
FPGAs in HPC
applications and methods

Grzegorz Korcyl

Department of Information Technologies

Jagiellonian University, Cracow

June 2024

WMLQ 2024

What are FPGAs

• Field Programmable Gate Arrays
• Adaptable computing resources

• Reconfigurable at any time

• Devices for processing digital data streams

www.electronicdesign.com

Arrays of Configurable Logic Blocks Basic Configurable Logic Block

R. Kastner, J. Matai, S. Neuendorffer „Parallel Programming for FPGAs”

CPU vs GPU vs FPGA

Instr 1
Data 1

Instr 2
Data 2

Instr 3
Data 3

Instr 4
Data 4

Instr 1

Data 1 Data N

Instr 2

Data 3 Data M

Data 1

Data 2

Data N

In
st

r
1

1

In
st

r
1

2

In
st

r
1

3

In
st

r
1

M

In
st

r
2

1

In
st

r
2

2

In
st

r
2

3

In
st

r
2

M

In
st

r
3

1

In
st

r
3

2

In
st

r
3

3

In
st

r
N

M

C
lo

ck
cy

cl
e

C
lo

ck
cy

cl
e

C
lo

ck
cy

cl
e

 GPU

 Single Instruction
Multiple Data

 Fixed instruction set

 High clock freq.

 Memory access

 Accelerates CPU

 FPGA

 Flexible architecture

 Massive parallelism

 Streamlined processing

 Low clock freq.

 Instant memory access

 Standalone platforms

 CPU

 Single Instruction Single
Data per core

 Fixed instruction set

 Multiple cores

 High clock freq.

 Operating system

Devices

• First FPGA introduced by Xilinx in 1985
• 64 Configurable Logic Blocks with programmable interconnect
• Addition of two integers consumes ~30 CLB

• Design built manually by connecting logic gates

• Typical applications
• Interfacing with digitization devices (TDCs, ADCs)
• Sensor Fusion

• True real-time device control e.g. servo-motors,

• Network streams processing

• In experimental physics
• Digitization of analog signals

• Preprocessing of digitial data streams (e.g. filters, zero-reduction, feature extraction)

• Control and monitoring of electronics
• High-speed data transmission

• Low-level, fast data selection (trigger)

FPGAs and GPUs

• FPGAs after 40 years
• Market value from 10$ bilion in 2020 to estimated 30$ bilion in 2030

• GPU market value from 25$ billion in 2020 to estimated 300$ bilion in 2030

• GPU breakthrough into mainstream computing
• Generic PCIe interface

• Superior performance in specific applications

• Programming environment – CUDA introduced in 2007, Tensorflow in 2017

• Current FPGA situation
• PCIe accelerator cards since 2018

• Largest device over 2 millions CLBs

• First mainstream C++ to HDL compiler released in 2015

• First complete system builder released in 2018

• Altera acquired by Intel in 2015, Xilinx acquired by AMD in 2022

• Hardware Description Language (HDL)
• Natural development flow (VHDL, Verilog, SystemVerilog)
• Bit- and clock-cycle- level operations
• Difficult, nonintuitive for software developers
• Output product of any other design development method

• High-Level Synthesis
• C++ compiler into HDL
• Enables implementation of complex algorithmics
• Enables development of acceleration kernels
• Requires basic understanding of FPGA architecture

• System builder
• Development suite for accelerator cards with PCIe
• Host – kernel architecture
• OpenCL or native XRT abstractions
• Complete flow in C++
• Compiler automatically generates host – memory – kernels interconnect

Development methods

FPGA Accelerators

• High-capacity FPGA variants
• 500k CLB U280 for 8k EUR, equivalent VU35P 40k EUR

• PCIe 4.0x8

• Integrated 8 GB HBM

• External 32 GB DDR4

• 2x QSFP28

• Similar products from various manufacturers

Acceleration kernels

• Delegation of some algorithmic parts to
FPGA resources

• Complete development flow in C/C++

• FPGA design generated based on
configuration files

• Kernel compiled with High-Level
Synthesis

• Link automatically generated based on
configuration

• FPGA configuration bitfile produced for
execution

int main() {
func1();
func2();
func3();

}

Host - CPU

PCIe

Accelerator - FPGA

Kernel:
func2()Link

Acceleration kernels

• Optimizations

• Kernel level (HLS pragmas)
• Loop unrolling

• Pipelining computations
• Memory layout

• Data types

• Balance between resource usage and
performance

• System level (System Builder config. file)
• Types of kernels
• Instances of kernels
• Memory layout
• Kernels interconnections

Acceleration kernels

• Compilation and debugging
• System builder produces FPGA configuration bitfile
• Bitfile can be uploaded to the device at any time
• Configured device can be used by various host executables

• Unless they use the same kernels and memory layout

• Producing a bitfile is highly time consuming

• Development flow:
• Emulation C (fastest)

• Compilation and execution the entire sourcebase as standard g++ on CPU

• Consistency check of the algorithm

• Hardware Emulation (slow)
• Link with kernels compiled into HDL

• Execution as simulation of the HDL clock cycle after cock cycle

• Verification of optimizations, memory layout

• Hardware (extremly slow)
• Final bitfile produced

• Execution on hardware

• Each step produces series of reports to analyze (execution profiles, resource
consumption, etc.)

Acceleration kernels

• Execution
• Host has to configure the device, transfer

data, call the kernel and retrieve the
results

• OpenCL abstractions

• cl::Device, cl::Context, cl::Program

• cl::Buffer, cl::CommandQueue, cl::Kernel

• Xilinx Runtime (XRT) abstractions

• xrt::device, device.load_xclbin

• xrt::bo, xrt::bo.sync, xrt::kernel

• pyxrt bidings for Python

https://github.com/Xilinx/XRT/blob/master/tests/python/02_simple/main.py

Acceleration kernels

• How to construct a kernel?

• Implement plain C++

• Search accelerated libraries catalog
for subfunctions

• Configurable and optimised
implementations of typical functions

• Github examples of all FPGA
features and optimizations

• External tools e.g.:
• HLS-4-ML

• Keras, PyTorch to C++ and HLS
project

• Direct model inference conversion
from Python to FPGA kernel

Amd.com

Python C++ Bitstream

AI on FPGA accelerators

• Inference only
• Inference is feed-forward, simple arithmetics,

layer-by-layer pipelined, natural for FPGA

• Optimizations on data types
• Custom data types are natural for FPGA
• (int<8>, int<3>, ap_fixed(14, 5), …)

• Control over each clock cycle
• Low and deterministic latency in true real-time

https://www.xilinx.com/publications/powered-by-xilinx/cerncasestudy-final.pdf

• Prominent example

• CMS experiment trigger system

• Sustained collision rate 40 MHz

• Fast decision on data quality

• Implemented with HLS-4-ML

Data sources

• Sources of data for kernels:

• Buffers allocated and migrated to local resources

• Migrate to, compute, migrate from scheme

• Buffer streamed to the kernel through PCIe

• Dataflow and streamlined computations

• 100G Ethernet QSFP28 sockets

• Dataflow and streamlined computations

• Lowest and deterministic network latency

• 150ns from electric signals to decoded bytes ready
to process

Kernel

stream

stream

Seq
.

Ethernet solutions

• OpenNIC

• Acts as a regular network card

• Protocol stack on CPU and OS

• Two regions for low-level processing

• Network security, encryption, encoding…

• VNx

• ARP, ICMP, UDP implemented in the FPGA

• UDP transmitter and receiver as a kernel

• No driver, kernel access from the host via
OpenCL or XRT

• Custom, ultra-low latency applications, …

• Packet processing kernels as HLS

• Single loop iteration – single clock cycle

https://github.com/Xilinx/xup_vitis_network_example

https://github.com/Xilinx/open-nic?tab=readme-ov-file

Higher-level abstractions
• Programming models for heterogeneous systems

• Single codebase compiled to any platform

• Any C++ callable as kernel

• Reused OpenCL concepts

• Implicit host-kernel link

• Deep optimization requires tech. specific
constructs

• Target platform selected in a Makefile

• Compilers chain run underneath

• Interesting solution for data analysis in physics

FPGAs in HPC
• FPGAs have a unique set of features:

• Naturally parallel and pipelined processing
• Ultra-low latency, true real-time processing
• Adaptable resources, dynamic reconfiguration

• Devices have sufficient amount of resources
• Capable of accelerating complex algorithms
• Problematic for the compilers

• Difficulty in transition from sequential
programming to HDL

• High-level abstractions, compilers and tools introduced

• Software maturity required for another
technology breaktrough

• Hardware Acceleration Cluster at UJ
• 4x nodes
• 7x AMD Alveo acceleration cards (U280, U50)
• 4x Nvidia GPUs (RTX 4090, 2080)
• 100G Ethernet network

T. Boku, „Japanese Supercomputer
development and hybrid accelerated supercomputing”

	Slajd 1: FPGAs in HPC applications and methods
	Slajd 2: What are FPGAs
	Slajd 3: CPU vs GPU vs FPGA
	Slajd 4: Devices
	Slajd 5: FPGAs and GPUs
	Slajd 6
	Slajd 7: FPGA Accelerators
	Slajd 8: Acceleration kernels
	Slajd 9: Acceleration kernels
	Slajd 10: Acceleration kernels
	Slajd 11: Acceleration kernels
	Slajd 12: Acceleration kernels
	Slajd 13: AI on FPGA accelerators
	Slajd 14: Data sources
	Slajd 15: Ethernet solutions
	Slajd 16: Higher-level abstractions
	Slajd 17: FPGAs in HPC

