FPGAS In HPC
applications and methods

Grzegorz Korcyl

Department of Information Technologies
Jagiellonian University, Cracow

June 2024
WMLQ 2024

g

What are FPGASs

* Field Programmable Gate Arrays

* Adaptable computing resources
* Reconfigurable at any time
* Devices for processing digital data streams

Arrays of Configurable Logic Blocks Basic Configurable Logic Block

108 108 108 108

o]
@

A
OB OB 108 1) 108 ey Reconfigurable
Ci 1/Re P
..o.n.‘:c...c.sf:. c:,l;, Building Block
8| |cs B fa} B as | [Gin 2-0ut
5 £ 43} Look-up-table 2 2
LT
= - [x
© | | ,ececccccccces ~
] |3 :
6-in 2-out
2 § £ Lyt took-uptable {2 2] © 512 c &
e LuT v 3 I_ 8 z
@ @ -1} E 3 ° t
£ = Q)
8| |cs 8 ol B 8 £ £ £ o I 2
ol [<3 % H
- 6-in 2-out E. © 3 o
g 5 £ 1t Look-up-table 12 Ly, £ Eé‘.@-’ a &
- =] -
3| | s fol} cls clB 8 £ Lut o 3 £
e -------------- g
Sl |
5 § Ginzout i 5
Bl | ce B ciB cB 3 B e el 7‘“@"
:

-

www.electronicdesign.com

Architecture

a) Lookup Table (LUT) b)

Configuration Bit0 0 0 0
Configuration Bit1 0 1 0

out 1 0 0
Configuration Bit2]] 1
Configuration Bit3 . .

5 out=in[1] &in[0]
in

R. Kastner, J. Matai, S. Neuendorffer ,Parallel Programming for FPGAs”

CPU

VS

GPU vs FPGA

()
>
Data l o
< S
<)
é Data 2 s
O Instr 2 > Dl 2
Instr 3 ©
Y
Data 3 3
G
Instr 4 Data N
Data 4
o CPU o GPU o FPGA
o Single Instruction Single o Single Instruction Flexible architecture

Data per core

Fixed instruction set
Multiple cores

High clock freq.

Operating system

Multiple Data Massive parallelism

Fixed instruction set Streamlined processing

High clock freg. Low clock freg.

Memory access Instant memory access

Accelerates CPU Standalone platforms

Bk,

Devices

* First FPGA introduced by Xilinx in 1985
* 64 Configurable Logic Blocks with programmable interconnect
* Addition of two integers consumes ~30 CLB
* Design built manually by connecting logic gates

* Typical applications
* Interfacing with digitization devices (TDCs, ADCs)
* Sensor Fusion
* True real-time device control e.g. servo-motors,
* Network streams processing

* In experimental physics
* Digitization of analog signals
* Preprocessing of digitial data streams (e.g. filters, zero-reduction, feature extraction)
* Control and monitoring of electronics
* High-speed data transmission
* Low-level, fast data selection (trigger)

A

oooo ff ff ff ff ff ff 00 00
0010 01 1c Ob 00 00 00 ff 11
0020 ff ff c3 50 ¢3 50 01 08
0030 00 02 01 03 00 00 Q0 00
0040 00 02 06 01 00 02 06 02

FPGAs and GPUs

* FPGAs after 40 years
e Market value from 10S bilion in 2020 to estimated 30S bilion in 2030
* GPU market value from 25S billion in 2020 to estimated 300S bilion in 2030

* GPU breakthrough into mainstream computing
* Generic PCle interface
* Superior performance in specific applications
* Programming environment — CUDA introduced in 2007, Tensorflow in 2017

* Current FPGA situation
* PCle accelerator cards since 2018
e Largest device over 2 millions CLBs
* First mainstream C++ to HDL compiler released in 2015

* First complete system builder released in 2018
* Altera acquired by Intel in 2015, Xilinx acquired by AMD in 2022

Development methods

* Hardware Description Language (HDL)
* Natural development flow (VHDL, Verilog, SystemVerilog)
* Bit- and clock-cycle- level operations
 Difficult, nonintuitive for software developers
* OQutput product of any other design development method

* High-Level Synthesis
* C++ compiler into HDL
* Enables implementation of complex algorithmics
* Enables development of acceleration kernels
* Requires basic understanding of FPGA architecture

» System builder
* Development suite for accelerator cards with PCle
* Host — kernel architecture
* OpenCL or native XRT abstractions
 Complete flow in C++
e Compiler automatically generates host — memory — kernels interconnect

i

FPGA Accelerators

High-capacity FPGA variants

* 500k CLB U280 for 8k EUR, equivalent VU35P 40k EUR

PCle 4.0x8

Integrated 8 GB HBM

External 32 GB DDR4

2x QSFP28

Similar products from various manufacturers

QsFP

Flash

Clock

il

XCU280

Satellite
Controller

HEM
4GB

HBM

4GB

PClex1g

doge

Acceleration kernels

* Delegation of some algorithmic parts to
FPGA resources

* Complete development flow in C/C++

* FPGA design generated based on
configuration files

* Kernel compiled with High-Level
Synthesis

* Link automatically generated based on
configuration

* FPGA configuration bitfile produced for
execution

Host - CPU

int main() {
funci();
func2();
func3();

Accelerator - FPGA

dngee

Acceleration kernels

CASE 1
: ------------- e Inputl -—-s |
o Optlmlzatlons : HBMO c-- Input2 ----> KERNEL
' <---- Qutput ----
* Kernel level (HLS pragmas) SRR R
* Loop unrolling ; HBMI | ---- Tnputl ---->
* Pipelining computations L
. Memory Iayout : Han e KERNEL
* Data types S
* Balance between resource usage and R
performance : NBM3 | <--- Output ----

 System level (System Builder config. file)
* Types of kernels n
* Instances of kernels
* Memory layout
» Kernels interconnections

IummmmmmmmmmmmmmmM| r_____

Acceleration kernels

 Compilation and debugging
* System builder produces FPGA configuration bitfile
» Bitfile can be uploaded to the device at any time
* Configured device can be used by various host executables
* Unless they use the same kernels and memory layout

* Producing a bitfile is highly time consuming

* Development flow:

* Emulation C (fastest)
* Compilation and execution the entire sourcebase as standard g++ on CPU
* Consistency check of the algorithm
* Hardware Emulation (slow)
* Link with kernels compiled into HDL
* Execution as simulation of the HDL clock cycle after cock cycle
* Verification of optimizations, memory layout
* Hardware (extremly slow)
* Final bitfile produced
* Executionon hardware

* Each step produces series of reports to analyze (execution profiles, resource
consumption, etc.)

§
dnga

1S=

Acceleration kernels

e Execution

* Host has to configure the device, transfer
data, call the kernel and retrieve the
results

* OpenCL abstractions
* cl::Device, cl::Context, cl::Program
 cl::Buffer, cl::CommandQueue, cl::Kernel otomile? = et batd. 16, et o mornat imbTe oreus d(1))

.XCL BO SYNC BO TO DEVICE, 18, 0)
XCL_BO SYNC BO TO DEVICE, 18, 0)

al, simple.group id(e))

» Xilinx Runtime (XRT) abstractions
¢ Xrt::deVice, deVice'Ioad_XC|bin boHandlel.sync(pyxrt.xclBOSyncDirection.XCL BO SYNC BO FROM DEVICE, 10, @)

state = run

U xrt::bo, xrt::bo.sync, Xrt::kerne| https://github.com/Xilinx/XRT/blob/master/tests/python/02_simple/main.py

* pyxrt bidings for Python

1
s

Acceleration kernels

e How to construct a kernel?

* Implement plain C++

» Search accelerated libraries catalog

for subfunctions
* Configurable and optimised

implementations of typical functions

* Github examples of all FPGA
features and optimizations

* External tools e.g.:
* HLS-4-ML
* Keras, PyTorch to C++ and HLS
project

* Direct model inference conversion
from Python to FPGA kernel

Programming
Languages

Domain-Specific
Libraries

P, A
¥

Al Ecosyste

(=]
A
Medical Visio
aging

n and Quantitative Data Analytics
Image Finance

N C I C

®
® @
HPC Graph Data Data

and Database Compression Security

f6) 9
= -
| t 2l & 1
Common
Libraries Solver Basic Linear Sparse DSP Utilities
Algebra
Subroutines (BLAS)
Edge an-Premise Cloud Amd .com
Deployment Deployment Deployment
Keras
TensorFlow
PyTorch _
h I 4 I Co-processing kernel
compressed
model — HLS N
conversion Custom firmware
design
Usual ML I 9

software workflow

Python

tune configuration

o | ViRt
C++ Bitstream

* Inference only

Inference is feed-forward, simple arithmetics,
layer-by-layer pipelined, natural for FPGA

* Optimizations on data types

Custom data types are natural for FPGA
(int<8>, int<3>, ap_fixed(14, 5), ...)

e Control over each clock cycle

Low and deterministic latency in true real-time

* Prominent example

CMS experiment trigger system
Sustained collision rate 40 MHz
Fast decision on data quality
Implemented with HLS-4-ML

Xilinx FPGA
Data Triage
Tl r
(/‘\\ Align Tracking Al i
\\/ 150 and Inference Event
Terabytes/ Sec Clustering Data
CMS
Sensor
100ns

Figure 2: Compared to alternative devices such as GPUs and ASICs, FPGAs are the only viable choice for the event trigger processing because
they provide extremely low latency. While the large numerical processing capability of GPUs is attractive, these technologies are optimized for

high throughput, not low latency.

https://www.xilinx.com/publications/powered-by-xilinx/cerncasestudy-final.pdf

doge

Data sources

e Sources of data for kernels:

Maintenance Port |-

* Buffers allocated and migrated to local resources }

+ Migrate to, compute, migrate from scheme !

A
Satellite

Controller
[}

» Buffer streamed to the kernel through PCle

* Dataflow and streamlined computations

Flash

Clocks -

—

e 100G Ethernet QSFP28 sockets DDR > s e
* Dataflow and streamlined computations §i
* Lowest and deterministic network latency "g ‘
>
* 150ns from electric signals to decoded bytes ready PClex 16
to process

X23A519111a1

o

Ethernet solutions

System Configuration

I —— -
° O pe n N I C QDMA Subsystem gzes’oLr:g{lf Box CMAC Subsystem
I AXI-Lite Registers | I AXI-Lite Registers
e Acts as a regular network card rae | Lfoo x| [omraconse | == | T [awe
* Protocol stack on CPU and OS = Al |oszwe | | e
; : gy s
* Two regions for low-level processing P9 ohysict Funcion I
x4 |
* Network security, encryption, encoding... — - R S ——
[

QSFP28
Cages

https://github.com/XiIinx/open;nic?tab=read mé-ov-file

Dynamic Region

* VNXx
* ARP, ICMP, UDP implemented in the FPGA s - ARP
* UDP transmitter and receiver as a kernel & uoP
» Nodriver, kernel access from the host via & e
OpenCL or XRT Network Layer
* Custom, ultra-low latency applications, ...
Tolfrom application 512-bit AX|4-Stream

® Copyright 2021 Xilinx

https://github.com/Xilinx/xup_vitis_network_example

>& in, hls::

) {

in.read();

* Packet processing kernels as HLS
* Single loop iteration — single clock cycle

e

1
i

Higher-level abstractions

Programming models for heterogeneous systems

* Single codebase compiled to any platform
* Any C++ callable as kernel

* Reused OpenCL concepts

* Implicit host-kernel link

* Deep optimization requires tech. specific
constructs

* Target platform selected in a Makefile
* Compilers chain run underneath

* Interesting solution for data analysis in physics

SYCL, OpenCL and SPIR-V, as open industry SYCL enables Khronos to
standards, enable flexible integration and (SYCL influence 1SO C++ to (eventually) m
deployment of multiple acceleration technologies Source Code support heterogeneous compute
e ——
—— R e ,(:S.
© codeplay’ /¢ compute £ XILINX hipsycL Y, JiEtieG =

hipSYCL neoSYCL
CUDA and SX-AURORA
HIP/ROCm TSUBASA

, OpenL
NVIDIA GPUs
= D
Intel CPUs

GPR AMD GPUs NEC VEs
Intel CPUs Intel CPUs
Intel GPUS Intel GPUS
Intel FPGAs Intel FPGAS

Multiple Backends in Development
AMD GPUs SYCL beginning to be supported on multiple
o visdtechand low-level APIs in addition to OpenCL
Arm Mall
IMG PowerVR . e.g., ROCm and CUDA
Renesas R-Car For more information: http://sycl.tech

::default selector device selector;

::queue queue(de

o

FPGAs in HPC

FPGAs have a unique set of features:
* Naturally parallel and pipelined processing
* Ultra-low latency, true real-time processing
* Adaptable resources, dynamic reconfiguration

Devices have sufficient amount of resources
* Capable of accelerating complex algorithms
* Problematic for the compilers

Difficulty in transition from sequential
programming to HDL

* High-level abstractions, compilers and tools introduced

SINGLE Network switch Network switch
NODE (100Gbps x2) (100Gbps x2)
(with FPGA)

Software maturity required for another
technology breaktrough

Hardware Acceleration Cluster at UJ

Inter-FPGA Inter-FP
* 4xnodes _ fr e s
* 7x AMD Alveo acceleration cards (U280, U50)
¢ 4X NVldla GPUS (RTX 4090: 2080) T. Boku, ,,Japanese Supercomputer

° 1OOG Ethernet network development and hybrid accelerated supercomputing”

	Slajd 1: FPGAs in HPC applications and methods
	Slajd 2: What are FPGAs
	Slajd 3: CPU vs GPU vs FPGA
	Slajd 4: Devices
	Slajd 5: FPGAs and GPUs
	Slajd 6
	Slajd 7: FPGA Accelerators
	Slajd 8: Acceleration kernels
	Slajd 9: Acceleration kernels
	Slajd 10: Acceleration kernels
	Slajd 11: Acceleration kernels
	Slajd 12: Acceleration kernels
	Slajd 13: AI on FPGA accelerators
	Slajd 14: Data sources
	Slajd 15: Ethernet solutions
	Slajd 16: Higher-level abstractions
	Slajd 17: FPGAs in HPC

