Gauss constraint, which leads to:

Inv(H;, ® Hj, @ Hj, @ Hj,) @ Inv(H;, @ Hjs @ Hj, @ Hjg)

This construction generalizes to an arbitrary number of nodes and
leads to a concept of spin networks. (Penrose, Rovelli, Smolin, ...)

23



Spin networks - states of SU(2) gauge theory

1 .3

Spin labels - irreducible representations of the SU(2) group: 7: =0, -, 1, -, ...

2" 72
Local SU(2) gauge invariance (Gauss constraint) implies that spins sum up
to zero at the nodes - degeneracy leads to intertwiner spaces.




Quantum circuit for the quantum tetrahedron

0) — —
0) — - —
0) — U
0) — -

10)— —

10y — -

Ancilla qubits

At least four qubits are needed to create a single intertwiner qubit state.

K.Li et al. (2019), M (2019), G. Czelusta & JM (2021), L. Cohen et al. (2021)



A general intertwiner qubit state

4 .
. Z) = cos(8/2)|0s) + € sin(6/2)|15) ]

ntertwiner qubit base states in the

s-channel (four qubit singlets):

4 )
0,) = [9) ® ), ]
1
1) = = (|T4) ® |T-) + |1-) ® [T%) — [To) ® |To)) -
V3 Y
Singlet and triplet states for two spin-1/2 particles:
1
Sy = —(|01) — [10)),
|5) fz” ) —110))
|T+> — ‘00>v
1
To) = — (|01 10)),
7o) ﬁ(l ) +110))
T_) = |11).



Preparation of the state |7)

Task: Find a circuit U which generates
a general intertwiner qubit state:

Z) = Uz|0000) o \/g¢ sin(6/2),

The procedure is not unique! ¢ — % (COS(G/Q) B %6“{, sin(9/2))
Z) = cos(0/2)|0,) + €*® sin(6/2)|15) _exs [ gsin2(9/2) ) Sinﬁcosqb,
can be expressed as: \1/5 ° o V3
e ~N c3 = —= | —cos — —=e ¥ 8ln
(— con(0/2) — 7= sin(6/2))
) = "7100011) +[1100)) . ) = snfcosd
\/_ l—gsm (0/2) + 73

\f (|0101> + (1010))

\F(|011o> +[1001))

3 3
Z|ci|2=1 Zciz

N\ J i=1 i=1




A quantum circuit for quantum tetrahedron:

=

o
e a—
S
5!

/A
%
/4R
\J

-
~ 0 N N N~

G. Czelusta & |M (2021)



Transpilation

The circuit has to be fitted to the topology of a quantum processor:

-
5 qubits

IBM Yorktown

\_

3.795e-4 3.304e-3 1.726e-2

© (0) 10) H /L
ofo e (2)10) —U T . D i
d>/ (4) |0) Vi X D l
— (3)10) D b
-
IBM Melbourne
0) H l t |5 qubits
) Uy wi DaOa00202020
0) VIx o O OROROROS OSSO
0) (L D Single-qubit U2 eror rate

1.148e-1

J




Hmm Theoretical probabilties I Measured probabilities (Yorktown) Il Measured probabilities (Melbourne)

Simulations " 10s) | 1

0.15

Probabilities

0.10

0.05

0.00 -
0.35

0.30

0.25 A

0.20

0.15 o

Probabilities

0.10

0.05

0.00 -
0.35

0.30

0.25

0.20 A

Probabilities

0.15

0.10

0.05

0.00 -

A sequence of |0 computational rounds each containing 1024 shots
was performed for every of the considered states.



Fidelities

0.950-
0.925-
0.9001

20.8751

©0.8501 .
0.825-
0.800-
0.775-
0.750-

4 )

Classical fidelity:

Experimental results:

State| Yorktown

Melbourne

0s) |0.906 + 0.005
) 10.916 + 0.007
+) |0.892 + 0.007
) 10.915 & 0.007

| ) 0.918 & 0.008
| ) 10.917 & 0.008

0.814 £ 0.009
0.856 = 0.008
0.843 = 0.006
0.857 = 0.007
0.856 £ 0.008
0.851 = 0.007

| +) | =)
States

B Yorktown
s Melbourne




Beyond a single node...

SU(2) holonomies = maximal entanglement

—

Quantum entanglement is ,,gluing” together faces of tetrahedra.

The state associated with holonomy can be written as:

1
[ E) = \%h;msmt c H, @ Hy ] eg &) = 7 (101) —[10))

hrs are matrix components of the SU(2) holonomy.

Based on this, Maximally Entangled Spin Network (MESN) states can

be introduced:
<|MESN PG(X)\& )




New circuit for an Ising node  G.Czelusta & JM (2023)

W (a|0) + B|1)) [000) = |Z(a, B)) = afto) + Blu1)

0) —{UasHH{X l U Usjsn —o H l\

0) D H /L

0) N D N2
K Operator W j

(o N

0) — — |0)0

0) — v W — |0)0 Operatochontributes
KO) 4 N O)(y to a ,,projection” operator

State preparation Projection



Dipole

e
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|£%1i5>

|£k2i6>
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Entangled pairs

0 Eigin)
W’r
0)
0 Measured and predicted probabilities:
L
0)
W’r
0)
O 0)
Projections . .m. .

Manila IBM quantum computer

The quantum fidelity of the found state is @ 0.9@




Pentagram
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Entangled pairs Projections | he quantum fidelity of the found state is: (z O.7'D




Variational transfer of the 5-qubit state

of the pentagram

Ansatz
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Pentagram on 20 quits

The probability of the state |0)®~is maximized.

Pentagram on 5 quits



Summary and future prospects

Holonomies of SU(2) gauge field carry maximal entanglement.
Gauge invariant states of the discrete SU(2) gauge theory can
be introduced and represented as quantum circuits.

First quantum simulations of SU(2) gauge invariant states have
successfully been performed on quantum computers. Better
quantum computing resources are needed!

The quantum computing methods may bring advantage to
simulations of the gauge theories - computational complexity
to be explored (e.g. using geometric methods).
Implementation of quantum dynamics is to be done.
Extension of the construction to other gauge fields, e.g. SU(3)
and beyond (large N limit) is an exciting research challenge.



Thank you!

Quantum Cosmos Lab

quantumcosmos.org




