

Generic ML for fast simulations

by Michał Mazurek

on 4th June, 2024 WMLQ, Warsaw

👉 source of particles

- collisions in accelerators,
- radioactive isotopes,
- cosmic rays,

👉 source of particles

- collisions in accelerators,
- radioactive isotopes,
- cosmic rays,

🖵 experimental apparatus

- calorimeter and trackers,
- phototubes in neutrino experiments,

👉 source of particles

- collisions in accelerators,
- radioactive isotopes,
- cosmic rays,

r experimental apparatus

- calorimeter and trackers,
- phototubes in neutrino experiments,

🕝 readout system

- data acquisition (DAQ),
- event selection (trigger),
- event reconstruction,

👉 source of particles

- collisions in accelerators,
- radioactive isotopes,
- cosmic rays,

experimental apparatus

- calorimeter and trackers,
- phototubes in neutrino experiments,

readout system

- data acquisition (DAQ),
- event selection (trigger),
- event reconstruction,

🕝 offline data analysis

M. Mazurek

Understanding observations

Examples

- ? new particles and interactions,
- experimental variables vs. theoretical parameters,
- estimation of background, efficiencies, etc.

🎲 Monte Carlo simulations to the rescue

Simulation workflow in HEP

event generation

- Pythia8, Sherpa, Herwig...
- particle guns,

decay of unstable particles (optional)

EvtGen,

particle transport

- Geant4 (general toolkit),
- FLUKA (beamline and radiation env.),

detector response

usually detector specific,

Experimental workflow Simulation workflow Source of particles **Event** generation Experimental apparatus Particle transport Readout system **Detector response** Data processing Offline data analysis

[4/23]

Simulations become very challenging for computing

- large increase in luminosity very challenging for computing,
- LHCb: simulation for Run 2, takes up to 90% of the experiment computing resources,

M. Mazurek

Generic ML for fast simulations

Demanding process...

- dr relatively high throughput and precision required,
- 👉 long physics validation required,
- 👉 large models require training on large datasets,

...but feasible! Recipe:

- description of the second s
- 👉 interface to machine learning libraries to **run inference**,
- *f* **simulation framework** to **adapt** to the target geometry.

[7/23]

Generic ML models: example CaloChallenge

- train on experiment-agnostic
 training dataset
- compare various models objectively, is retrain the chosen model on the target geometry!

Generic ML for fast simulations

How do we deploy, maintain and serve ML models?

Experiments and their frameworks

- 👉 Athena in ATLAS,
- 👉 CMSSW in CMS,
- 👉 Gauss in LHCb,
- 👉 VMS in ALICE,
- **?** future experiments (FCC, etc.)

Can we extract core simulation components?

[13/23]

Core simulation framework for large scale detectors

"We should join forces for an experiment-independent Gauss-core"

— CERN SFT, 2015

Features as in Gauss

- modular event generation phase,
- based on common core software framework: Gaudi,
- follow particles transport from Geant4,
- parallelism, fast simulations, machine learning...

Introduce an experiment-independent layer!

Gaussino

- onew core simulation framework,
- only experiment-independent components,
- ideal test bed for new developments,

Gauss-on-Gaussino

- new version of LHCb simulation framework,
- based on Gaussino's core functionalities,
- adds LHCb-specific components and configurations,

Gaussino: keep what's good and works well...

i.e. the complete simulation framework architecture well-served in the LHCb experiment

… and support new developments and ideas!

Key concepts

- high-level configuration in python,
- multi-threaded event loop, Ð
- generic detector description tools (DD4Hep),
- generic event model (EDM4hep),
- new fast and ultra-fast simulations.
- machine learning libraries.

And many more!

Let's see how this can be done!

IHCB-TDR-017

🞲 ML in fast simulations in particle transport

Fast simulations with Geant4...

- stop detailed simulation in a particular region of the detector,
- use machine learning to produce a similar output,

What happens in Geant4?

...and machine learning

train a ML model to be able to produce the same output as Geant4,

External

produce hits by running inference on the generator,

Trained

Generat

Recipe

1. Where?

 region where the fast simulation takes place

2. What?

 what types of particles should be tracked

3. How?

- conditions when to fast simulate,
- fast hit generation algorithm,

[19/23]

... and machine learning

choose the best model for the task:

- * Variational Autoencoder (VAE),
- Generative Adversarial Network (GAN),
- * Diffusion models, etc.
- dapt & test ML interface to ONNXRuntime & PyTorch C++ backend,
- other ML libraries (TensorFlow, etc.)
 can be added later,

- **One model** only for e^+ , e^- and γ in the electromagnetic calorimeter
- Up to 400× speedup in the simulation throughput
- Around 1-4% energy difference vs. Geant4-based simulation

🞲 What is the **status** of the new framework?

- 👉 first versions already released on CVMFS,
- 👉 aim to use for all LHCb simulation in the future,
- 👉 already used in Upgrade II studies,
- 👉 production tests on the grid ongoing.

- HL-based fast simulations became crucial for the future of HEP experiments,
- Porting new models from a prototype to a production-ready framework is challenging,
- 👉 Gaussino is a core simulation framework that can be used to
 - test new ideas and implement generic models,
 - seamlessly integrate with the existing infrastructure,
- *full-scale production* in LHCb with the setup described in this presentation are planned by the end of 2024.

Thank you!

BACKUP

Redefined VAE model (VAEWithProfiles):

👉 Input:

- shower tensor of shape (batch_size, 18 x 50 x 45),
- \bullet particle tensor of shape (batch_size, latent_v + geo_v + θ-angle + pid + ϕ -angle).

👉 Output:

- 👉 total hits number per shower,
- 👉 total energy deposited in each shower,
- \leftarrow 1D profiles: *z*, *ρ*, *φ*, *e*.

Gauss Preliminary ECAL / 1x e^- 10 GeV θ =7° Fast Simulation (ONNXRuntime) G4VAE (Retrained)

🎲 Validation of the retrained models

Simulation

- *d* training datasets: MomentumRange pgun, 1-100GeV, θ =3.36-12.7°, ϕ =0-360°, pid = 11 (electrons), 22 (photons),
- inference datasets: FixedMomentum pgun, selected values & pids,
- 👉 truth datasets: FixedMomentum pgun, selected values & pids,
 - igoplus measure performance and low & high level monitoring of the retrained models,
- 👉 digitize the truth and inference datasets with Boole.

Reconstruction

- 👉 run the reconstruction on the digitized datasets,
- *compare the reconstructed cluster energy with the truth.*

Simulation, Electrons, $heta=3.36^\circ$

[23/23]

Generic ML for fast simulations

WMLQ 2024, Warsaw

🎲 Simulation, Electrons, $heta=12.7^\circ$

Simulation, Photons, $heta=12.7^\circ$

[23/23]

Simulation, Throughput

🞲 🛛 Reconstrution, cluster energy, electrons

🞲 Reconstruction, cluster energy, photons

🕻 Reconstruction, cluster ratio, electrons

